Face Recognition with Optimized Tree-Structured Local Binary Patterns

Daniel Maturana, Domingo Mery and Alvaro Soto
Departamento de Ciencias de la Computacion
Pontificia Universidad Catdlica
Santiago, Chile
Email: {dimatura, dmery, asoto}@uc.cl

Abstract—Many state-of-the-art face recognition algorithms
use image descriptors based on features known as Local
Binary Patterns (LBPs). In this work we describe a method to
learn LBP-like descriptors that learn the most discriminative
features for each facial region in a supervised manner. The
method represents a set of pixel comparisons as a tree and
searches for a tree which maximizes a Fisher-based class
separability criterion for the descriptors. The optimization is
performed heuristically by stochastic hill climbing. Tests on
standard face recognition datasets show the method creates
highly discriminative yet compact descriptors.

Keywords-face recognition; local binary patterns; decision
tree; id3; hill climbing; nearest neighbor;

I. INTRODUCTION

While face recognition algorithms commonly assume that
face images are well aligned and have a similar pose,
in many practical applications it is impossible to meet
these conditions. Therefore extending face recognition to
less constrained face images has become an active area of
research.

To this end, face recognition algorithms based on proper-
ties of small regions of face images — often known as local
appearance descriptors or simply local descriptors — have
shown excellent performance on standard face recognition
datasets. Examples include the use Gabor features [1],
SURF [2], SIFT [3], HOG [4], and histograms of Local
Binary Patterns (LBPs) [5]. A comparison of various local
descriptor-based face recognition algorithms may be found
in Ruiz del Solar et al [6].

Among the different local descriptors in the literature,
histograms of LBPs [7] have become popular for face recog-
nition tasks due to their simplicity, computational efficiency,
and robustness to changes in illumination. The success of
LBPs has inspired several variations. These include local
ternary patterns [8], elongated local binary patterns [9], multi
scale LBPs [10], patch based LBPs [11], LBPs on Gabor
magnitude images [12], to cite a few. However, these are
specified a priori without any input from the data itself,
except in the form of cross-validation to set parameters.

In this paper, our main contribution is to propose a new
method that explicitly learns discriminative descriptors from
the training data. This method builds on and improves on
our previous work [13] by modifying the descriptor learning

stage and adding weights to the nearest neighbor classifi-
cation. As a testing scenario, we consider the traditional
task of closed set face identification. Under this task, we
are given a gallery of identified face images, such that, for
any unidentified probe image, the goal is to return one of
the identities from the gallery.

This paper is organized as follows. Section II presents
general background information about the operation of tra-
ditional LBPs and also about the pipeline used by our
approach to achieve face recognition. Section III presents the
main details of our approach. Section IV discusses relevant
previous work. Section V shows the main experiments and
results of applying our approach to two standard benchmark
datasets. Finally, Section VI presents the main conclusions
of this work.

II. BACKGROUND INFORMATION

A. Local Binary Patterns

Local binary patterns were introduced by Ojala et al [7]
as a fine scale texture descriptor. In its simplest form, an
LBP description of a pixel is created by thresholding the
values of a 3 x 3 neighborhood with respect its central pixel
and interpreting the result as a binary number.

In a more general setting, a LBP operator assigns a
decimal number to a pair (¢, n),

b= Z 2071 (e, my)
i=1

where ¢ represents a center pixels and n = (ng,...ng) cor-
responds to a set of pixels sampled from the neighborhood
of ¢ according to a given pattern. Also,

I) 1 ife<n;
c,n;) =)
' 0 otherwise

This can be seen as assigning a 0 to each neighbor pixel in
n that is larger than the center pixel ¢, a 1 to each neighbor
smaller than ¢, and interpreting the result as a number in
base 2. In this way, for the case of a neighborhood of s
pixels, there are 2° possible LBP values.

B. Face recognition pipeline

Our face recognition pipeline is similar to the one pro-
posed in [5], but adds a more sophisticated illumination
normalization step, proposed by Tan and Triggs [8]. Figure
(1) summarizes its operation, given by the following main
steps:

1) Crop the face region and align the face by mapping
the eyes to a canonical location with a similarity
transform.

2) Normalize illumination with Tan and Triggs’ [8] Dif-
ference of Gaussians filter.

3) Partition the face image in a grid with equally sized
cells, the size of which is a parameter.

4) For each grid cell, apply a feature extraction oper-
ator (such as LBPs) to each pixel in the grid cell.
Afterward, create a histogram H; of the feature values
and concatenate these histograms into a single “spatial
histogram” S = (Hy, -+, Huyr).

5) Classify a probe face with the identity of the nearest
neighbor in the gallery, where the nearest neighbor
distance is calculated with the (possibly weighted) L
distance between the histograms of the corresponding
face images. In our algorithm, we use one weight
for each grid cell. That is, the distance between two
spatial histograms S' = (H{,--- ,H};) and S? =
(H3. - H) is

M
dist(S',8%) = > wm » [HY, = HYyl (1)
m=1 i
where H,,; is the ith bin of the mth histogram. We
specify how the weights are obtained below.

III. OUR APPROACH: OPTIMIZED TREE-STRUCTURED
LOCAL BINARY PATTERNS

The simple observation behind OT-LBP is that the op-
eration of a LBP over a given neighborhood is equivalent
to the application of a fixed binary decision tree [13]. In
effect, the aforementioned histograms of LBPs may be seen
as quantizing each pair (¢,n) with a specially constructed
binary decision tree, where each possible branch of the tree
encodes a particular LBP. The tree has s levels, where all
the nodes at a generic level [compare the center pixel ¢ with
a given neighbor n; € n. In this way, at each level | — 1,
the decision is such that, if ¢ < n; the vector is assigned
to the left node; otherwise, it is assigned to the right node.
Since the tree is complete, at level 0 we have 2° leaf nodes.
Each of these nodes corresponds to one of the 2° possible
LBPs. In fact, seen as a binary number, each LBP encodes
the path taken by (¢, n) through the tree; for example, in a
LBP with s = 8, 11111101 corresponds to a (¢,n) pair
which has taken the left path at level [= 1 and taken the
right path at all other levels.

4 I
LBP
1/0]0
Binary: 10011000 _ |
0jOJ1 Decimal: 52 = 52
0]0]1
threshold against 5
|\ J/
4 N\
r Decision tree OT-LBP

A3,
& R

!

8[1[1 / T
2]s]8 ONSHONO. 4
3[419
Pixel and
neighborhood ° a
- J
Figure 2. The LBP operator versus the OT-LBP operator.

The previous equivalence suggests the possibility of using
a different tree construction scheme to learn discriminative
LBP-like descriptors from training data. One possibility is
to use a standard ID3-style learning algorithm [13], [14].
We have found that we can obtain significative accuracy
improvements on this by learning an initial tree with the
standard ID3-style algorithm and then further optimizing it
with regards to a Fisher-based class separability criterion by
stochastic hill climbing. We dub this approach Optimized
Tree-Structured Local Binary Patterns or OT-LBP. As a
major advantage, by using training data to learn the structure
of the tree, OT-LBP can effectively build an adaptive tree,
whose main branches are specially tuned to encode discrim-
inative patterns for the relevant target class.

Figure 2 illustrates the operation of regular LBPs and OT-
LBPs. After a decision tree is trained, OT-LBP assigns to
each leaf node a code given by the path or branch that leads
to that node in the tree. In this way, for any input pixel ¢
and the corresponding neighborhood n used to build the tree,
the pair (¢, n) moves down the tree according to the ¢ < n;
comparisons. Once it reaches a leaf node, the respective code
is assigned to the center pixel ¢ (code number 1 in Figure 2).
As with ordinary LBPs, the OT-LBPs obtained for a given
image can be used for classification by building histograms.

In summary the proposed approach has the following
advantages:

« We use the data to explicitly and automatically search
for discriminative LBPs instead of handcrafting the
structure of the descriptor.

« Since we expect different patterns to be discriminative
in different face image regions, we learn a different tree
for each region.

« Instead of neighborhood of eight or sixteen pixels as
in regular LPBs, we use a much larger neighborhood

1. Input

2. Crop & Align

3. Normalize

4. Extract features

5. Nearest Neighbor match

il 5
it I

9
ity

OT-LBP)

b -

Figure 1.

and let the tree construction algorithm decide which
neighbors are more relevant.

o Apart from the feature extraction step, OT-LBP can
be used with no modification in any of the many
applications where LBP is currently applied.

A. Tree construction

Our objective is to construct a tree that will quantize the
pixels into histograms with a large within-subject similarity
and low between-subject similarity. After testing various cri-
teria to quantify this objective, we have found the following
Fisher-like criterion to work best:

2
J= (/Lt; - ,Ubg))
oy + oy
where (i, and p; are the mean within-subject and between-
subject distances of the histograms induced by the tree,
and 02 and o} are the variances of the within-subject and
between-subject distances of the histograms induced by the
tree. This criterion was used by Zhang et al [12] to weigh
different facial regions.

In practice we have found that larger trees are more
discriminative, but this has a cost in terms of storage space
and computational efficiency. Therefore wish to control the
size of the tree (and thus, the histogram size) as a parameter.
Finding the tree that optimizes (2) subject to a size constraint
is extremely complex, and we resort to a heuristic procedure.

Our initial attempts used Genetic Programming (GP) [15],
which uses a evolutionary search directly in the space of
trees. However, we found it difficult to combat bloat, the
well known-tendency of GP to favor ever-larger trees, while
mantaining a precise control of tree size.

We found a much simpler scheme to work better in terms
of solution quality and computational cost. The scheme has
two stages. In the first stage, a good initial tree is is grown
using a simple version of Quinlan’s greedy ID3 algorithm
[14] to induce the trees. The trees are recursively built
top-down by splitting the pairs (¢,n) in each node with a

il {253
-~
ittt 35

Gallery

The face recognition pipeline.

decision of the form ¢ < n;, with 1 <14 < s. The decision
is chosen greedily at each node via the usual information
gain criterion.
argmax AH (n;) = Hy, — p.H, — p H,

3
where H, is the entropy of the current node, H, and H;
are the entropies of the left and right nodes induced by
the decision n;. Likewise, p, and p; are the proportions of
(c,n) pairs that go to the left and right nodes according
to the decision. This criterion favors splits that discriminate
between pairs from each class. The data is split until the
maximum specified depth is reached.

Once the tree is fully grown, we begin a second stage
in which we directly optimize the original criterion (2) by
iteratively improving the initial tree. The improvement is
performed by stochastic hill climbing. In pseudo code, this
is:

proc hillclimb(tree) =
J* .= —inf
for 4 := 1 to hill_climbing_iterations do
new_tree := copy(iree)
J' = J(new_tree)
for j := 1 to tweaks do
tree’ := tweak(copy(iree))
if J(tree’) > .J’

then
J' = J(tree’)
new_tree := tree’
fi
od
tree := new_tree
if J'>J*
then
best := tree
J*=J
fi

od
return best

proc J(tree) =
Quantize data into histograms with tree
evaluate and return (p,, — p1)?/ (02 + o)

proc tweak(tree) =
Select random non-leaf node from tree
Set the n; in (n; < ¢) to a random integer « in (1, s),
s.t. none of the ancestors or descendants of the node
test for (a < c)
return tree

Finally, we keep the best tree obtained during the hill
climbing phase and its associated J* value. As a further
refinement with respect to [13], we use this value as a weight
for the distance calculation in (1), assuming that J* reflects
how discriminative the facial region corresponding the grid
cell is.

We define neighborhood n used by OT-LBP differently
than LBPs. We use a square neighborhood centered around
¢, and instead of samples taken along a circle, as in regular
LBPs, we consider all pixels inside the square as part of the
neighborhood (fig. (3)). All the pixels within this square are
considered as potential split candidates. The idea is to let
the tree construction algorithm find the most discriminative
pixel comparisons.

The main parameters of this algorithm are the size of
the neighborhood n to explore, the maximum depth of the
trees, the number of hill climbing iterations and the number
of tweaks tested at each hill climbing iteration. As shown
in Figure 3, the first parameter is determined by a radius r.
We have observed larger r values results in better performing
trees, but are more expensive in the first phase of the tree
construction process. We empirically set » = 7 as a compro-
mise. The second parameter, tree depth, determines the size
of the resulting histograms. Smaller histograms are desirable
for space and time efficiency, but as we mentioned, there is
a trade-off in accuracy with respect to larger histograms.
We will report accuracies with depths between 6 and 9.
With regard to the last two parameters, these are dictated
mostly by the available computing resources. In our C++
implementation, 100 hill climbing iterations and 30 tweaks
tested per iteration keeps the training to take around a day
for trees with maximum depth 9.

Using trees opens up various possibilities. We have ex-
plored some extensions to the basic idea, such as using
a forest of randomized trees (as in [16] and [17]), trees
splitting based on a linear combinations of the values of
the neighborhood (i.e. nodes split on n’w < ¢, similarly
to [18]), or using ternary trees where a middle branch
corresponds to pairs for which |¢ — n;| < e This last

;

Figure 3. Pixel neighborhood used in OTLBP. The inner square is the
center pixel ¢, and the neighborhood corresponds to all the pixels enclosed
in the larger square. The size of the neighborhood is determined by the
radius 7.

approach can be considered as the tree-based version of the
“Local Ternary Pattern” in [8]. So far, we found that a single
tree built with our scheme is the best performing solution.

IV. RELATED WORK

Our algorithm can be seen as a way to quantize (¢, n)
pairs using a codebook where each code corresponds to a
leaf node. This links our algorithm to various other works
in vision that use codebooks of image features to describe
the images.

Ahonen et al [19] proposed to view the difference ¢ — n;
of each neighbor pixel n; with the center as the response of
a particular filter centered on c. Under this view, the LBP
operator is a coarse way to quantize the joint responses of
various filters (one for each neighbor n;). Likewise, OT-
LBP is also a quantizer of these joint responses, but it is
built adaptively. Ahonen tested the K-Means algorithm as
an adaptive quantizer, but found it to be inferior to LBP for
a texture recognition task.

Forests of randomized trees have become a popular
option to construct codebooks for computer vision tasks.
Moosmann et al [17] use Extremely Randomized Cluster-
ing forests to create codebooks of SIFT descriptors [20]).
Shotton et al. [16] use random forests to create codebooks
for use as features in image segmentation. While the use of
trees in these works is similar to ours, they use the results
of the quantization in a very different way; the features are
given to classifiers such as SVMs, which are not suitable for
use in our problem. Furthermore, we have found that for our
problem single trees are more effective than random forests.

Wright et al. [21] use unsupervised random forests to
quantize SIFT-like descriptors for face recognition. The main
difference with our algorithm is that we do not quantize
complex descriptors extracted from the image but we work
directly on the grayscale image. In addition, the accuracy
of their algorithm on the tested datasets is relatively poor
compared to other state-of-the-art algorithms. This may be
due to the use of an unsupervised algorithm to construct the
trees.

There are various recent works using K-Means to con-
struct codebooks to be used for face recognition in a
framework similar to ours. Meng et al [22] use it to directly

quantize patches from the grayscale image patches. Xie et
al [23] as well as [24] use it to quantize patches from
images convolved with Gabor wavelets at various scales
and orientations. These algorithms are the closest in spirit
to our work, since they are partly inspired by LBPs. These
algorithms differ from ours in the algorithm used to construct
the codebook. They use K-Means, which has the drawback
of not being supervised and thus unable to take advantage of
labeled data. In addition, for the same number of codes, K-
Means are less efficient than trees. Finally, unlike ours, two
of the above algorithms incorporate Gabor wavelet features.

Another line of investigation worth mentioning is the
use of heuristic algorithms, and in particular evolutionary
algorithms, to construct visual descriptors for different pur-
poses. Perez and Olague [25] use Genetic Programming
(GP) with a large set of terminals to construct invariant
region descriptors for visual matching. Yu and Bhanu [26]
also use GP with a large set of operators and Gabor filtering
to induce features for facial expression recognition. Kowaliw
et al [27] use a variant of GP known as cellular GP to build
features for an image classification task. Compared to these
approaches, our features simpler, since they do not use a
complex set of operations and the tree topology is fixed
once the ID3 construction process is finished.

V. EXPERIMENTS

We perform experiments on the FERET [28] and the CAS-
PEAL-R1 [29] benchmark databases. First, we examine the
effects of incorporating the hill climbing stage in the tree
construction process for each maximum tree depth used.
In this case, we measure the accuracy of the algorithm on
a subset of FERET. Afterward, we report the accuracy of
our algorithm on various standard subsets of FERET and
CAS-PEAL-R1 with a selected set of parameters. We report
results with and without weights, where the weights for each
region are set as the final J value from (2) for the tree of
each region.

In all images we partition the image into an 7 x 7 grid, as
originally used in [5]. While in general we have found this
partition to provide good results, it is likely that adjusting
the grid size to each database may yield better results.

For each experiment we show our results along with
results from similar works in the recent literature: the
original LBP algorithm from Ahonen [5]; the Local Gabor
Binary Pattern (LGBP) algorithm, which applies LBP to
Gabor-filtered images; the Local Visual Primitive (LVP)
algorithm of Meng et al [22], which uses K-Means to
quantize grayscale patches; the Local Gabor Textons (LGT)
algorithm and the Learned Local Gabor Pattern (LLGP)
algorithms, which use K-Means to quantize Gabor filtered-
images; and the Histogram of Gabor Phase Patterns (HGPP)
algorithms, which quantizes Gabor filtered images into his-
tograms that encode not only the magnitude, but also the
phase information from the image. For each algorithm, if a

1.00 4
_____ A
098~ PR
A---mmmmmm o S)
> 0.96 - quantizer
3 hill
g 094" -+ id3
< 0.92 - random
0.90
T T T |
6 7 8 9
Tree depth
(a) FERET fb
1.00 4
0.98 -
A "
3 0.96 - A --------- quan;ljler
& g !
g 094~ -4 id3
g
0.92 - random
0.90
T T T '
6 7 8 9
Tree depth
(b) CAS-PEAL Expression
Figure 4. Accuracy of tree construction schemes and maximum tree

depth on the FERET fb and CAS-PEAL Expression datasets. Accuracies
for algorithms other than OT-LBP come from the cited papers.

weighting scheme is used, we show the best results with the
weighting scheme under the name of the algorithm followed
by -W’.

The results are not strictly comparable, since there may
be differences in preprocessing, and for FERET, the training
set used, but they provide a meaningful reference.

A. Effect of hill climbing phase and tree depth

To show the effectiveness of each stage of our tree con-
struction process, we compare the accuracy of a randomly
constructed tree (as a baseline), a tree constructed with
ID3 and a tree constructed with ID3 and optimized with
hill climbing on the FERET fb (figure 4a) and CAS-PEAL
Expression (figure 4b) datasets.

As expected, the optimized trees perform better than the
ID3 trees and the ID3 trees perform better than the random
trees. The improvement obtained by hill climbing seems to
decrease with larger tree sizes. It is likely this is due of the
larger problem space associated to the larger trees, which
makes the task for the hill climbing process more difficult.

B. Results on FERET

For FERET, we use fa as gallery and fb, fc, dupl and
dup? as probe sets. For training, we use the FERET standard
training set of 762 images from the training CD provided
by the CSU Face Identification Evaluation System package
[30].

Method b fc dupl dup2
LBP [5] 093 051 061 050
LBP-W [5] 097 079 0.66 0.64

LGBP [12] 094 097 068 0.53
LGBP-W [12] 098 097 0.74 0.71

LVP [23] 097 070 066 0.50
LVP-W [23] 099 080 070 0.60
LGT [24] 097 090 0.71 0.67

HGPP [31] 098 099 078 0.76
HGPP-W [31] 098 099 078 0.77

LLGP [23] 097 097 075 071
LLGP-W [23] 099 099 080 0.78
OT-LBP}, 098 097 078 074
OT-LBP-W[099 098 081 078
OT-LBP? 098 097 082 0.78
OT-LBP-WI 099 098 083 079
OT-LBP 098 099 082 078
OT-LBP-W] 099 099 083 0380
OT-LBPj 098 099 083 079
OT-LBP-W] 099 099 0.84 0.83
Table 1

ACCURACY ON FERET PROBE SETS. OT-LBP}; CORRESPONDS TO A
TREE OF MAXIMUM DEPTH d AND RADIUS 7. OT-LBP-W IS THE
WEIGHTED VERSION OF OT-LBP. ACCURACIES FOR ALGORITHMS
OTHER THAN OT-LBP COME FROM THE CITED PAPERS.

We can see that our algorithm does well on FERET. It
obtains the best results on all the datasets.

C. Results on CAS-PEAL-RI

In CAS-PEAL-RI1 we use the standard training and gallery
subsets, and we use the Expression, Lighting and Accessory
subsets as probes.

In this dataset our algorithm performs comparably with
other algorithms in the Expression and Accessory datasets.
On the lighting dataset, the overall performance of all the
algorithms is rather poor. In this case, the best performance
are given by LGBP, HGPP and LLGP. All these algorithms
use features based on Gabor wavelets, which suggests that
Gabor features provide robustness against the extreme light-
ing variations in this dataset.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a novel method that uses training
data to create discriminative LBP-like descriptors by using
decision trees. The algorithm obtains encouraging results on
standard databases, and presents better results that several
state-of-the-art alternative solutions. In particular, with re-
spect to a face recognizer based on the widely used LBPs,
our approach presents a significant increase in accuracy,

Method Expression Accessory Lighting
LGBP [12] 0.95 0.87 051
LVP [22] 0.96 0.86 0.29
LVP-W [22] 0.96 0.86 0.33
HGPP [31] 0.96 0.92 0.62
HGPP-W [31] 0.97 0.92 0.63
LLGP [23] 0.96 0.90 0.52
LLGP-W [23] 0.96 0.92 0.55
OT-LBP 0.96 0.89 0.33
OT-LBP-W} 0.97 0.89 0.34
OT-LBPY 0.97 0.90 0.36
OT-LBP-W? 0.97 0.90 0.36
OT-LBP} 0.97 0.90 0.37
OT-LBP-W} 0.97 0.90 0.37
OT-LBP] 0.97 0.90 0.37
OT-LBP-W/] 0.98 0.91 0.37
Table 1T

ACCURACY ON CAS-PEAL-R1 PROBE SETS. OT-LBP/; CORRESPONDS
TO A TREE OF MAXIMUM DEPTH d AND RADIUS r. OT-LBP-W IS THE
WEIGHTED VERSION OF OT-LBP.

demonstrating the advantages of using an adaptive and
discriminative set of local binary patterns.

Regarding future work, seeing the good performance of
algorithms that use features based on Gabor wavelets (such
as [23] and [31]) we are incorporating these type of features
into our algorithm.

ACKNOWLEDGEMENTS

This work was partially funded by FONDECYT
grant 1095140 and LACCIR Virtual Institute grant No.
R1208LACO005 (http://www.laccir.org).

Portions of the research in this paper use the FERET
database of facial images collected under the FERET pro-
gram.

The research in this paper uses the CAS-PEAL-R1 face
database collected under the sponsorship of the Chinese
National Hi-Tech Program and ISVISION Tech. Co. Ltd.

REFERENCES

[1] J. Zou, Q. Ji, and G. Nagy, “A comparative study of local
matching approach for face recognition,” IEEE Trans. Image
Process., vol. 16, no. 10, pp. 2617-2628, 2007.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-
up robust features (SURF),” Computer Vision and Image
Understanding, vol. 110, no. 3, pp. 346-359, 2008.

[3] M. Bicego, A. Lagorio, E. Grosso, and M. Tistarelli, “On the
use of SIFT features for face authentication,” in CVPR, 2006,
p. 35.

[4] A. Albiol, D. Monzo, A. Martin, J. Sastre, and A. Albiol,
“Face recognition using HOG-EBGM,” Pattern Recognition
Letters, vol. 29, no. 10, pp. 1537-1543, 2008.

[5] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description
with local binary patterns: Application to face recognition,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 12, pp.
2037-2041, 2006.

(6]

[7

—

(8]

[9

[

[10]

(11]

(12]

(13]

[14]

[15]

[16]

[17]

(18]

(19]

(20]

[21]

J. Ruiz-del-Solar, R. Verschae, and M. Correa, “Recogni-
tion of faces in unconstrained environments: A comparative
study,” EURASIP Journal on Advances in Signal Processing,
vol. 2009, pp. 1-20, 2009.

T. Ojala, M. Pietikinen, and D. Harwood, “A comparative
study of texture measures with classification based on featured
distributions,” Pattern Recognition, vol. 29, no. 1, pp. 51-59,
1996.

X. Tan and B. Triggs, “Enhanced local texture feature sets for
face recognition under difficult lighting conditions,” in Proc.
of the 3rd International Conference on Analysis and Modeling
of Faces and Gestures, 2007, pp. 168—182.

S. Liao and A. C. S. Chung, “Face recognition by using elon-
gated local binary patterns with average maximum distance
gradient magnitude,” in ACCYV, Berlin, Heidelberg, 2007, pp.
672-679.

S. Liao, X. Zhu, Z. Lei, L. Zhang, and S. Li, “Learning
multi-scale block local binary patterns for face recognition,”
in Advances in Biometrics, 2007, pp. 828-837.

L. Wolf, T. Hassner, and Y. Taigman, “Descriptor based
methods in the wild,” in Real-Life Images Workshop at ECCV,
October 2008.

W. Zhang, S. Shan, W. Gao, X. Chen, and H. Zhang, “Local
gabor binary pattern histogram sequence (LGBPHS): A novel
non-statistical model for face representation and recognition,”
in ICCV, 2005.

D. Maturana, D. Mery, and S. Alvaro, “Face recognition with
decision tree-based local binary patterns,” in ACCV, 2010.

J. R. Quinlan, “Induction of decision trees,” Mach. Learn.,
vol. 1, no. 1, pp. 81-106, 1986.

J. Koza, Genetic programming: on the programming of com-
puters by means of natural selection. The MIT press, 1992.

J. Shotton, M. Johnson, and R. Cipolla, “Semantic texton
forests for image categorization and segmentation,” in CVPR,
2008.

F. Moosmann, E. Nowak, and F. Jurie, “Randomized clus-
tering forests for image classification,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 30, no. 9, pp. 1632-1646, 2008.

A. Bosch, A. Zisserman, and X. Mufioz, “Image classification
using random forests and ferns,” in /CCV, 2007.

T. Ahonen and M. Pietikinen, “Image description using joint
distribution of filter bank responses,” Pattern Recognition
Letters, vol. 30, no. 4, pp. 368 — 376, 20009.

D. G. Lowe, “Distinctive image features from Scale-Invariant
keypoints,” International Journal of Computer Vision, vol. 60,
no. 2, pp. 91-110, 2004.

J. Wright and G. Hua, “Implicit elastic matching with random
projections for pose-variant face recognition,” in CVPR, 2009,
pp. 1502-1509.

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

X. Meng, S. Shan, X. Chen, and W. Gao, “Local visual
primitives (LVP) for face modelling and recognition,” in
ICPR, 2006.

S. Xie, S. Shan, X. Chen, X. Meng, and W. Gao, “Learned
local gabor patterns for face representation and recognition,”
Signal Processing, vol. 89, no. 12, pp. 2333 — 2344, 2009,
special Section: Visual Information Analysis for Security.

Z.Lei, S. Li, R. Chu, and X. Zhu, “Face recognition with local
Gabor textons,” Advances in Biometrics, pp. 49-57, 2007.

C. B. Perez and G. Olague, “Learning invariant region
descriptor operators with genetic programming and the f-
measure,” in ICPR, 2008, pp. 1-4.

J. Yu and B. Bhanu, “Evolutionary feature synthesis for facial
expression recognition,” Pattern Recogn. Lett., vol. 27, no. 11,
pp. 1289-1298, 2006.

T. Kowaliw, W. Banzhaf, N. Kharma, and S. Harding, “Evolv-
ing novel image features using genetic programming-based
image transforms,” in CEC, 2009, pp. 2502-2507.

P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss,
“The FERET evaluation methodology for Face-Recognition
algorithms,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22,
no. 10, pp. 1090-1104, 2000.

W. Gao, B. Cao, S. Shan, X. Chen, D. Zhou, X. Zhang, and
D. Zhao, “The CAS-PEAL large-scale Chinese face database
and baseline evaluations,” IEEE Trans. Syst., Man, Cybern.
A, vol. 38, no. 1, pp. 149-161, 2008.

D. Bolme, J. Beveridge, M. Teixeira, and B. Draper, “The
CSU face identification evaluation system: Its purpose, fea-
tures and structure,” in /CCV, 2003.

B. Zhang, S. Shan, X. Chen, and W. Gao, “Histogram of
gabor phase patterns (HGPP): A novel object representation
approach for face recognition,” IEEE Trans. Image Process.,
vol. 16, no. 1, pp. 57-68, 2007.

