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The estimated accuracy of an algorithm plays a central
and essential role in every face biometric problem. The ac-
curacy goal is simple – the higher, the better. We know that
the accuracy of an accepted biometric recognition system
should be a number close to 100%. However, how confi-
dent is an estimated accuracy for a given dataset? More-
over, how generalizable is the proposed method for a wider
variety of conditions? When we attempt to answer such
questions, we typically focus on the ‘what’ elements of the
dataset. What is number of images in the dataset? (Larger
is better.) What kinds of expressions were taken into ac-
count? (More is better.) What are the illumination condi-
tions in the images? (A broader range is generally better.)
What is the gender, age and racial sampling of the data?
(Broader is better.) Such questions are good and important,
although many papers are published without such proper-
ties of the dataset being detailed. Nevertheless, the gener-
alizability issue should also raise questions about ‘how’ the
images are used to estimate accuracy, as well as ‘what’ is
represented in the images. How is the accuracy estimated?
(Mean, weighted mean, median?) How is the experimen-
tal protocol defined? (Leave-one-out? Half-Half? 10-fold
cross-validation?) How are the images divided into train
and test portions? (Randomly? Every N -th image? Ac-
cording to time of acquisition?) How is the data sampled
from the underlying original data collection? (Is any data
that was originally collected not used? If so, is this doc-
umented?) How is the person-specific nature of the data
captured? (Are train and test splits person-disjoint?) How
is the variance in the estimated accuracy estimated?

In order to illustrate the problematic nature of accuracy
estimation, let us review one representative example. We
found in paper [A]1, that the reported accuracy on face ex-
pression recognition on database X was 96.3% using 10-
fold cross-validation. In paper [B]1, the reported accu-

1To avoid hurt feelings, the reference is not given in this part, however,
it is cited in our references.

racy on the same database was 70.0% using 10-fold cross-
validation. Finally, in paper [C]1, the reported accuracy on
the same database was 95.0%, however, the used experi-
mental protocol was similar to this one: we divide 10 facial
expression sequences of every person into training and test-
ing sets. Firstly, we use one expression image for testing,
others for training. Then 14 images are used for training
and 7 images left for testing. At last 7 images are used
for training and 14 images for testing. At first, we may
think that method [A] is better than [B] and [C] because it
has the highest reported accuracy. Nevertheless, method [C]
uses such an uncommon way to evaluate the accuracy is not
comparable. In addition, we might be tempted to think that
the 96.3% in [A] and the 70.0% in [B] could be used in a
fair comparison because both protocols use cross-validation
with 10 folds. However, paper [A] is silent about how the
folds are defined. Thus it is very difficult to establish if,
for this accuracy estimate, the subjects whose images ap-
pear in one of the ten subsets also have images in the other
nine subsets. Now, we can understand why method [B] has
an accuracy estimate of ‘only’ 70.0%. The protocol used
is more realistic because subjects that appear in the training
set do not appear in the testing set. The accuracy estimate in
this case has a much better chance of holding up in the face
of new data. In conclusion, we can say that in this example
that accuracies of [A], [B] and [C] are not comparable be-
cause the experimental protocols are too radically different.

In this work, we explore the problems that a researcher
can have when experimenting on face image databases in
terms of ‘how’ the images were used. We review the liter-
ature on three typical face image analysis challenges: ex-
pression recognition on JAFFE database (see Table 1), gen-
der recognition on FERET database (see Table 2) and face
recognition on AR database (see Table 3). We discover that
in each one there are so many experimental protocols that it
is nearly impossible to make fair comparisons. Moreover,
many times a protocol is so intricate and so insufficiently
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detailed that is not possible to be confident in repeating
it. Our work is focused on face databases, but we believe
that the same issues arise for all biometric modalities. We
claim that these two problems –no standard protocol, and
ill-defined protocols– undermine the research on biomet-
rics because they lead to confusing differences in strength
of protocol with differences in estimated accuracy of algo-
rithms.
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Table 1. Literature review on expression recognition using JAFFE
No. Method Accuracy Evaluation unmix
1 LP-LBP [11] 93.8 20 × 10-fold CV no
2 SLLE [24] 91.5 10-fold CV, 14 images/class for training no
3 SLLE [24] 92.7 10-fold CV, 21 images/class for training no
4 Boosted-LBP [35] 81.0 10-fold CV no
5 Ensamble [46] 96.2 10-fold CV no
6 L-SVM [13] 92.4 10-fold CV no
7 PDM-Gabor [20] 90.2 10-fold CV no
8 SH-FER [37] 96.3 10-fold CV no
9 Salient Facial Patches [16] 91.8 10-fold CV no
10 Hybrid Filter [23] 96.7 10-fold CV no
11 SLLE [24] 86.8 Leave one subject out yes
12 SFRCS [22] 85.9 Leave one subject out yes
13 Ensamble [46] 70.0 Leave one subject out yes
14 DSNGE [21] 65.6 Leave one subject out yes
15 GP [5] 55.2 Leave one subject out yes
16 HLAC [36] 69.4 Leave one subject out (only nine women instead of ten) yes
17 Coarse to Fine [10] 77.0 Leave one subject out yes
18 BDBNJ [26] 91.8 Leave one subject out yes
19 KCCA [48] 77.1 Leave one subject out yes
20 BDBNJ+C [26] 93.0 Leave one subject out using CK+ in training too. yes
21 ASR+ [30] 94.3 Leave on sample out. Training 203 samples. Repetitions 350. no
22 SFRCS [22] 96.7 Leave one sample out no
23 GWs+SVM [3] 90.3 Leave one sample out no
24 KCCA [48] 98.4 Leave one sample out no
25 GP [5] 93.4 Leave one sample out no
26 ALBP [25] 88.3 Hold out. Training: 2 samples of each facial expression for each person. Testing: remaining images. no
27 Tsallis [25] 85.4 Hold out. Training: 2 samples of each facial expression for each person. Testing: remaining images. no
28 ALBP+Tsallis [25] 91.9 Hold out. Training: 2 samples of each facial expression for each person. Testing: remaining images. no
29 ALBP+Tsallis+NLDAI [25] 94.6 Hold out. Training: 2 samples of each facial expression for each person. Testing: remaining images. no
30 GSNMF [49] 91.0 Hold out. Training: 2 samples of each facial expression for each person. Testing: remaining images. no
31 Gabor+PCA+LDA [6] 97.3 3 × Hold out. Training: 2 samples of each facial expression for each person. Testing: remaining images. no
32 Adaboost [41] 98.9 Reclassification. The goal was to use JAFFE for training and another DB for testing no
33 Boosted-LBP [35] 41.3 Training: CK+ Testing: JAFFE yes
34 BDBN [26] 68.0 Training: CK+ Testing: JAFFE yes

Table 2. Literature review on gender recognition using FERET
No. Method Accuracy Images M/F Evaluation unmix
1 SVM-RBF [31] 96.6 1755 1044/711 5-fold CV ?
2 Read AdaBoost [45] 93.8 3529 ? 5-fold CV no
3 AdaBoost [2] 94.4 2409 1495/914 5-fold CV yes
4 AdaBoost [2] 97.1 2409 1495/914 5-fold CV no
5 Fusion (L6) [1] 99.1 411 212/119 5-fold CV yes
6 Fusion [39] 99.1 411 212/119 5-fold CV yes
7 Fusion (L6) [39] 97.8 411 211/119 5-fold CV yes
8 2DPCA-SVM [27] 94.8 800 400/400 5-fold CV ?
9 DIF [15] 96.8 2729 1722/1007 5-fold CV (unclear) no
10 ASR+ [30] 95.0 1051 602/448 Leave on sample out. Training 880 samples. Repetitions 400. yes
11 manual alignment [28] 87.1 411 212/119 74-26 HO yes
12 AAFD [14] 88.9 2722 1713/1009 80-20 HO yes
13 recovered needle-map[44] 84.3 200 100/100 70-30 HO yes
14 ERBF2 - C4.5 [38] 96.0 3006 1906/1100 30 male and 30 female for Training, others for testing, 20 repetitions. no
15 Read AdaBoost [45] 92.0 3529 ? Training with Chinese Database, Testing on FERET yes
16 LDP [17] 95.1 2000 1100/900 not mentioned not mentioned

Table 3. Literature review on face recognition using AR
No. Method Accuracy Subjects Images/sub. Illum. Sunglass Scarf Evaluation
1 NFLS-I [34] 99 120 14 yes no no Leave on sample out.
2 ASR+ [29] 97.0 100 9 yes yes yes Leave on sample out. Training 900 samples. Repetitions 10.000.
3 ASR+ [29] 100.0 100 13 yes yes yes Leave on sample out. Training 1.300 samples. Repetitions 10.000.
4 ASR+ [29] 99.0 100 8 yes yes yes Leave on sample out. Training 800 samples (no disguise). Testing disguise. Repetitions 10.000.
5 ASR+ [29] 100.0 80 13 yes yes yes Leave on sample out. Training 1.040 samples. Repetitions 8.000.
6 ASR+ [29] 95.0 100 5 yes yes yes Leave on sample out. Training 500 samples. Repetitions 10.000.
7 ASR+ [29] 98.0 100 7 yes yes yes Leave on sample out. Training 700 samples. Repetitions 10.000.
8 ASR+ [29] 100.0 100 20 yes yes yes Leave on sample out. Training 200 samples. Repetitions 10.000.
9 ESRC [7] 95.0 80 13 yes yes yes 1-12 HO. Training: A single natural face.
10 Modular LRC [32] 95.5 100 10 no no yes 8-2 HO. Training: no disguise. Testing: disguise.
11 LRC [32] 96.0 100 10 no yes no 8-2 HO. Training: no disguise. Testing: disguise.
12 ASRC [40] 75.5 100 14 yes no no 2-12 HO
13 LC-KSVD [19] 97.8 100 26 yes yes yes 20-6 HO
14 `struct [18] 92.5 100 10 ? yes no 799-200 HO. Training: no disguise. Testing: disguise.
15 `struct [18] 69.0 100 10 ? no yes 799-200 HO. Training: no disguise. Testing: disguise.
16 SEC-MRF [50] 100.0 100 10 ? yes no 799-200 HO. Training: no disguise. Testing: disguise.
17 SEC-MRF [50] 97.5 100 10 ? no yes 799-200 HO. Training: no disguise. Testing: disguise.
18 MLERPM [43] 98.0 100 20 yes yes no 14-6 HO. Training: no disguise. Testing: disguise.
19 MLERPM [43] 97.0 100 20 yes no yes 14-6 HO. Training: no disguise. Testing: disguise.
20 LPOG [33] 99.1 134 13 yes yes yes 1-12 HO. Training: #1 neutral image, Testing: remaining 12 images.
21 PLECR [9] 98.2 100 26 yes yes yes 10 × 13-13 HO
22 DICW [42] 99.5 100 14 no yes no 8-6 HO. Training: no disguise. Testing: disguise.
23 DICW [42] 98.0 100 14 no no yes 8-6 HO. Training: no disguise. Testing: disguise.
24 DLRR [4] 91.4 100 20 yes yes no 3 × 8-12 HO. Training: 7 undisguised + 1 random sunglasses image.
25 DLRR [4] 90.2 100 20 yes no yes 3 × 8-12 HO. Training: 7 undisguised + 1 random scarf image.
26 ASRC [40] 94.7 100 14 yes no no 7-7 HO
27 DLRR [4] 93.7 100 14 yes no no 7-7 HO. Training: from session 1. Testing: from session 2.
28 SSAE [12] 85.2 100 13 yes yes yes 20-80 HO. Training: 20 subjects. Testing: 80 subjects.
29 DKSVD [47] 95.0 100 26 yes yes yes 3 × 20-6 HO
30 LC-KSVD [19] 97.8 100 26 yes yes yes 20-6 HO. Training: 20 random images per person.
31 SSRC [8] 98.0 100 26 yes yes yes 10 × 1300-1300 HO


