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Abstract—Object detection has attracted great interest of
researchers in the computer vision community. Although machine
learning approaches has been successful in this task, there are still
significant challenges to solve in order to achieve data association,
and including information from various points of views. We
propose a multiple-view classification approach to bring a gap
between advances in machine learning based object detection
and multiple view geometry. The key idea is to classify an
image sequence of corresponding parts of an object. This scheme
allows us to solve problems related to correspondence throughout
cameras, and to enhance the detection models with compounded
features. This article describes our approach applied in human
head modeling by integration of visual information. The exper-
iments demonstrate that our technique improves 2D state-of-
art classifiers, using same training conditions. These results are
promising and show that our approach can be use effectively to
detect objects using multiple views.

I. INTRODUCTION

Object detection and recognition have been relevant research
areas in computer vision along the last decade. The most
relevant approaches based on machine learning categorize
different kinds of objects using visual features extracted from
image patches [1]–[3]. These researches focus on monocular
scheme, and only few researchers have dedicated to exploit
the use of multiple views to improve their performances. A
few recent works focus in to demonstrate that 3D informa-
tion, improve the detection. However, most of them include
additional hardware, such as stereo cameras or depth cameras,
due to they are focus on mobile robots.

In general, 3D recognition from 2D images is a complex
task due to the infinite number of points of views and different
illumination conditions [4]. A simple recognition strategy con-
sists in to performed by matching its invariant features with the
features of a model. However, it may fail when objects have
a large intra-class variation. In [5], a novel representation for
3D objects is presented based on local affine-invariant image
descriptors and multi-view spatial constraints. The algorithm
exploits the idea that smooth surfaces are always planar in the
small. Thus, the matching and then the recognition is possible
using photometric and geometric consistency constraints. A
disadvantage is its poor performance on texture images. In [6],
a similar method based on the relationships among multiple
model views enforces global geometric constraints in order to
achieve 3D reconstruction from multiple views to recognizing
single objects. A disadvantage is its poor performance on
non textured images and uniform objects. In [7], a tracking

algorithm classifies the head pose base on the low resolution
data in a multi-view camera system. An ellipsoid represents
the head position and rotation, and a probabilistic framework
joint the scores of the individual views. Finally, the tracking
algorithm identify the real pose. There also is a different
path for 3D object categorization, which use combination
of information from multiple poses or points of view [8]–
[11]. However, they still are mono-focal classifiers. Although,
3D object classification and detection have had progress,
especially linking features among views in a discriminative
learning framework to create multiple view models of objects,
there are still challenges to solve in order to improve data
association.

We observe that mono-focal approaches for categorization
suffer from: i) high efforts to improve classification models
in only camera, and ii) discard available data from different
visual sources. On the other hand, wide baseline stereo systems
present an unsolved issue related to correspondence match-
ing, where the same object has various poses or variations
simultaneously. We propose an approach to categorize objects
using simultaneous visual data, where the key idea is to use
all the available visual information presents in a multi-view
camera system, Fig. 1. The proposed approach offers several
promising advantages in object categorization, including the
following main contribution of this paper: improving clas-
sification performance using models on compounded visual
features acquired simultaneously from the multi-view camera
system. This framework let us to enrich the data used to
train the models. Thus, we are able to include all the visual
information in the same model.

This article presents our approach for people head modeling
based on integration of visual information in a wide base-
line stereo system. The results show our approach improve
classification performance in average precision-recall, with
a best performance when the algorithm use four cameras.
These results are promising and demonstrate our approach
can be used effectively to classify objects in multiple-views
environments. The rest of the paper is organized as follows:
Section II describes the proposed method. Section III provides
implementation details, dataset details and main experiments
of using our methodology in real images. Finally, Section IV
discuss concluding remarks and future avenues of research.



I1 IN

…

WiN

Q

Wi1
WiNMMrr

Fig. 1: Diagram of head representation. We use N calibrated cameras
C1, . . . , CN . In this example we assumes the head is in positions
[X,Y, Z]. The quadric Q is projected from 3D space on images
I1, . . . , IN to generate the windows W1, . . . ,WN .
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Fig. 2: Block diagram of the proposed method. Our approach
includes two main steps: feature extraction, sequence classification.
The algorithm begins with a input sequence composed by W1 to WN .
This sequence represents the quadrics seen from each camera view.
We draw the projection Q as dashed red circles to show graphically
how to select the maximum parallelepiped subscribed to Q. Each
element Wj was cropped, and then rescaled to 64 × 64 pixels to
cope with projection at different size. We extract LBP features for
each projection Wj , and finally apply the model in order to classify
the sequences.

II. OVERVIEW OF THE METHOD

Similar to [7], we assumes that an object is represented by
an ellipsoid. We use a quadric sphere located at coordinates
M = [X,Y, Z] and radius r, which is totally defined as Q =
(M, r). We project this quadric onto the images in order to
extract bounding-boxes where the object is located. After this
process, we get a projected window Wj in the image j, as
shown in Fig.2. A set of features represent each projection
as inputs for a classifier. We decide over the joint data build
up using all the projected windows Wj . More details about
quadrics and conics representations can be found in [12].

Our approach requires a fully calibrated multiple view
system of N cameras C1, . . . , CN , with overlapped fields of
view, to compute the geometric model which relates the 3D
world homogeneous coordinates M = [X Y Z 1]T to the
2D image coordinates mj = [xj yj 1]T in each image Ij .
This model was obtained for j = 1, . . . , N cameras using the
transformation λmj = PjM , where λ is an scale factor,
and Pj is the 3× 4 calibration matrix of camera Cj [12].

A. Feature Extraction

We rescale each projection Wj to 64×64 pixels to cope with
different sizes, and we extract a set of features in pyramidal
decomposition for each window [13], [14]. This allows us
to represent global and local information from each object
instance. Each level l ∈ L = {0, . . . n} in the pyramid has 4l

cells or patches, and for each cell we compute a descriptor
with K bins. The descriptor of the entire image patch Wj

has Nf = K
∑L
l=0 4

l bins. As recommended in [14], we use
L = 3.

We use Local Binary Patterns (LBP) proposed in [15] as a
measure of texture that uses local appearance descriptors. It
is computed comparing a center pixel with its neighbors and
this comparison is represented as decimal number. The final
LBP descriptor contains K = 59 bins. This feature outperform
HOG in clutter backgrounds and different textures [16], such
as different poses of the head within the patch sequence, as
shown Fig. 2.

B. Classifier for Sequences

Once we extracted features on each element Wj , we apply
two independent and exclusive scheme each other to classify
the projections sequences: gathering features and ensemble
of classifiers. Along the experiments, we evaluate both ap-
proaches in order to present pros and cons of them. In both
cases, we use support vector machines (SVM) with linear
kernels as classifiers [17]. SVM with linear kernels improves
the classification accuracy and speed andover SVM with no-
linear kernels in image categorization problems [18].

As we mentioned previously, both are independent and
exclusive each other. A bootstrap strategy, similar as [19],
allows to avoid memory overloads and overfit along the
training. We let the bootstrap algorithm picks a ratio of
misclassified samples and releases a ratio of well classified for
the next training round. The next two sections describe how we
trained both classification schemes for projections sequences:
gathering features and ensemble of classifiers.

1) Gathering Features: In this scheme, we train a single
linear SVM classifier with features concatenated as single
descriptor, i.e. , each Wj have associated a feature vector with
Nf bins and the camera system has Ncam cameras. Then, the
sequence descriptor Ns = Ncam×Nf elements. The key idea
is to build up an enriched feature vector, which represent the
head structure in a global perspective. After the training, we
get a model SVMgather that will be used to classify whole
the sequence.

2) Ensemble of Classifiers: The ensemble of classifier is
composed by two layers. In the first layer, three individuals
linear SVM models, β1, β2 and β3, learn to discriminate
among three classes respectively: frontal heads, rear heads,
and background. All of them learn in one-vs-all fashion. In
the second layer, a new linear SVM model use the scores
from the previous layer to discriminate the whole sequence.
The three scores, fβ1, fβ2, fβ3 build up the feature vector at
the second layer, which has Ns = Nscores×Ncam = 3×Ncam



TABLE I: Details of train dataset used for training individual models

class number of examples
frontal head 916

rear head 916
background 9.583

total 11.415

TABLE II: Details of train dataset used for training the ensemble
classifer

class number of examples
frontal head 233
background 3.108

total 3.441

elements. This final classifier SVMensemble is able to merge
the information coming from the camera system.

III. EXPERIMENTS AND RESULTS

In this section, we describe implementation details and
results to applying our approach in the classification task.

A. Dataset Details

We build our own multi-view head dataset for training and
testing using our camera system, due to the lack of multi-
view datasets for people head or people torso. This camera
system consists of four synchronized cameras. All images were
acquired at 640× 480 pixels and 15fps. We manage two train
datasets: one for training individual models used for evaluate
each projection Wj , and one for training the ensemble.

In both train datasets, we use a set of 10 people placed
within a room, spinnig over their Z axis from 0◦ to 360◦.
Negative samples include objects such as clothes, computers,
walls. We also combined individual samples randomly in order
to build artificial negative sequences and enrich the sequence
dataset. The test dataset was formed by 300 frames fully
labeled from two multi-view video sequences in a classroom or
auditorium environment, where people were sat and following
a speaker. Sequences are manually labeled in the four cameras.
People in this dataset are different to people who appears in
the train dataset.

B. Experiments

We evaluate our approach using the both classification
schemes. Experiments measure the ability to improve the
discriminative power, and centering ability.

1) Enriched features: During the training process, we eval-
uated the influence of adding information coming from more
visual sources. We apply the analysis in terms of classification
performance. We started training a classifier only using data
from one camera and test this model using the test dataset.
We repeated this process along as we add more visual sources.
We observe an increase in performance from 40% to 70% of
average precision-recall, with maximum considering the four
views, as shown Fig 3. As we stated, using more cameras
we enhance the features with the complementary information
available in the other cameras.

C. Centering

Once we trained both schemes of classifiers, we pick
centered and non-centered projections. In Fig. 4, we show
three sets of four candidate sequences. The first and second
sets, Fig.4a and Fig. 4b belong to head class, and the third set
, Fig. 4c belongs to the background class. The classifier for
sequences have the main task to discard sequences belong to
the background, but we note this model intrinsically also do the
task to align the sequence as it learnt in the training process.
The higher scores were always given to the best alignments
as shown the best scores. All the scores in the third set c) are
strongly negative, and therefore all assigned to the background
class.

IV. CONCLUSIONS

We proposed a head classifier based on wide-baseline stereo
camera system. Our approach showed a main contributions
of improving classification performance using models on
compounded visual features acquired simultaneously from the
multi-view system. Both classification schemes show similar
behaviors performances. Although we did not address occlu-
sion issues, our experiments showed promising results using
information from various points of view in the same scene. The
integration of information through our approach is able to cod-
ify an structure inherent to the image sequence and therefore
an object structure, in this case, head structure. The ensemble
also works as a case parts-based approaches, which codify
this mid-level structures. One disadvantage is the calibration
process, which makes to our approach somewhat rigid to the
scene structure. We believe our results are promising, and our
approach can be adapted for a another challenging multi-view
scenario. For future work, we plan to address occlusion issues
and cases where it missing projections within the sequence.
We believe possible extract information coded in the sequence
which reveal if certain images do not belong to the same
window detection. We would like also address the head pose
estimation problem using the same framework.
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Fig. 3: Both curves show the performance evolution by adding information from various visual sources. Fig. (a) and (b) shows the gather
and ensemble strategies, respectively.
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belongs to head class, and its projections reach the better alignment,
as shown in (a)and (b). In (c) we observe background examples and
their score, all negatives.
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