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Automated Flaw Detection in Aluminum Castings
Based on the Tracking of Potential Defects in a
Radioscopic Image Sequence

Domingo Mery Member, IEEEand Dieter Filbert

Abstract—This paper presents a new method for inspecting
aluminum castings automatically from a sequence of radioscopic
images taken at different positions of the casting. The classic
image-processing methods for flaw detection of aluminum castings
use a bank of filters to generate an error-free reference image.
This reference image is compared with the real radioscopic
image, and flaws are detected at the pixels where the difference
between them is considerable. However, the configuration of each
filter depends strongly on the size and shape of the structure
of the casting under inspection. A new two-step technique is
proposed to detect flaws automatically and that uses a single
filter. First, the method identifies potential defects in each image
of the sequence, and second, it matches and tracks them from
image to image. The key idea of this paper is to consider as false
alarms those potential defects which cannot be tracked in the
sequence. The robustness and reliability of the method have been
verified on both real data in which synthetic flaws have been
added and real radioscopic image sequences recorded from cas
aluminum wheels with known defects. Using this method, the
real defects can be detected with high certainty. This approach Fig. 1. Radioscopic image of a casting (see zoom in Fig. 2).
achieves good discrimination from false alarms.

Index Terms—Aluminum castings, automated inspection, com-

puter vision, flaw detection, image segmentation, X-ray testing. 20

40

. INTRODUCTION
60

ADIOSCOPY isincreasingly being used as a tool for nor

destructive testing in industrial production. An example i &°
the serial examination of cast light-alloy workpieces used in thq
car industry, like aluminum wheels and steering gears [1]. Tl
material defects occurring in the casting process such as ci20
ties, gas, inclusions, and sponging must be detected to sat
the safety requirements; consequently, it is necessary to ch !
100% of the parts. Since most defects are not visible, X-ri%0 | 35595 /Y
imaging is used for this task. An example of a radioscopic imayzg | '
is shown in Figs. 1 and 2.
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Fig. 3. Automated X-ray inspection system and its coordinate systems. W&Fld7, Z). Object:(X, Y, Z). X-ray projection:(z, y). Image:(u, v).

detect flaws automatically without human interaction [2]-[4]methods, such as the combined median filter [8], the intelligent
Over the years, they have not only increased quality throughowledge-based technique [9], the feature-based approach
repeated objective inspections and improved processes, [t and the neural networks procedure [10] attempt to detect
have also increased productivity through decreased labor cdisiws withouta priori information about the location of regular
An automated X-ray system is schematically presented structures. The prerequisite for the use of a method from this
Fig. 3. The inspection is typically performed in five steps. 1group is the existence of common properties which define
The manipulator places the casting in the desired positiorall casting defects well, and also differentiate them from
2) The X-ray tubegenerates X-rays which pass through thdesign features of the test pieces. These prerequisites are often
casting. 3) The X-rays are detected by the fluorescent entrarficiilled only in special testing situations. For this reason, the
screen of thémage intensifieramplified, and depicted onto atrue positive and false positive rates of these methods seem to
phosphor screen. The image intensifier converts the X-rays tb@unsatisfactory in order to gain acceptance in industry.
visible radioscopic image. 4) The guided and focused image isMotivated by visual inspections that are able to differentiate
registered by theharge-coupled device (CCD) cameE The between regular structures and defects by looking at the moving
image processoconverts the analog video signal, transferrechdioscopic image of the casting under test, we present in this
by the CCD camera, into a digital data stream. Digital imageper a new method of automated inspection of aluminum cast-
processing is used to improve and evaluate the radioscojrigs using radioscopic image sequenteé3ur method uses a
image. single filter, independent of the placement and the structure of
In order to inspect the whole object, radioscopic imageke specimen, to detect suspected defective regions in each ra-
at different positions of the casting are taken and processdascopic image. The number of potential flaws that can be iden-
The classic image-processing methods for flaw detectitified is enormous. However, if one tries to match and track them
[3]-[7] consist of a bank of filters which generate an error-freia the image sequence using geometric and algebraic constraints
reference image from the radioscopic image taken. Flaws @ correspondences in multiple views, it is possible to separate
detected at pixels where the difference between them is cadine real defects from the false ones. The key idea of this work is
siderable. Using priori knowledge of the regular structures oto consider only those that can be tracked in the image sequence
the castings, each programmed view is subdivided into sevesalreal defects.
segments to enable the use of the best type of filter for eachlhe paper is organized as follows. In Section I, the geometric
part of the image. Varying the matrix size and the directions afodel is introduced. Section Il describes our method. The
the mask filters, they can be adapted to the regular structuresesfults obtained on radioscopic images, with both real data in
the specimen. This procedure is repeated at each programmwhith synthetic flaws have been added and real radioscopic
position of the casting. The disadvantages of these methagsge sequences, and a comparison with other methods, are
are as follows. 1) The filters must be configured and tungmesented in Section IV. Finally, Section V gives concluding
manually for each casting and position. If the casting is natmarks and suggestions for future research. An early version
exactly placed at the required position, the filter might not woref this research is presented in [12]. For an extended version
correctly and the detection may fail. 2) The filter parametersf this paper, see [13].
like size and direction of the filter mask, depend strongly on
the size and shape of the structure of the casting. 3) Useful

information about the correspondence between the differenta similar idea is also used by radiologists that analyze two different view
views of the casting is not taken into account. X-rays of the same breast to detect cancer in its early stages. Thus, the number of

A . f th isti h f t ted fl cancers flagged erroneously and missed cancers may be greatly reduced (see, for
review o € exising approaches o automate a‘é&ample, [11], where a novel method that automatically finds correspondences

detections in aluminum castings can be found in [1]. Othertwo different views of the breast is presented).
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Il. GEOMETRIC MODEL OF THE RADIOSCOPICSYSTEM

In this section, a model is presented which relates t
three-dimensional (3-D) coordinates of the castioljéc), to
the 2-D coordinates of the radioscopic image pixel. Additionall
we establish the geometric and algebraic constraints betwyd
two and three radioscopic images taken at different positio
of the object. Finally, the problem of 3-D reconstruction usin_
a least-squares technique is described.

Since the X-ray images are taken/atdifferent positions of
the .O.bJeCt’ an mdgp, P = L., N, is used FO de.note therepresentationsd\‘/[andm , respectively, the following linear
positionp of the object. It is assumed that the imaging system tion is obtained: P
is calibrated (for details, see Appendix A). equation s obtained.:

(b)

Fig. 4. X-ray of the calibration plate and its modeled grid.

f o 0
A. Coordinate Systems Am,= |0 f 0| M, 3)
0 0 0

0
0
One can define the following coordinate systems to describe 1
the relationship between the 3-D object point and the 2-D pixel, B
as shown in Fig. 3.
The 3-Dobject coordinate systeris attached to the object. Where), is a scale factor. One may denote By = BS,, the
An object 3-D point) in this coordinate system is denoted by x 4 perspective projection matrix at positipnFrom (2) and
M = [X Y Z 1]T in projective coordinates.The center of (3), one obtains the equation that maps object coordinates to
rotation of the object is assumed at the origirof this coordi- X-ray projection plane coordinates at the positicsf the object
nate system. The motion of the object is considered as a rotation
around the origin, followed by a translation. The coordinates of Apmy, = PpM. (4)

M in the object coordinate system are independent of the object ) ) o
displacement, i.eM = M,,. Finally, the 2-Dimage coordinate systenis introduced as

The 3-Dworld coordinate systemis defined in the optical & representation of the pixel coordinates of the (visible) radio-
center of the central projection, i.e., its origih corresponds SCOPIC image formed at the CCD camera. The paitis pro-
to the X-ray source. The object poiff at positionp in this 1€cted onto the plane of the CCD array &g = [u; v, 1]
coordinate system BI, = [X, ¥, Z,1]” in projective coordi- N projective coordinates. Due to the curvature of the entrance
/2 p P “~p . . g . .
nates. The object coordinate system is then considered as a rifitpen Of the image intensifier and the electromagnetic fields

displacement of the world coordinate system represented b{'gt may be present in the radioscopic system, the radioscopic

3 x 3 rotation matrixR,, and a 3x 1 translation vecto,, [14]. image received by the CCD camera is deformed, especially at

With the 4x 4 matrix S the corners of the image. Therefore, the relationship between
p

X-ray projection and image coordinate system is nonlinear

S, = [fgp ﬂ L) w, = £(m,). ®)

The nonlinear functioi can be cubic [15] or hyperbolic, as
one obtains the relationship between object and world coordpown in Appendix A. A way to estimate this function is by
nate system analyzing the projective distortion of a calibration plate which

_ contains holes placed in aregular grid manner. The phenomenon
M, =S,M. (2 of the distortion effect is illustrated in the radioscopic image of
o ] ] ] the calibration plate [Fig. 4(a)]. The modeled hyperbolic grid is
Now, a 2-DX-ray projection coordinate systemis defined ghown in Fig. 4(b).
that indicates the coordinates of a point in the (not visible) X-ray Using (4) and (5), a relation can be made between the 3-D

image at a fictitious plang = f located at the entrance screery,ordinates of the object and the radioscopic image pixel coor-
of the image intensifier. Its origin is pierced by theZ axis. ginates at each position of the object.

The X-rays make a linear perspective projection of the pbint |5 gections 11-B-D, geometric and algebraic constraints are

onto a poinin,, (at positiory) in the fictitious plane withoutany ¢qnsidered to solve the correspondence problem between radio-

distortipn. Applying Thales’ theorem, the projeTctivg coordinat%%opic images at different positions of the object, and the 3-D
of m,, in this 2-D system aren, = [z, y,1]", With 2, = econstruction problem taking corresponding points in these im-

fXy/Z, andy, = fY,/Z,. UsingM, andm, as projective ,ges |n the approach, a point,, found in the radioscopic
imagep, is first transformed into the coordinates of the X-ray

2We use the notation of Faugeras [14], where we differentiate between i!?ﬁojection coordinate system using the inverse transformation

projective geometric objects themselves and their representations (e.g., a pQ . e - . . .
in the space will be denoted By, whereas its vector in projective coordinatesop{S)' m,, = f~'(w,). With this nonlinear transformation, one

will be denoted byM). can use the linear relationship (4) explained above.
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directly compute the coordinates of the third point, given
the pointsm, and m,.

D. 3-D Reconstruction From Two or More Views

| epipolar line £ It is assumed that there are projections (atn different
> positions), in which the corresponding points,: = 1,...,n,
with coordinates(z;,y;) are presented. To reconstruct the
project®” ') ~ 5 corresponding 3-D poinfi/ that may have produced these

%%;9 projection points, (4) is used in each positionm; = P; M.
Each projection yields three linear equations in the unknowns
X,Y, Z, and \;. After some slight rearranging, one obtains
Fig. 5. Epipolar geometry between two views. an overdetermined system, which can be solvedXot” Z]”
using a least-squares technique [14].

B. Correspondence Between Two Views
I1l. AUTOMATED DETECTION OFFLAWS

Now, the correspondence between two poingsandm, (in _
the X-ray projection coordinate system) is considered. The first 1 '€ method to automated flaw detection presented here has
one is obtained by projecting the object paMtat positionp, Pasically two stepsidentification and tracking of potential
and the second one at positign flaws. They will be described in this section.

To solve the problem of the correspondence, we use epipolar
geometry [14]. The epipolar constraint is well known in stered-
vision. For each projection point:, at the positionp of After the image is acquired by the CCD camera, digital
the object, its corresponding projection painj at the position radioscopic images are generated using a frame grabber. In
q of the object lies on the epipolar linkof m,, as shown in order to ensure the tracking of flaws in the radioscopic images,
Fig. 5, whereC, andC, are the centers of projectiopsand similar projections of the specimen must be achieved along the
q, respectively. In this representation, a rotation and translatisequence. For this reason, the sequence consists of radioscopic
relative to the object coordinate system is assumed. The epipdtaages taken by rotation of the casting at small intervals
line £ can be calculated as the projection of liae,, C,) by (e.g., 5). Since many images are captured, the time of the
the center of projectiod’, in projection plane;. After some data acquisition is reduced by taking the images without frame

Identification of Potential Flaws

manipulations, one obtains the linear relationship averaging. The position of the casting, provided online by
the manipulator, is registered at each radioscopic image to
qumep =0 (6) calculate the perspective projection matity (for details, see

Appendix A). A radioscopic sequence is shown in Fig. 6.

whereF,, is the well-known 3« 3 fundamental matrix between ~The detection of potential flaws identifies regions in radio-
projectionsp andg, which depends only on perspective projecSCopic images that may correspond to real defects. This process

tion matricesP,, andP, [16]. takes place in each radioscopic image of the sequence without
considering information about the correspondence between
C. Correspondence Between Three Views them. Two general characteristics of the defects are used to

Given three pointsn,,, m,, andm, (at positionsp, q and identify them: 1) a flaw can be considered as a connected
p! (1! T 1

r, respectively), the projection of the corresponding 3-D poiﬁybset of the image; and 2) the gray level difference between

M into the three views may be expressed as a single mat?bzlav‘f and 'FS nelg_hbosrrlll?qod_ IS agmﬂgant. ng_ever, sm_cel the
equation using (4) [16] signal-to-noise ratio ( ) in our radioscopic images is low,

the flaws signal is slightly greater than the background noise,

M as illustrated in Fig. 2. In our experiments, the mean gray level
P, m, 0 0 )\ of the flaw signal (without background) was between 2.4 and
P, 0 m; 0 _)\p =0. (7) 288 gray values with a standard deviation of 6.1. Analyzing
R P, 0 0 m, _)\Z a homogeneous background in different areas of interest of
G — normal parts, we obtained that the noise signal was witti

v

gray values with a standard deviation of 2.5. For this reason,

If m,,, m,, andm, are corresponding points, then there existe identification of real defects with poor contrast can involve
a nontrivial solution ofv in (7). It follows that any & 7 minor as well the detection of false alarms.

of the 9x 7 matrix G has a zero determinant. This condition According to the mentioned characteristics of the real flaws,
leads to four independent trilinear relationships (Shashu&dr method of identification has the following two steps (see
trilinearities), between the vectois,, m,, andm,. Using Fig. 7).

a structure _called _the_nfocal t?nso[ which depends only 57 radioscopic sequences shown in this paper are available at
on perspective projection matric&s,, P,, andP,, one can http:/mww.diinf.usach.cli~dmery/sequences.htm.
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Segmentation and classification of potential flawsAfter-
wards, each closed region is segmented and classified as poten-
tial flaw if its mean gray level is 2.5% greater than the mean gray
level of its surroundings (to ensure the detection of the flaws
with poor contrast), and its area is greater than 15 pixels (very
small flaws are allowed). A statistical study of the classification
of potential flaws using more than 70 features can be found in
[17].

This is a very simple detector of potential flaws. However,
the advantages are that it is a single detector (it is the same
detector for each image), and it is able to identify potential
defects independent of the placement and the structure of the
specimen. As mentioned in Section |, the classic methods

use a priori information and their configuration is a very
Fig. 7. Identification of potential flaws. (a) Radiosco_pic image V\{ith a Sm"‘.‘%omplicated task.
flaw at an edge of a regular structure. (b) Laplacian-filtered image wit . . . e .
o = 1.25 pixels (kernel size= 11 x 11). (c) Zero crossing image. (d) Gradient  Using this method, some real defects cannot be identified in
image. (e) Edge detection after adding high gradient pixels. (f) Potential flawgll radioscopic images in which they appear if the contrast is

very poor or the flaw is not enclosed by edges. For example, in

Edge detection:A Laplacian-of-Gaussian (LoG) kernel andrig. 8 one can observe that the biggest real flaw was identified

a zero-crossing algorithm [14] are used to detect the edgesiofmages 1, 2, 3, 4 and 6, but not in image 5, where only two
the radioscopic images. The LoG operator involves a Gaussgfrthe three real flaws were identified (compare with Fig. 2).
lowpass filter, which is a good choice for the presmoothing of owdditionally, if a flaw is overlapped by edges of the structure
noisy images. The resulting binary edge image should produsiethe casting, not all edges of the flaw can be detected. In
at real flaws closed and connected contours which demarc#ig case, the flaw will not be enclosed, and therefore, not
regions. However, a flaw may not be perfectly enclosed if it ise segmented. Furthermore, a small flaw that moves in front
located at an edge of a regular structure as shown in Fig. 7(@« behind) a thick cross section of the casting, in which the
In order to complete the remaining edges of these flaws Xarays are highly absorbed, may cause an occlusion. In our
thickening of the edges of the regular structure is performegtperiments, this detector identified the real flaws in four or
as follows: 1) the gradient image of the original image more (not necessarily consecutive) images of the sequence.
is computed [see Fig. 7(d)]; 2) by thresholding the gradient
image at a high gray level a new binary image is obtained,
and 3) the resulting image is added to the zero-crossing imdgye Tracking of Potential Flaws

[see Fig. 7(e)]. After the potential flaws in each radioscopic image are iden-

4The gradient image is computed by taking the square root of the sdified, the attempt is made to track them in the image sequence
of the squares of the gradient in horizontal and in vertical direction. Thel order to separate the false detections from the real ones. The
are calculated by the convolution of the radioscopic image with the firi} ki ists of th t . tching in two vi tracki
derivative (in the corresponding direction) of the Gaussian lowpass ﬁlt_raC Ing C_Ons's SO re_?s gps. matching in two Views, tracking
used in the LoG filter. in more views, and verification.
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Fig. 8. Identification of potential flaws (the arrows indicate real flaws).

1) Matching in Two Views:Matching requires the position the volume of the casting, the dimensions of which are usually
and the extracted features of each detected potential flaw.kimowna priori (e.g., a wheel is assumed to be a cylinder).
this work,a = (a, p) will denote the identified region (poten- The matching conditions in both identified regians- (a, p)
tial flaw) a in imagep. It is assumed that the image sequenandb = (b, ¢) are evaluated in three consecutive frames, for
hasN images(1 < p < N) andn, regions were identified p=1,...,.N -3, ¢=p+1,...,p+3, a=1,...,n,, and
in imagep (1 < a < n,). The position and the features ofb = 1,...,n,. If a potential flaw is not matched with any
regiona = (a,p) are arranged in a position vector; and a other one, it will be considered as false. Multiple matching,
feature vectow;, respectively. The center of gravity is taken.e., a region that is matched with more than one region,
as the position of the region. Its coordinates are transformisdallowed. Using this method, the mentioned identification
into the coordinates of the X-ray projection coordinate systepnoblems (nonclassified or occluded flaws), can be solved by
using the inverse functiofi! of (5). One obtains then the po-the tracking if a flaw is not identified in consecutive views.
sition vectormy, = [z} yy 1]T. The feature vector containsApplying this method, the real flaws are successfully matched
the set ofn extracted and normalized features of the regiomand a great number of false detections are eliminated. However,

zy = [25(1) 25(2) ... z5(n)]". the number of the remaining false detections must still be
This step matches two regions (of two views), region= reduced. The results of our example are shown in Fig. 9.

(a,p) with regionb = (b, q), for p # g, if they fulfill all fol- 2) Tracking in More Views:A match between two regiorss

lowing matching conditions. andb will be denoted bya < b or (a,p) < (b,q). Amy x 4
Epipolar constraint: the centers of gravity of the regionsmatrix A = [a;1ai2] = [(ai,pi) (biyqi)], @ = 1,...,ma, IS

must satisfy the epipolar constrainTo investigate ifmj defined, wheren; is the number of all matches determined in
and mg satisfy the epipolar constraint, the criterion is chose®ection 111-B.1.

whereby the perpendicular Euclidean distance from the epipolain the tracking problem, it is required to find trajectories of
line of the pointm;, to the pointmg must be smaller thas, regions in different views. To establish the correspondence of

[16] regions in three images, one seeks all possible links of three
|m!TF,,m| regions in matrixﬂ_\ that satisfy the condi_tion of correspondence
g "2 pl (8) between three views. The procedure is as follows. One looks
VAL for all two rows: andj of A (i,5 = 1,...,m» andi # j5) that
satisfy
where[(,, £, £.]" = F,,m% andF,, is the fundamental matrix
(see Section II-B). a;2 = ;1. 9)

Similarity condition: the regions must be similar enougdio
evaluate this criterion, a degree of similaryis calculated as
the Euclidean distance between the normalized feature vecig
of the regions. The degree of similarity of the regions must !
smaller thare,, i.e., S (z¢,2%) = || 2% — 2 || < es.

Supposing that = I andj = J fulfill this condition, e.g.A; =

a.p) (b,q)] andA; = [(b,q) (¢, r)], one finds three regions

ré : H a b c

a;p) < (b,q) < (c,r) with coordinatesmn}, m,, andmy,
Sspectively, that could be corresponding regions. To examine
p’"a if they really correspond to each othen! is calculated, i.e.,

Correct location in 3-D: the 3-D point reconstructed from . . i ation of the coordinates of the third regiafl, from
the centers of gravity of the regions must belong to the space qc-

. : . fi% coordinates of the first two regions? andm® using the
cupied by the castingrrommy; andmg, the corresponding 3-D glons, My g

pointM is estimated using the linear approach of Hartley [16]. 51t is possible to use a CAD model of the casting to evaluate this criterion

For t . thi h is faster th the | t in.a more precise way. With this model, we could discriminate a small hole of
or two views, this approach 1S faster than the least-squalfis,eqyiar structure that is identified as potential flaw. Additionally, the CAD

technique. It is necessary to examine whetMrresides in  model can be used to inspect the casting geometry, as shown in [18].
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Fig. 10. Tracking in more views (the arrows indicate false detections).

trilinearities of Shashua mentioned in Section I1-C. Itis assumedSince our detector cannot guarantee the identification of all
that the regions are corresponding|ihé — m¢|| < e3. The realflaws in more than four views, a tracking in five views could
nontracked regions are eliminated, while the linked triplets lead to the elimination of those real flaws that were identified
are arranged in a nemg x 6 matrix B = [b;; b;s b;3], 2 = in only four views. However, if a potential flaw is identified in
1,...,ms. more than four views, more than one quadruplet can be detected.
This procedure is repeated to determine trajectories of regidr® this reason, these corresponding quadruplets are joined in
in four radioscopic images. Given four points (in four views), i trajectory that contains more than four potential flaws (see
the first three are corresponding points and the last three are derjectory withA in Fig. 10).
responding points too, then all of them are corresponding points3) Verification: Using the least-squares technique men-
i.e., to seek quadruplets that satisfy the condition of correspdi®ned in Section II-D, one can estimate the corresponding 3-D
dence in four views, it is necessary to look for all roinand; point M from the centers of gravity of the tracked regions that
of Bfor (4,5 = 1,...ms andi # j) that satisfy may produce each determined trajectory. This 3-D point can be
projected in the views where the identification of the tracked
flaw has failed to obtain the complete tracking in the radio-
scopic sequence. The projected pointd®&hould correspond
to the centers of gravity of the projected flaws. Now, one can
Given the rows = I andj = J that fulfill this condition, e.g., calculate the size of the projected flaw as an average of the sizes
Br = [(a,p) (b,q) (c,r)] @andB; = [(b,q) (¢,7) (d,r)], four of the identified flaws in the trajectory. In each view, a small
corresponding region&, p) < (b,q) < (¢,r) < (d,s) (with window is defined with the estimated size in the computed
coordinatesny;, mg, m¢, andm?, respectively) are found. The centers of gravity (see Fig. 11). Afterwards, the corresponding
my detected quadruplets are placed in a new x 8 matrix windows are averaged. Thus, the attempt is made to increase
C =[Ci1 Ci2 Ci3 Cia], i = 1,...,my. Fig. 10 shows the trackedthe SNR by the facto{/n, wheren is the number of averaged
regions of our example that fulfill this criterion. Only two falsewindows. Since flaws must appear as contrasted zones relating
trajectories are observed (see arrows). to their environment, we verify whether the contrast of each

bi2 = bjl andbig, = bjz. (10)
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Fig. 11. Reconstruction and verification. The false detections (indicated by the arrows) are eliminated after the verification.

averaged window is greater than 2.5%. With this verification,
is possible to eliminate all remaining false detections. Fig. :
shows the detection in our sequence using this method. C
objective is then achieved: the real defects were separated fr
the false ones.

«4— 150pixels —p

< 315 pixels »
IV. EXPERIMENTAL RESULTS
In this section, results of automatic inspection of cat00% mo—ot
aluminum wheels using the approach outlined in Section | / True Positive Percentage

are presented. These results have been achieved recentl w0 f
synthetic flaws and real data. The parameters of our meth 8%
have been manually tuned, giving = 1.25 pixels (for 409,
LoG-operator)gs = 0.75 mm, e, = 0.7, andes = 0.9 mm.
These parameters were not changed during these experime False Positive Percentage
A wheel was considered to be a cylinder with the followin 0% i i i i
dimensions: 470-mm diameter and 200-mm height. The optic ! 2 & 4 5 6 ()
- 8 Diameter [mm]

focal length (distance between X-ray source and entrance
screen of the image intensifier) was 884 mm. The bottom pif. 12. Detection on synthetic flaws. (a) Radioscopic image and evaluated
a wheel was 510 mm from the X-ray source. Thus, a patte#f§a (b) Flaw sizes. (c) TPP and FPP.
of 1 mm in the middle of the wheel is projected in the X-ray
projection coordinate system as a pattern of 1.73 mm, andagluminum wheel according to the law of X-ray absorption [19].
the image coordinate system as a pattern of 2.96 pixels. Tiheour experiment, a flaw is simulated in ten radioscopic im-
sequences of radioscopic images were taken by rotation of #fes of a real casting, in an area that included an edge of the
casting at 5. structure [see Fig. 12(a)]. In this area, the synthetic flaw was

The detection performance will be evaluated by computingcated in 24 different positions in a regular grid manner. At
the number of true positives (TP) and false positives (FP). Thegich position, TPP and FPP were tabulated. This test was re-
are, respectively, defined as the number of flaws that are corregibyated for different sizes of the flaw = 1.5-7.5 mm) which
classified and the number of misclassified regular structurege illustrated in Fig. 12(b). The results are shown in Fig. 12(c).
The TP and FP will be normalized by the number of existing was observed that the FPP was always zero. The TPP was
flaws (E) and the number of identified potential flaws (I). Thusi00% for() > 2.5 mm, and greater than 95% fér> 2.1 mm.
we define the following percentageS:PP = TP/E x 100 However, the identification of the flaw may fail (and therefore,
andFPP = FP/Ix 100. Ideally, TPP = 100% and FPP = 0%.also its detection) if it is very small and is located at the edge

] of the structure of the casting. In this case, one may choose a

A. Synthetic Flaws smaller value of the parametein the LoG operator of the edge

To evaluate the performance of our method in critical casedgtection, which will unfortunately increment the FPP. Other
real data in which synthetic flaws have been added were awoncritical experiments, where the area of the simulation does
amined. A simple 3-D modeled flaw (a spherical bubble) wasot include an edge of the structure, have led to perfect results
projected and superimposed on real radioscopic images of(@#®P = 100%, FPP = 0%) for § > 1.5 mm (>4.4 pixels.

20 %
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TABLE |
DETECTION OFFLAWS ON REAL DATA
X-ray Flaws in the Flaws in the Identification Detection
Seq. images images (E) TP FP Total (T) TP FP
1 10 2 12 12 249 261 2 0
2 9 1 9 8 238 246 1 0
3 9 3 23 19 253 272 3 0
4 8 1 8 4 413 417 1 0
5 6 1 6 6 554 560 1 0
6 8 1 8 8 196 204 1 0
7 6 3 18 14 445 459 3 0
8 6 0 0 0 178 178 0 0
9 9 0 0 0 256 256 0 0
10 8 0 0 0 150 150 0 o
11 8 0 0 ] 345 345 0 0
g 2 8 8 3 gg: gg: g g Fig. 13. Detected flaws in sequences 1, 2, 4, 5, 6, and 7 (sequence 3 is shown
14 9 0 0 0 313 313 0 0 in Fig. 11).
Total 108 12 84 71 4310 4381 12 0
Percentage 85% 98% 100% 0%

98.‘3"/J False Positive Percentage

100%

Usually, the minimum detectable defect size according to i **

spection specifications is in the orderf= 2 mm. In X-ray 8%
testing, smaller flaws can be detected by decreasing the dista 7%
of the object test to the X-ray source. 60%

50%

B. Real Data 40%

Fourteen radioscopic image sequences of aluminum whe **

with 12 known flaws were inspected. Three of these defec

20%

were existing blow holes (witf) = 2.0-7.5 mm). They %% L 0.0%
were |n|t|a"y deteCted by a Visual (human) inSpeCtion. Th 0% Identiﬁ_cationof vMatching vTracking uwn?;a.ck{n; ) VVeriﬁcation
remaining nine flaws were produced by drilling small holes Potential flaws —in2views in3views in4 views

(0 = 2.0-4.0 mm) in positions of the casting which wererig 14, Fp percentage on real data in the 14 real sequences (the number of
known to be difficult to detect. Casting flaws are present onlgentified potential flaws corresponds to 100%). The mean of each }ep

in the first seven sequences. The results are summarized?ff§" Over the 14 curves.
Table I, Fig. 13, and Fig. 14. In the identification of potential

flaws, it was observed that the FPP was 98% (4310/4381).
Nevertheless, the TPP in this experiment was good, it was

TABLE I
COMPARISONWITH OTHER METHODS

possible to identify 85% (71/84) of all projected flaws in the Identification Detection
- : o Method TPP FPP TPP FPP
sequences (13 of the existing 84 flaws were not identified
because the contrast was poor or they were located at edges of g‘;‘:’s?d ?;" 33: '8‘;" 0%
. y -
regular structures). It was observed Fhat in the next steps, the Canny Il 40% 99% 17% 40%
FPP was reduced to nil. The detection of the real flaws was Median 1 55% 85% 339 36%
successful in all cases. The first six images of sequence three ~ Median 1i 88% 98% 92% 45%
and its results were already illustrated in Fig. 6, and Figs. 8-11.  Trackingin3 85%  98% | 100%  25%
The results on the other sequences with flaws are shown in Tracking in 3 85% 8% 83% 0%
_ q PXV-5000 - - 100% 0%
Fig. 13.
C. Comparison With Other Methods using a 3x 3 mask was performed. Although the TPP is im-

In this section, we present a comparison of our proposed ploved to 40% (“Canny II” in Table 1), many flaws were not
gorithm with other methods that can be used to detect defedttected in any of the images of the sequence. For this reason,
in aluminum castings. In this comparison, we evaluate the samy 17% of the real flaws were detected after the tracking and
real 14 sequences used in the previous section. The resultsvardication.
summarized in Table II. Another detection of potential flaws can be performed using

First, we compared the first step of our method (identificatioa region-based segmentation. Median filtering is normally used
of potential flaws). The objective of this step isthe use of asingle generate an error-free image, since defect structures are
filter, instead of a set of filters adapted to the regular structure @$sentially eliminated, while design features of the test piece
the specimen. We evaluated the well-known Canny filter (sesre normally preserved [1]. Once the error-free reference image
for example, [14]). Since this filter detects sparse edge pixééscomputed, an error difference image between original and
that not necessarily produce closed and connected contoursrabr-free images is calculated. Casting defects are then detected
real flaws, the TPP of this detector was unacceptable, only 4¥hen a sufficiently large gray level in the error difference
of the real flaws were identified (“Canny I” in Table Il). In orderimage occurs. The best results were obtained using a median
to increase the number of closed regions, a dilation of the eddiéter with a 11x 11 mask. We evaluated two thresholds:
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=6 and § = 2 by 256 gray levels (see “Median I” and 4 x4 ,

“Median II" in Table II). In the first case, the TPP was only Xeray u ™ "

55%. By decreasing the threshold value, we increased 1 source z . image
TPP to 88%, that is slightly better than our detector (85% / T < @, 7 % intensifier
However, systematic false alarms were detected at the corr s % J, l _
of the regular structures. Since these false alarms satisfy |© A w7
multifocal conditions, they can be tracked in the sequenc Object at position p

For this reason, this detector can only be used if the medi Fictitious plane ————p \&——— Input screen
filter is adapted to the regular structures of the specimen usi i« f > Z=F&X,T)
a priori information. Normally, a set of median filters is used

for each radioscopic image [3], [4], [6]. Fig. 15. X-ray projective projectiori{ andy axes are not shown).

In order to evaluate the second step of our method (tracking
of potential flaws), we tested the method by tracking the the implementation of our method in industry is nearing

potential fla}‘vvs in three and in five yiewi, inst“ead of f()‘i{:ompletion. The components have been tested in a laboratory
views (see “Tracking in 3,” “Tracking in 5,” and “Proposed”ototype. The method was programmed in Visual C++ under
in Table I1). By considering only three views, we obtained s@indows NT on a Pentium Il system/600 MHz using an
many false alarms that the verification step detected fo“rfalﬁﬁage-processing library developed by Intel that includes
alarms (25%). In the other case, by tracking the potential flagx instructions [20]. To inspect a whole wheel, our method

in five views, real flaws that were segmented in only fourview,%quires approximately 100 views of 25856 pixels, that

of the sequences were not tracked. For this reason, only 83%, e processed in one minute. The required computing
of the real flaws were detected. . _ time is acceptable for practical applications, because a typical
_ Finally, we inspected the test castings using a cClassifpection process takes about one minute, independent of
image-processing method (see explanation in Section 1). \ether it is performed manually or automatically.

our experiments, we used the industrial software PXV-5000\ya have shown that these preliminary results are promising.
[5], [7]. The results were excellent: 100% of the real flawgyever, since the performance of the method has been veri-

were detected without false alarms. As a result of its pegky on 4 few radioscopic image sequences, an evaluation on a
detection performance, the classic image-processing methB?&ader data base is necessary.

have become most widely established in industrial ap.plica—It is possible to combine our second step with existing de-
tions. However, these methods suffer from the complicatgdes getection technologies, which uaepriori information of

cgnflguratlon of the filtering, Wh'ch 1S t.allored to the testhe regular structures of the casting to detect flaws in single im-
piece. In our experiments, the (?onflguratlon process has ta s (see, for example, [7]). This method could also be used
two weeks. On the contrary, since our method requires onyie aytomated flaw detection of other objects. In the adapta-

a few number of parameters, the configuration could be doggy, of oyr method, one must determine the number of views in

inhours. which a flaw must be tracked. If the false positive percentage
by identifying potential flaws is small (or high), one may track
V. SUMMARY a flaw in fewer (or more) views of the sequence. However, one

A new method for automated flaw detection in aluminu mustguarantee.that the real flaws will be identified as potential
aws in these views.

castings using multiple view geometry has been developed. Our
method is very efficient because it is based on a two-step anal-
ysis: identification and tracking. The idea was to try to imi- APPENDIX
tate the way a human inspector inspects radioscopic images.
First relevant details (potential defects) are detected, followed
by tracking them in the radioscopic image sequence. In this way,
the false detections can be eliminated without discriminating theEquation (4) maps the object coordinates Mf to the
real flaws. X-ray projection plane coordinates of, at the positionp

The great advantage of our first step is the use of a singlethe object (see Fig. 15). The perspective projection matrix
filter to identify potential defects, which is independent of th®,, depends on seven parameters, namely the focal length
structure of the specimen. Nevertheless, its disadvantages grehe translation 3-vectot, = [tx, ty, tz ]”, and the
the false positive percentage is enormous, the true positive petder angleswx,, wy,, andwz, between object and world
centage could be poor if the flaws to be detected are very smadordinate systems. The Euler angles are used to calculate
and located at the edge of a structure, and the identificationtbé 3x 3 rotation matrixR,, (see, for example, [16]). In our
regions is time consuming. Contrarily, the second step is highéxperiments, the parameters , ty,, tz,, wx,, andwy, were
efficient in both discrimination of false detections and trackingonstant. The different positions of the casting were obtained
of real defects, and is not time consuming, due to the use of te rotating theZ axis. This rotation, denoted by, , was
multiple-view tensors. provided by the manipulator.

CALIBRATION
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Now, we introduce the model that is used to transform the
2-D pointm, = [z, y, 1]7 (in X-ray projection coordinate
system) into the 2-D pointv, = [u, v, 1]T (in CCD image
coordinate system). The input screen of the image intensifier
corresponds normally to a hyperbolic 3-D surface [21], which
is defined by

Z=F(X.Y)= )1+ <§>2+ <%>2 (11)

(1

[2
with f being the real half axis of the hyperboloid, andndb the
imaginary half axes. We observe thjatoincides with the focal
length of the X-ray projection. The projection of poibf onto
the input screen of the image intensifier is denotediy It is
calculated as the intersection of the line that contains paints
M, andm,, with the 3-D surfacé” (see Fig. 15). Its coordinates
are given by

(3]
[4]

(3]

/

m', = g(m,) = [cx,, cy, 117 (12)

(6]

with ¢ = 1/4/1 — (,,/a)? — (y,/b)2. The pointm, is imaged
at the CCD camera as,, which coordinates can be estimated
approximately using an affin transformation

(8]

+kycos(d) +kysin(f) uo
w, = | —kgsin(f) +kycos(f) wvo | m',  (13)
0 0 1

9]

wherek, andk, are scale factors, andi, vo) andé are, re-

spectively, the translation and the rotation betwegpandu, v [10]
axes. Denoting byA the 3x 3 matrix of (13), the transforma-
tion fromm,, to w, is computed as
(11]
wy, = f(m,) = Ag(m,). (14)
(12]
The inverse transformation 6fis given by
_ _ _ T
m, =f '(w,) =g (A 'w,) = [da], dy, 1] (15) g
i — / 2 / 2
with d = 1/\/1 + (2},/a)2 + (y,/b)>. "

The problem of calibration is to estimate the parameters
of our model (x, ty, tz, wx, wy, f, a, b, ky, k,, 6, 15
ug, and vp). For this reason,N radioscopic images of a
calibration object, withn points whose object coordinates
(X;,Y;, Z;) (fori = 1,...,n) are known, are taken at different [16]
positions by rotating theZ axis inwz,, ..., wz,,..., wzy.
The corresponding image coordinates,, v;,,) are measured.
Using the projection model (4) and (14), the inferred image
projections(u,, v;,) are calculated from the calibration points 18]
(Xi:,Y:, Z;). The parameters of the model are estimated by
minimizing an objective function defined as the mean Euclidean
distance betweefw,,, v;,) and (i, 9;,) [14]. The objective 19
function must be iteratively minimized, starting with an initial
value for the parameters. In our experiments, we calibrateffo]
the imaging system withV = 5 and n = 18. The obtained
mean error between measured and estimated calibration poings;
was 1.34 pixels.

(17]
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