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Abstract. Currently, there is no solution, which does not require a high 

runtime, to the problem of choosing preprocessing methods, feature selection 

algorithms and classifiers for a supervised learning problem. In this paper we 

present a method for efficiently finding a combination of algorithms and 

parameters that effectively describes a dataset. Furthermore, we present an 

optimization technique, based on ParamILS, which can be used in other 

contexts where each evaluation of the objective function is highly time 

consuming, but an estimate of this function is possible. In this paper, we present 

our algorithm and initial validation of it over real and synthetic data. In said 

validation, our proposal demonstrates a significant reduction in runtime, 

compared to ParamILS, while solving problems with these characteristics. 

Keywords. Full Model Selection, FMS, Machine learning Challenge, Iterative 

Local Search, ILS. 

1 Introduction 

The Model Selection task can be described as choosing the model that best 

describes a data set [2]. In the machine learning context, this problem may be 

interpreted in several different ways, from feature selection to parameter tuning. In 

this paper we will use a broader interpretation, based on the definition of Full Model 

Selection (FMS) as described by [4]. The FMS problem is defined as: given a pool of 

preprocessing methods, feature selection and classification algorithms, select the 

combination of these that obtains the lowest classification error for a given data set. 

This task also includes the selection of the hyperparameters for the considered 

methods. 

In today’s practice, the supervised learning problem is usually solved by applying 

conventions (e.g. the number of neighbors considered in KNN should be relatively 

low), ad hoc choices (SVM has worked well in the past, why not apply it now), and 

experimental comparisons on a limited scale (testing three different classifiers with 

their default settings and comparing performances). The problem with this approach 
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is that, while it may return acceptable results, it does not truly consider the 

particularities of the problem at hand. The advantages of using a more specific 

solution over the generalized approach have been shown in several studies [6]. An 

explanation for this improvement is given in the No Free Lunch Theorems for 

Optimization [1]. In a nutshell, this theorem says that any improvement in the 

performance of a model over one class of problems is offset by a lower performance 

over another class. Therefore, in order to obtain the best possible performance over a 

certain data set, the generalist approach should be discarded and replaced by the 

search for a specific model for the problem at hand. 

As mentioned before, the FMS problem explores different combinations of 

algorithms and their hyperparameters, resulting in a vast search space. Furthermore, 

in order to accurately evaluate each candidate model, training and testing using some 

validation technique (like Cross Validation) can take a long time, especially over 

large data sets, which are not uncommon in this field. This combination of a large 

search space with a long evaluation time, generates a problem well suited for 

stochastic optimization techniques. 

The proposed approach is to use an Iterative Local Search (ILS) algorithm, which 

are well suited for combinatorial optimization problems like this one. Specifically, an 

implementation ParamILS [5] was adjusted to solve the FMS problem. ParamILS is a 

parameter tuning algorithm designed with runtime optimization of algorithms in 

mind, but can be easily modified to fit the needs of the FMS problem. In this paper we 

present a new algorithm, called PILS (Probabilistic Iterative Local Search), which is 

specifically designed for combinatorial optimization problems with long evaluation 

time. 

This paper is organized as follows: Section 1 gives an overview of the problem. 

Section 2 describes the basic operators of ParamILS. Section 3 describes our proposed 

method, PILS. Section 4 reviews our technique for validating this algorithm and the 

initial results. Finally, Section 5 is a brief conclusion. 

2 Iterative Local Search (ILS) 

Iterated local search [5] (ILS) is a general meta-heuristic with two basic operators 

for generating new solutions. The first is the Local Search Operator, which attempts 

to find the local optimum in the neighborhood of a solution. The second is the 

Perturbation Operator, which is applied to the local optimum in order to generate a 

new starting point for a local search.  

A general overview of the ILS algorithm is presented in Algorithm 1: 

Algorithm 1: Iterative Local Search 

loop 

 x’  = Perturbation(x*); 

 x’’ = LocalSearch(x’); 

 if better(x’’,x*) 

  x* = x’’; 
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2.1 ParamILS 

ParamILS [5], is the ILS on which our algorithm is based. This is a simple, but 

powerful, algorithm designed for parameter tuning that relies on the following 

definitions: 

Solution. As was mentioned before, ParamILS is a parameter tuning algorithm. 

Therefore, it defines each solution as an array of values, where each position in the 

array represents a specific parameter. At some point during the algorithm execution, 

depending on the values of the solution, some of the parameters may become inactive. 

An inactive parameter is a parameter that, if changed, has no effect on the cost 

function. The relation between parameters that defines when they become inactive 

must be defined beforehand and is used to describe conditional relationships among 

parameters.  

Local Search. All ILS algorithms must define the way in which they look for a local 

optimum in the neighborhood surrounding a particular solution. ParamILS starts by 

defining a neighbor as a solution that differs from the initial one by only one 

parameter, as long as that parameter is active. Subsequently, it follows an Iterative 

First Improvement technique for finding a local optimum. This technique takes all the 

neighbors of an initial solution, in randomized order, and compares them to the initial 

solution. As soon as a solution is found to be better than the initial one, the process 

restarts using the new solution as a starting point. This will continue until a solution 

that is better than all of its neighbors is found (local optimum).  

Perturbation. ILS algorithms jump from local optimum to local optimum. In order to 

do this, they must define an operator that allows them to escape from the optimum 

they are currently in and restart the local search. This operator is defined as the 

Perturbation Operator. In the case of ParamILS, a very straightforward technique is 

used to find a new starting point. The Perturbation Operator is defined as a number of 

jumps from neighbor to neighbor, starting from the current optimum. The number of 

jumps will define how different one solution is from its predecessor. A small number 

will increase the likelihood or falling back on the same local optimum, while a large 

number of jumps will end up with a completely random starting point. 

Better. Any ILS algorithm requires a way of defining if one solution is better that 

another. ParamILS proposes two options for defining the Better Function. The first is 

BasicILS, which simply compares an each solution with a user defined cost function. 

The second is FocusedILS, which uses a variable number of training instances in each 

evaluation in order obtain results with a lower computational cost. The Better 

Function is precisely what is modified by our algorithm (PILS), so the 

implementation made by ParamILS is not explained in great depth here. For a more 

comprehensive understanding of the Better Functions and the ParamILS algorithm, 

please refer to [5]. 
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3 Our approach (PILS) 

ParamILS proves to be an effective way of moving along the search space finding 

local optimums. The problem that arises is that, with large datasets, the training and 

testing time necessary to accurately validate each candidate solution is too long. In 

turn, this means that, even though only a small portion of the search space is 

evaluated, a very long time is necessary to do it. In response to this problem we 

propose a new algorithm based on ParamILS, which redefines the Better Function in 

order to diminish its runtime. Because of its probabilistic approach, we called it 

Probabilistic Iterative Local Search (PILS)1.  

Definitions. Considering the optimization problem being solved by ParamILS, we 

define a function which is an estimate of the original objective function, but with a 

considerably smaller runtime. In exchange for the reduction in runtime, we allow this 

estimate to be noisy. We model this estimation as shown in (1), where it is described 

as the objective function �(�) plus a random variable �� representing noise. Finally, 

the estimate function is defined so that the mean of several evaluations converges to 

the objective function, as represented in (2) and (3). 

 

 ��(�) = �(�) + ��  . (1) 

 ��(�)





  
 

→  �(�) . (2) 

 ��  
 

→  0 . (3) 

Assumptions. We assume that independent evaluations of the estimation function 

produce independent and identically distributed random noise variables. This 

powerful assumption allows us to use the Central Limit Theorem, with regards to the 

distribution of the noise mean. After analyzing empirical results from the problem at 

hand, this assumption has proven to be reasonable. Furthermore, we were able to 

observe that, even though, the noise variance for different candidate solutions (�) 

were not the same, they were very similar. This fact is integrated into the PILS 

algorithm and is, therefore, a necessary requirement for a correct use of this tool. 

Algorithm. As before mentioned, PILS uses the same search strategy as ParamILS, 

but it redefines the function responsible for comparing two candidate solutions. The 

goal behind the formulation of this algorithm is to decrease the uncertainty only on 

candidate solutions that could be optimums, in order to waste as little runtime as 

possible on bad candidate solutions. The way in which it decreases the uncertainty of 

a candidate solution is by evaluating it several times and averaging the results, which 

should eventually converge to the objective function. Thanks to the Central Limit 

                                                           
1 The MatLab code for this algorithm can be downloaded from 

http://dl.dropbox.com/u/3304215/PILS.zip (Note for reviewers: if the paper is 

published, this code will be linked from our webpage) 
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Theorem, we can model the average noise of several evaluations as a random variable 

with mean zero, and a variance dependant on the number of evaluations and the 

variance of these evaluations. 

 

 ��  ~ �(0, ��

� ) (4) 

 

Thus, we can easily define a function that, given several evaluations of two 

candidate solutions, calculates the probability that one is better than the other. 

Afterwards, the algorithm decides, based on this probability, which of three possible 

courses to follow. First, if the calculated probability is either very high or very low, 

then there is enough certainty to simply compare the two means directly. Second, if 

the probability is very close to 0.5 then the algorithm assumes that there is not a 

significant difference between the two candidate solutions and defines the one with 

the lowest variance as the best. This will, probably, save runtime in future 

comparisons. Third, if neither of the options mentioned is satisfied, the algorithm 

calculates a new evaluation of the estimation function for the candidate solution that 

has the lowest number of evaluations, and begins again. 

In order to ensure that this function ends, a maximum number of evaluations 

parameter was added. In case the maximum number of parameters is reached by both 

candidate solutions, the two means are compared directly. 

Our proposed Better Function can be seen bellow in Algorithm 2. 

Algorithm 2: PILS Better Function 

// x1, x2: Candidate Solutions that are being compared. 

// mu1, mu2: Mean of x1 and x2 respectively. 

// var1, var2: Variance of mu1 and mu2 respectively. 

// N1, N2: Number of evaluations of x1 and x2. 

better (x1, x2) 
{ 

 loop 

 { 

  p = ProbabilityBetter (x1, x2); 

  d = |0.5 - p|; 

  if d>=Us 

   return mu1>mu2; 

  if d<=Ui 

   return var1<var2; 

  if min(N1, N2) >= Nmax 

   return mu1>mu2; 

  if N1<N2 

   evaluate (x1); 

  else 

   evaluate (x2); 

 } 

} 
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Variance Estimation. The algorithm described in the previous section requires an 

estimation of the variance associated with each candidate solution.  

 

  ��� ���(�)





� =  ���(��(�))
�  (5) 

 

The problem that arises is that we now require, at least, two evaluations of the 

estimation function, in order to calculate its unbiased variance. Empirical testing 

showed that the problem went further, because the variance calculated for only two 

samples was still a very poor estimation. Based on the assumption that the variances 

of different candidate solutions are similar, the calculation is formulated to consider a 

Global Variance variable. 

 

 ����� !"� � =  #$%&�$'��∗(�)��*�)+������(�)�∗(�*,)
�)��*,  (6) 

 

 ��� ���(�)





� =  ���-./0)�/1
�  (7) 

 

The Global Variance strongly depends on the way the estimation function is 

formulated and the dataset at hand. Moreover, it would require extensive 

experimentation in order to estimate this variable a priori. For these reasons, a way of 

approximate this variable in real time is necessary. Our implementation considers a 

user-defined estimation (prior) and its weight, associated with the level of confidence 

in this estimation. Throughout the algorithms execution, the Global Variance is a 

weighted mean that considers the user-defined prior and all the sample variances 

calculated for different candidate solutions, as shown in (8). Empirical 

experimentation has shown that the Global Variance variable converges quickly, and 

is a good estimation of the variance mean. 

 

 2345�36�� = 7�0%�∗8109:/+ ∑ ������(�<)�∗(�<*,)<
8109:/+ ∑ (�<*,)<   (8) 

4 Experimentation 

When validating a supervised learning model, 10-fold Cross Validation is usually 

considered an accurate estimation of its prediction abilities. Its downside is that it 

requires a long time for training and testing each subset. In our experimentation, we 

compare the use of ParamILS with 10-fold Cross Validation against PILS using a 

simple Hold Out Validation technique, which should take one tenth of the time but, 

on average, should converge to the same result. 

Using different machine learning toolboxes, like Balu2 and CLOP3, and several 

small datasets for testing purposes, the assumptions listed for the PILS algorithm were 

                                                           
2 Machine Learning toolbox available at http://dmery.ing.puc.cl/ 
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found to be adequately satisfied. But, in order to accurately show the advantages of 

PILS over the ParamILS algorithm, a very large number of tests under different 

conditions were necessary. For this purpose, we developed an artificial objective 

function that mimicked the conditions observed in our testing of real datasets. 

4.1 Real Data Set 

In our initial approach, we ran PILS, using Hold Out Validation, against ParamILS, 

using Cross Validation 10-fold over the Fishbone Dataset presented in [7]. Even 

though the results looked very promising, where ParamILS took up to ten times 

longer than PILS to obtain the same classification performance, this was not a very 

effective way of testing our proposal for several reasons. First, the time required by 

different candidate models was very uneven, which meant that the result from one 

execution depended on the search trajectory, more than on the optimization algorithm 

itself. Second, running either PILS or ParamILS was still a rather long task, which 

meant that extensive testing, in order to obtain more general results or analyze the 

relevance of certain parameters, was extremely time consuming. Finally, even though 

this test allowed us to observe the characteristics of this problem, it did not give us 

much control over the scenarios we wanted to evaluate. 

4.2 Artificial Objective Function 

The artificial objective function used for these results was constructed using a 

mixture of five n-dimensional Gaussian functions. Also, random, but similar, 

variances were assigned to each point in this search space, in order to emulate the 

estimation function. Using this artificial data, two functions where created. The first is 

a simple evaluation of the Gaussian mix, representing the real objective function, 

equivalent to Cross Validation in the Model Selection problem. The second is an 

evaluation of the Gaussian mix plus a normally distributed noise, representing the 

estimation function, equivalent to Hold Out Validation in the Model Selection 

problem.  

Table 1. Number of evaluations necesary for similar performance levels. The time column 

represents the persentaje of time that PILS would of needed, based on ParamILS. 

 

                                                                                                                                           
3 Machine Learning toolbox available at http://www.modelselect.inf.ethz.ch/ 

ParamILS PILS Time 

Performance N. of Evaluations Performance N. of Evaluations  

82 628.962 83.5 1203.278 19.13 

90.8 838.871 90 1685.198 20.09 

99 1419.927 97 2867.64 20.20 
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One thousand tests were performed using ParamILS with the objective function 

and PILS with the estimation function. Table 1 shows the average number of 

evaluations necessary for each algorithm to obtain similar performance levels. As 

shown in this table PILS requires approximately twice as many evaluations as 

ParamILS to obtain similar results. But, considering that this data was mimicking a 

situation where each evaluation by ParamILS should take ten times longer, it’s easy to 

see the advantages offered by our proposal. 

5 Conclusions  

Even though further testing is necessary to fully validate our method, the initial 

results show that our proposal could be very useful in helping to solve the FMS 

problem. Still, a more in depth analysis of the algorithms parameters is necessary, in 

order to completely understand their impact on the output and find and adequate 

configuration for solving this particular problem. In addition to the FMS problem, the 

proposed algorithm could prove to be useful in solving other optimization problems 

where the definitions and assumptions listed in section 2.2 are valid. 
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