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Automated Flaw Detection in Aluminum Castings
Based on the Tracking of Potential Defects in a

Radioscopic Image Sequence
Domingo Mery, Member, IEEE,and Dieter Filbert

Abstract—This paper presents a new method for inspecting
aluminum castings automatically from a sequence of radioscopic
images taken at different positions of the casting. The classic
image-processing methods for flaw detection of aluminum castings
use a bank of filters to generate an error-free reference image.
This reference image is compared with the real radioscopic
image, and flaws are detected at the pixels where the difference
between them is considerable. However, the configuration of each
filter depends strongly on the size and shape of the structure
of the casting under inspection. A new two-step technique is
proposed to detect flaws automatically and that uses a single
filter. First, the method identifies potential defects in each image
of the sequence, and second, it matches and tracks them from
image to image. The key idea of this paper is to consider as false
alarms those potential defects which cannot be tracked in the
sequence. The robustness and reliability of the method have been
verified on both real data in which synthetic flaws have been
added and real radioscopic image sequences recorded from cast
aluminum wheels with known defects. Using this method, the
real defects can be detected with high certainty. This approach
achieves good discrimination from false alarms.

Index Terms—Aluminum castings, automated inspection, com-
puter vision, flaw detection, image segmentation, X-ray testing.

I. INTRODUCTION

RADIOSCOPY is increasingly being used as a tool for non-
destructive testing in industrial production. An example is

the serial examination of cast light-alloy workpieces used in the
car industry, like aluminum wheels and steering gears [1]. The
material defects occurring in the casting process such as cavi-
ties, gas, inclusions, and sponging must be detected to satisfy
the safety requirements; consequently, it is necessary to check
100% of the parts. Since most defects are not visible, X-ray
imaging is used for this task. An example of a radioscopic image
is shown in Figs. 1 and 2.

Manuscript received December 5, 2000; revised February 21, 2002. This
paper was recommended for publication by Associate Editor P. Allen and
Editor S. Hutchinson upon evaluation of the reviewers’ comments. This work
was supported in part by the German Academic Exchange Service (DAAD),
in part by the Technical University of Berlin, in part by YXLON International
X-Ray GmbH, Hamburg, and in part by the Universidad de Santiago de Chile,
Santiago, Chile. This paper was presented in part at the 15th World Conference
on Non-Destructive Testing, Rome, Italy, October 15–21, 2000.

D. Mery is with the Universidad de Santiago de Chile, Departamento de In-
geniería Informática, Santiago, Chile (e-mail: dmery@ieee.org).

D. Filbert is with the Technische Universität Berlin, Fakultät IV Elek-
trotechnik und Informatik, Institut für Energie- und Automatisierungstechnik,
D-10587 Berlin, Germany (e-mail: dieter.filbert@tu-berlin.de).

Digital Object Identifier 10.1109/TRA.2002.805646

Fig. 1. Radioscopic image of a casting (see zoom in Fig. 2).

Fig. 2. Zoom of Fig. 1 and gray level profile along three rows crossing defects.

Over the past decade, radioscopic systems have been intro-
duced in the automotive manufacturing industry in order to
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Fig. 3. Automated X-ray inspection system and its coordinate systems. World:( �X; �Y ; �Z). Object:(X;Y;Z). X-ray projection:(x; y). Image:(u; v).

detect flaws automatically without human interaction [2]–[4].
Over the years, they have not only increased quality through
repeated objective inspections and improved processes, but
have also increased productivity through decreased labor cost.
An automated X-ray system is schematically presented in
Fig. 3. The inspection is typically performed in five steps. 1)
The manipulator places the casting in the desired position.
2) The X-ray tubegenerates X-rays which pass through the
casting. 3) The X-rays are detected by the fluorescent entrance
screen of theimage intensifier, amplified, and depicted onto a
phosphor screen. The image intensifier converts the X-rays to a
visible radioscopic image. 4) The guided and focused image is
registered by thecharge-coupled device (CCD) camera. 5) The
image processorconverts the analog video signal, transferred
by the CCD camera, into a digital data stream. Digital image
processing is used to improve and evaluate the radioscopic
image.

In order to inspect the whole object, radioscopic images
at different positions of the casting are taken and processed.
The classic image-processing methods for flaw detection
[3]–[7] consist of a bank of filters which generate an error-free
reference image from the radioscopic image taken. Flaws are
detected at pixels where the difference between them is con-
siderable. Usinga priori knowledge of the regular structures of
the castings, each programmed view is subdivided into several
segments to enable the use of the best type of filter for each
part of the image. Varying the matrix size and the directions of
the mask filters, they can be adapted to the regular structures of
the specimen. This procedure is repeated at each programmed
position of the casting. The disadvantages of these methods
are as follows. 1) The filters must be configured and tuned
manually for each casting and position. If the casting is not
exactly placed at the required position, the filter might not work
correctly and the detection may fail. 2) The filter parameters,
like size and direction of the filter mask, depend strongly on
the size and shape of the structure of the casting. 3) Useful
information about the correspondence between the different
views of the casting is not taken into account.

A review of the existing approaches of automated flaw
detections in aluminum castings can be found in [1]. Other

methods, such as the combined median filter [8], the intelligent
knowledge-based technique [9], the feature-based approach
[2], and the neural networks procedure [10] attempt to detect
flaws withouta priori information about the location of regular
structures. The prerequisite for the use of a method from this
group is the existence of common properties which define
all casting defects well, and also differentiate them from
design features of the test pieces. These prerequisites are often
fulfilled only in special testing situations. For this reason, the
true positive and false positive rates of these methods seem to
be unsatisfactory in order to gain acceptance in industry.

Motivated by visual inspections that are able to differentiate
between regular structures and defects by looking at the moving
radioscopic image of the casting under test, we present in this
paper a new method of automated inspection of aluminum cast-
ings using radioscopic image sequences.1 Our method uses a
single filter, independent of the placement and the structure of
the specimen, to detect suspected defective regions in each ra-
dioscopic image. The number of potential flaws that can be iden-
tified is enormous. However, if one tries to match and track them
in the image sequence using geometric and algebraic constraints
on correspondences in multiple views, it is possible to separate
the real defects from the false ones. The key idea of this work is
to consider only those that can be tracked in the image sequence
as real defects.

The paper is organized as follows. In Section II, the geometric
model is introduced. Section III describes our method. The
results obtained on radioscopic images, with both real data in
which synthetic flaws have been added and real radioscopic
image sequences, and a comparison with other methods, are
presented in Section IV. Finally, Section V gives concluding
remarks and suggestions for future research. An early version
of this research is presented in [12]. For an extended version
of this paper, see [13].

1A similar idea is also used by radiologists that analyze two different view
X-rays of the same breast to detect cancer in its early stages. Thus, the number of
cancers flagged erroneously and missed cancers may be greatly reduced (see, for
example, [11], where a novel method that automatically finds correspondences
in two different views of the breast is presented).
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II. GEOMETRICMODEL OF THERADIOSCOPICSYSTEM

In this section, a model is presented which relates the
three-dimensional (3-D) coordinates of the casting (object), to
the 2-D coordinates of the radioscopic image pixel. Additionally,
we establish the geometric and algebraic constraints between
two and three radioscopic images taken at different positions
of the object. Finally, the problem of 3-D reconstruction using
a least-squares technique is described.

Since the X-ray images are taken atdifferent positions of
the object, an index , , is used to denote the
position of the object. It is assumed that the imaging system
is calibrated (for details, see Appendix A).

A. Coordinate Systems

One can define the following coordinate systems to describe
the relationship between the 3-D object point and the 2-D pixel,
as shown in Fig. 3.

The 3-Dobject coordinate systemis attached to the object.
An object 3-D point in this coordinate system is denoted by

in projective coordinates.2 The center of
rotation of the object is assumed at the originof this coordi-
nate system. The motion of the object is considered as a rotation
around the origin, followed by a translation. The coordinates of

in the object coordinate system are independent of the object
displacement, i.e., .

The 3-Dworld coordinate systemis defined in the optical
center of the central projection, i.e., its origin corresponds
to the X-ray source. The object point at position in this
coordinate system is in projective coordi-
nates. The object coordinate system is then considered as a rigid
displacement of the world coordinate system represented by a
3 3 rotation matrix and a 3 1 translation vector [14].
With the 4 4 matrix

(1)

one obtains the relationship between object and world coordi-
nate system

(2)

Now, a 2-DX-ray projection coordinate systemis defined
that indicates the coordinates of a point in the (not visible) X-ray
image at a fictitious plane located at the entrance screen
of the image intensifier. Its origin is pierced by the axis.
The X-rays make a linear perspective projection of the point
onto a point (at position ) in the fictitious plane without any
distortion. Applying Thales’ theorem, the projective coordinates
of in this 2-D system are , with

and . Using and as projective

2We use the notation of Faugeras [14], where we differentiate between the
projective geometric objects themselves and their representations (e.g., a point
in the space will be denoted byM , whereas its vector in projective coordinates
will be denoted byM).

Fig. 4. X-ray of the calibration plate and its modeled grid.

representations of and , respectively, the following linear
equation is obtained:

(3)

where is a scale factor. One may denote by the
3 4 perspective projection matrix at position. From (2) and
(3), one obtains the equation that maps object coordinates to
X-ray projection plane coordinates at the positionof the object

(4)

Finally, the 2-Dimage coordinate systemis introduced as
a representation of the pixel coordinates of the (visible) radio-
scopic image formed at the CCD camera. The pointis pro-
jected onto the plane of the CCD array as
in projective coordinates. Due to the curvature of the entrance
screen of the image intensifier and the electromagnetic fields
that may be present in the radioscopic system, the radioscopic
image received by the CCD camera is deformed, especially at
the corners of the image. Therefore, the relationship between
X-ray projection and image coordinate system is nonlinear

(5)

The nonlinear function can be cubic [15] or hyperbolic, as
shown in Appendix A. A way to estimate this function is by
analyzing the projective distortion of a calibration plate which
contains holes placed in a regular grid manner. The phenomenon
of the distortion effect is illustrated in the radioscopic image of
the calibration plate [Fig. 4(a)]. The modeled hyperbolic grid is
shown in Fig. 4(b).

Using (4) and (5), a relation can be made between the 3-D
coordinates of the object and the radioscopic image pixel coor-
dinates at each position of the object.

In Sections II-B–D, geometric and algebraic constraints are
considered to solve the correspondence problem between radio-
scopic images at different positions of the object, and the 3-D
reconstruction problem taking corresponding points in these im-
ages. In the approach, a point , found in the radioscopic
image , is first transformed into the coordinates of the X-ray
projection coordinate system using the inverse transformation
of (5): . With this nonlinear transformation, one
can use the linear relationship (4) explained above.
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Fig. 5. Epipolar geometry between two views.

B. Correspondence Between Two Views

Now, the correspondence between two pointsand (in
the X-ray projection coordinate system) is considered. The first
one is obtained by projecting the object pointat position ,
and the second one at position.

To solve the problem of the correspondence, we use epipolar
geometry [14]. The epipolar constraint is well known in stereo
vision. For each projection point at the position of
the object, its corresponding projection point at the position

of the object lies on the epipolar lineof , as shown in
Fig. 5, where and are the centers of projectionsand
, respectively. In this representation, a rotation and translation

relative to the object coordinate system is assumed. The epipolar
line can be calculated as the projection of line by
the center of projection in projection plane . After some
manipulations, one obtains the linear relationship

(6)

where is the well-known 3 3 fundamental matrix between
projections and , which depends only on perspective projec-
tion matrices and [16].

C. Correspondence Between Three Views

Given three points , , and (at positions , and
, respectively), the projection of the corresponding 3-D point

into the three views may be expressed as a single matrix
equation using (4) [16]

(7)

If , , and are corresponding points, then there exists
a nontrivial solution of in (7). It follows that any 7 7 minor
of the 9 7 matrix has a zero determinant. This condition
leads to four independent trilinear relationships (Shashua’s
trilinearities), between the vectors , , and . Using
a structure called thetrifocal tensor, which depends only
on perspective projection matrices , , and , one can

directly compute the coordinates of the third point , given
the points and .

D. 3-D Reconstruction From Two or More Views

It is assumed that there are projections (at different
positions), in which the corresponding points, ,
with coordinates are presented. To reconstruct the
corresponding 3-D point that may have produced these
projection points, (4) is used in each position: .
Each projection yields three linear equations in the unknowns

, , , and . After some slight rearranging, one obtains
an overdetermined system, which can be solved for
using a least-squares technique [14].

III. A UTOMATED DETECTION OFFLAWS

The method to automated flaw detection presented here has
basically two steps:identification and tracking of potential
flaws. They will be described in this section.

A. Identification of Potential Flaws

After the image is acquired by the CCD camera, digital
radioscopic images are generated using a frame grabber. In
order to ensure the tracking of flaws in the radioscopic images,
similar projections of the specimen must be achieved along the
sequence. For this reason, the sequence consists of radioscopic
images taken by rotation of the casting at small intervals
(e.g., 5). Since many images are captured, the time of the
data acquisition is reduced by taking the images without frame
averaging. The position of the casting, provided online by
the manipulator, is registered at each radioscopic image to
calculate the perspective projection matrix (for details, see
Appendix A). A radioscopic sequence is shown in Fig. 6.3

The detection of potential flaws identifies regions in radio-
scopic images that may correspond to real defects. This process
takes place in each radioscopic image of the sequence without
considering information about the correspondence between
them. Two general characteristics of the defects are used to
identify them: 1) a flaw can be considered as a connected
subset of the image; and 2) the gray level difference between
a flaw and its neighborhood is significant. However, since the
signal-to-noise ratio (SNR) in our radioscopic images is low,
the flaws signal is slightly greater than the background noise,
as illustrated in Fig. 2. In our experiments, the mean gray level
of the flaw signal (without background) was between 2.4 and
28.8 gray values with a standard deviation of 6.1. Analyzing
a homogeneous background in different areas of interest of
normal parts, we obtained that the noise signal was within13
gray values with a standard deviation of 2.5. For this reason,
the identification of real defects with poor contrast can involve
as well the detection of false alarms.

According to the mentioned characteristics of the real flaws,
our method of identification has the following two steps (see
Fig. 7).

3The radioscopic sequences shown in this paper are available at
http://www.diinf.usach.cl/~dmery/sequences.htm.
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Fig. 6. Radioscopic sequence with three flaws (image 5 is shown in Fig. 2).

Fig. 7. Identification of potential flaws. (a) Radioscopic image with a small
flaw at an edge of a regular structure. (b) Laplacian-filtered image with
� = 1:25 pixels (kernel size= 11� 11). (c) Zero crossing image. (d) Gradient
image. (e) Edge detection after adding high gradient pixels. (f) Potential flaws.

Edge detection:A Laplacian-of-Gaussian (LoG) kernel and
a zero-crossing algorithm [14] are used to detect the edges of
the radioscopic images. The LoG operator involves a Gaussian
lowpass filter, which is a good choice for the presmoothing of our
noisy images. The resulting binary edge image should produce
at real flaws closed and connected contours which demarcate
regions. However, a flaw may not be perfectly enclosed if it is
located at an edge of a regular structure as shown in Fig. 7(c).
In order to complete the remaining edges of these flaws, a
thickening of the edges of the regular structure is performed
as follows: 1) the gradient image4 of the original image
is computed [see Fig. 7(d)]; 2) by thresholding the gradient
image at a high gray level a new binary image is obtained;
and 3) the resulting image is added to the zero-crossing image
[see Fig. 7(e)].

4The gradient image is computed by taking the square root of the sum
of the squares of the gradient in horizontal and in vertical direction. They
are calculated by the convolution of the radioscopic image with the first
derivative (in the corresponding direction) of the Gaussian lowpass filter
used in the LoG filter.

Segmentation and classification of potential flaws:After-
wards, each closed region is segmented and classified as poten-
tial flaw if its mean gray level is 2.5% greater than the mean gray
level of its surroundings (to ensure the detection of the flaws
with poor contrast), and its area is greater than 15 pixels (very
small flaws are allowed). A statistical study of the classification
of potential flaws using more than 70 features can be found in
[17].

This is a very simple detector of potential flaws. However,
the advantages are that it is a single detector (it is the same
detector for each image), and it is able to identify potential
defects independent of the placement and the structure of the
specimen. As mentioned in Section I, the classic methods
use a priori information and their configuration is a very
complicated task.

Using this method, some real defects cannot be identified in
all radioscopic images in which they appear if the contrast is
very poor or the flaw is not enclosed by edges. For example, in
Fig. 8 one can observe that the biggest real flaw was identified
in images 1, 2, 3, 4 and 6, but not in image 5, where only two
of the three real flaws were identified (compare with Fig. 2).
Additionally, if a flaw is overlapped by edges of the structure
of the casting, not all edges of the flaw can be detected. In
this case, the flaw will not be enclosed, and therefore, not
be segmented. Furthermore, a small flaw that moves in front
(or behind) a thick cross section of the casting, in which the
X-rays are highly absorbed, may cause an occlusion. In our
experiments, this detector identified the real flaws in four or
more (not necessarily consecutive) images of the sequence.

B. Tracking of Potential Flaws

After the potential flaws in each radioscopic image are iden-
tified, the attempt is made to track them in the image sequence
in order to separate the false detections from the real ones. The
tracking consists of three steps: matching in two views, tracking
in more views, and verification.
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Fig. 8. Identification of potential flaws (the arrows indicate real flaws).

1) Matching in Two Views:Matching requires the position
and the extracted features of each detected potential flaw. In
this work,a will denote the identified region (poten-
tial flaw) in image . It is assumed that the image sequence
has images and regions were identified
in image . The position and the features of
regiona are arranged in a position vector and a
feature vector , respectively. The center of gravity is taken
as the position of the region. Its coordinates are transformed
into the coordinates of the X-ray projection coordinate system
using the inverse function of (5). One obtains then the po-
sition vector . The feature vector contains
the set of extracted and normalized features of the region,

.
This step matches two regions (of two views), regiona

with regionb , for , if they fulfill all fol-
lowing matching conditions.

Epipolar constraint: the centers of gravity of the regions
must satisfy the epipolar constraint. To investigate if
and satisfy the epipolar constraint, the criterion is chosen,
whereby the perpendicular Euclidean distance from the epipolar
line of the point to the point must be smaller than
[16]

(8)

where and is the fundamental matrix
(see Section II-B).

Similarity condition: the regions must be similar enough. To
evaluate this criterion, a degree of similarityis calculated as
the Euclidean distance between the normalized feature vectors
of the regions. The degree of similarity of the regions must be
smaller than , i.e., .

Correct location in 3-D: the 3-D point reconstructed from
the centers of gravity of the regions must belong to the space oc-
cupied by the casting. From and , the corresponding 3-D
point is estimated using the linear approach of Hartley [16].
For two views, this approach is faster than the least-squares
technique. It is necessary to examine whetherresides in

the volume of the casting, the dimensions of which are usually
knowna priori (e.g., a wheel is assumed to be a cylinder).5

The matching conditions in both identified regionsa
and b are evaluated in three consecutive frames, for

, , , and
. If a potential flaw is not matched with any

other one, it will be considered as false. Multiple matching,
i.e., a region that is matched with more than one region,
is allowed. Using this method, the mentioned identification
problems (nonclassified or occluded flaws), can be solved by
the tracking if a flaw is not identified in consecutive views.
Applying this method, the real flaws are successfully matched
and a great number of false detections are eliminated. However,
the number of the remaining false detections must still be
reduced. The results of our example are shown in Fig. 9.

2) Tracking in More Views:A match between two regionsa
andb will be denoted bya b or . A
matrix A a a , , is
defined, where is the number of all matches determined in
Section III-B.1.

In the tracking problem, it is required to find trajectories of
regions in different views. To establish the correspondence of
regions in three images, one seeks all possible links of three
regions in matrixA that satisfy the condition of correspondence
between three views. The procedure is as follows. One looks
for all two rows and of A ( and ) that
satisfy

a a (9)

Supposing that and fulfill this condition, e.g.,A
andA , one finds three regions

with coordinates , , and ,
respectively, that could be corresponding regions. To examine
if they really correspond to each other, is calculated, i.e.,
the estimation of the coordinates of the third region, from
the coordinates of the first two regions and using the

5It is possible to use a CAD model of the casting to evaluate this criterion
in a more precise way. With this model, we could discriminate a small hole of
the regular structure that is identified as potential flaw. Additionally, the CAD
model can be used to inspect the casting geometry, as shown in [18].
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Fig. 9. Matching of potential flaws in two views.

Fig. 10. Tracking in more views (the arrows indicate false detections).

trilinearities of Shashua mentioned in Section II-C. It is assumed
that the regions are corresponding, if . The
nontracked regions are eliminated, while the linked triplets
are arranged in a new matrix B b b b ,

.
This procedure is repeated to determine trajectories of regions

in four radioscopic images. Given four points (in four views), if
the first three are corresponding points and the last three are cor-
responding points too, then all of them are corresponding points,
i.e., to seek quadruplets that satisfy the condition of correspon-
dence in four views, it is necessary to look for all rowsand
of B for ( and ) that satisfy

b b andb b (10)

Given the rows and that fulfill this condition, e.g.,
B andB , four
corresponding regions (with
coordinates , , , and , respectively) are found. The

detected quadruplets are placed in a new matrix
C c c c c , . Fig. 10 shows the tracked
regions of our example that fulfill this criterion. Only two false
trajectories are observed (see arrows).

Since our detector cannot guarantee the identification of all
real flaws in more than four views, a tracking in five views could
lead to the elimination of those real flaws that were identified
in only four views. However, if a potential flaw is identified in
more than four views, more than one quadruplet can be detected.
For this reason, these corresponding quadruplets are joined in
a trajectory that contains more than four potential flaws (see
trajectory with in Fig. 10).

3) Verification: Using the least-squares technique men-
tioned in Section II-D, one can estimate the corresponding 3-D
point from the centers of gravity of the tracked regions that
may produce each determined trajectory. This 3-D point can be
projected in the views where the identification of the tracked
flaw has failed to obtain the complete tracking in the radio-
scopic sequence. The projected points ofshould correspond
to the centers of gravity of the projected flaws. Now, one can
calculate the size of the projected flaw as an average of the sizes
of the identified flaws in the trajectory. In each view, a small
window is defined with the estimated size in the computed
centers of gravity (see Fig. 11). Afterwards, the corresponding
windows are averaged. Thus, the attempt is made to increase
the SNR by the factor , where is the number of averaged
windows. Since flaws must appear as contrasted zones relating
to their environment, we verify whether the contrast of each
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Fig. 11. Reconstruction and verification. The false detections (indicated by the arrows) are eliminated after the verification.

averaged window is greater than 2.5%. With this verification, it
is possible to eliminate all remaining false detections. Fig. 11
shows the detection in our sequence using this method. Our
objective is then achieved: the real defects were separated from
the false ones.

IV. EXPERIMENTAL RESULTS

In this section, results of automatic inspection of cast
aluminum wheels using the approach outlined in Section III
are presented. These results have been achieved recently on
synthetic flaws and real data. The parameters of our method
have been manually tuned, giving pixels (for
LoG-operator), mm, , and mm.
These parameters were not changed during these experiments.
A wheel was considered to be a cylinder with the following
dimensions: 470-mm diameter and 200-mm height. The optical
focal length (distance between X-ray source and entrance
screen of the image intensifier) was 884 mm. The bottom of
a wheel was 510 mm from the X-ray source. Thus, a pattern
of 1 mm in the middle of the wheel is projected in the X-ray
projection coordinate system as a pattern of 1.73 mm, and in
the image coordinate system as a pattern of 2.96 pixels. The
sequences of radioscopic images were taken by rotation of the
casting at 5.

The detection performance will be evaluated by computing
the number of true positives (TP) and false positives (FP). They
are, respectively,defined as the number of flaws thatare correctly
classified and the number of misclassified regular structures.
The TP and FP will be normalized by the number of existing
flaws (E) and the number of identified potential flaws (I). Thus,
we define the following percentages:
and . Ideally, TPP = 100% and FPP = 0%.

A. Synthetic Flaws

To evaluate the performance of our method in critical cases,
real data in which synthetic flaws have been added were ex-
amined. A simple 3-D modeled flaw (a spherical bubble) was
projected and superimposed on real radioscopic images of an

Fig. 12. Detection on synthetic flaws. (a) Radioscopic image and evaluated
area. (b) Flaw sizes. (c) TPP and FPP.

aluminum wheel according to the law of X-ray absorption [19].
In our experiment, a flaw is simulated in ten radioscopic im-
ages of a real casting, in an area that included an edge of the
structure [see Fig. 12(a)]. In this area, the synthetic flaw was
located in 24 different positions in a regular grid manner. At
each position, TPP and FPP were tabulated. This test was re-
peated for different sizes of the flaws – mm which
are illustrated in Fig. 12(b). The results are shown in Fig. 12(c).
It was observed that the FPP was always zero. The TPP was
100% for mm, and greater than 95% for mm.
However, the identification of the flaw may fail (and therefore,
also its detection) if it is very small and is located at the edge
of the structure of the casting. In this case, one may choose a
smaller value of the parameterin the LoG operator of the edge
detection, which will unfortunately increment the FPP. Other
noncritical experiments, where the area of the simulation does
not include an edge of the structure, have led to perfect results
( , ) for mm 4.4 pixels.
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TABLE I
DETECTION OFFLAWS ON REAL DATA

Usually, the minimum detectable defect size according to in-
spection specifications is in the order of mm. In X-ray
testing, smaller flaws can be detected by decreasing the distance
of the object test to the X-ray source.

B. Real Data

Fourteen radioscopic image sequences of aluminum wheels
with 12 known flaws were inspected. Three of these defects
were existing blow holes (with – mm). They
were initially detected by a visual (human) inspection. The
remaining nine flaws were produced by drilling small holes

– mm in positions of the casting which were
known to be difficult to detect. Casting flaws are present only
in the first seven sequences. The results are summarized in
Table I, Fig. 13, and Fig. 14. In the identification of potential
flaws, it was observed that the FPP was 98% (4310/4381).
Nevertheless, the TPP in this experiment was good, it was
possible to identify 85% (71/84) of all projected flaws in the
sequences (13 of the existing 84 flaws were not identified
because the contrast was poor or they were located at edges of
regular structures). It was observed that in the next steps, the
FPP was reduced to nil. The detection of the real flaws was
successful in all cases. The first six images of sequence three
and its results were already illustrated in Fig. 6, and Figs. 8–11.
The results on the other sequences with flaws are shown in
Fig. 13.

C. Comparison With Other Methods

In this section, we present a comparison of our proposed al-
gorithm with other methods that can be used to detect defects
in aluminum castings. In this comparison, we evaluate the same
real 14 sequences used in the previous section. The results are
summarized in Table II.

First, we compared the first step of our method (identification
of potential flaws). The objective of this step is the use of a single
filter, instead of a set of filters adapted to the regular structure of
the specimen. We evaluated the well-known Canny filter (see,
for example, [14]). Since this filter detects sparse edge pixels
that not necessarily produce closed and connected contours at
real flaws, the TPP of this detector was unacceptable, only 4%
of the real flaws were identified (“Canny I” in Table II). In order
to increase the number of closed regions, a dilation of the edges

Fig. 13. Detected flaws in sequences 1, 2, 4, 5, 6, and 7 (sequence 3 is shown
in Fig. 11).

Fig. 14. FP percentage on real data in the 14 real sequences (the number of
identified potential flaws corresponds to 100%). The mean of each step(�) is
given over the 14 curves.

TABLE II
COMPARISONWITH OTHER METHODS

using a 3 3 mask was performed. Although the TPP is im-
proved to 40% (“Canny II” in Table II), many flaws were not
detected in any of the images of the sequence. For this reason,
only 17% of the real flaws were detected after the tracking and
verification.

Another detection of potential flaws can be performed using
a region-based segmentation. Median filtering is normally used
to generate an error-free image, since defect structures are
essentially eliminated, while design features of the test piece
are normally preserved [1]. Once the error-free reference image
is computed, an error difference image between original and
error-free images is calculated. Casting defects are then detected
when a sufficiently large gray level in the error difference
image occurs. The best results were obtained using a median
filter with a 11 11 mask. We evaluated two thresholds:
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and by 256 gray levels (see “Median I” and
“Median II” in Table II). In the first case, the TPP was only
55%. By decreasing the threshold value, we increased the
TPP to 88%, that is slightly better than our detector (85%).
However, systematic false alarms were detected at the corners
of the regular structures. Since these false alarms satisfy the
multifocal conditions, they can be tracked in the sequence.
For this reason, this detector can only be used if the median
filter is adapted to the regular structures of the specimen using
a priori information. Normally, a set of median filters is used
for each radioscopic image [3], [4], [6].

In order to evaluate the second step of our method (tracking
of potential flaws), we tested the method by tracking the
potential flaws in three and in five views, instead of four
views (see “Tracking in 3,” “Tracking in 5,” and “Proposed”
in Table II). By considering only three views, we obtained so
many false alarms that the verification step detected four false
alarms (25%). In the other case, by tracking the potential flaws
in five views, real flaws that were segmented in only four views
of the sequences were not tracked. For this reason, only 83%
of the real flaws were detected.

Finally, we inspected the test castings using a classic
image-processing method (see explanation in Section I). In
our experiments, we used the industrial software PXV-5000
[5], [7]. The results were excellent: 100% of the real flaws
were detected without false alarms. As a result of its peak
detection performance, the classic image-processing methods
have become most widely established in industrial applica-
tions. However, these methods suffer from the complicated
configuration of the filtering, which is tailored to the test
piece. In our experiments, the configuration process has taken
two weeks. On the contrary, since our method requires only
a few number of parameters, the configuration could be done
in hours.

V. SUMMARY

A new method for automated flaw detection in aluminum
castings using multiple view geometry has been developed. Our
method is very efficient because it is based on a two-step anal-
ysis: identification and tracking. The idea was to try to imi-
tate the way a human inspector inspects radioscopic images.
First relevant details (potential defects) are detected, followed
by tracking them in the radioscopic image sequence. In this way,
the false detections can be eliminated without discriminating the
real flaws.

The great advantage of our first step is the use of a single
filter to identify potential defects, which is independent of the
structure of the specimen. Nevertheless, its disadvantages are
the false positive percentage is enormous, the true positive per-
centage could be poor if the flaws to be detected are very small
and located at the edge of a structure, and the identification of
regions is time consuming. Contrarily, the second step is highly
efficient in both discrimination of false detections and tracking
of real defects, and is not time consuming, due to the use of the
multiple-view tensors.

Fig. 15. X-ray projective projection (�Y andy axes are not shown).

The implementation of our method in industry is nearing
completion. The components have been tested in a laboratory
prototype. The method was programmed in Visual C++ under
Windows NT on a Pentium III system/600 MHz using an
image-processing library developed by Intel that includes
MMX-instructions [20]. To inspect a whole wheel, our method
requires approximately 100 views of 256256 pixels, that
can be processed in one minute. The required computing
time is acceptable for practical applications, because a typical
inspection process takes about one minute, independent of
whether it is performed manually or automatically.

We have shown that these preliminary results are promising.
However, since the performance of the method has been veri-
fied on a few radioscopic image sequences, an evaluation on a
broader data base is necessary.

It is possible to combine our second step with existing de-
fect-detection technologies, which usea priori information of
the regular structures of the casting to detect flaws in single im-
ages (see, for example, [7]). This method could also be used
in the automated flaw detection of other objects. In the adapta-
tion of our method, one must determine the number of views in
which a flaw must be tracked. If the false positive percentage
by identifying potential flaws is small (or high), one may track
a flaw in fewer (or more) views of the sequence. However, one
must guarantee that the real flaws will be identified as potential
flaws in these views.

APPENDIX

CALIBRATION

Equation (4) maps the object coordinates of to the
X-ray projection plane coordinates of at the position
of the object (see Fig. 15). The perspective projection matrix

depends on seven parameters, namely the focal length
, the translation 3-vector , and the

Euler angles , , and between object and world
coordinate systems. The Euler angles are used to calculate
the 3 3 rotation matrix (see, for example, [16]). In our
experiments, the parameters , , , , and were
constant. The different positions of the casting were obtained
by rotating the axis. This rotation, denoted by , was
provided by the manipulator.
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Now, we introduce the model that is used to transform the
2-D point (in X-ray projection coordinate
system) into the 2-D point (in CCD image
coordinate system). The input screen of the image intensifier
corresponds normally to a hyperbolic 3-D surface [21], which
is defined by

(11)

with being the real half axis of the hyperboloid, andand the
imaginary half axes. We observe thatcoincides with the focal
length of the X-ray projection. The projection of point onto
the input screen of the image intensifier is denoted by. It is
calculated as the intersection of the line that contains points,

, and with the 3-D surface (see Fig. 15). Its coordinates
are given by

(12)

with . The point is imaged
at the CCD camera as which coordinates can be estimated
approximately using an affin transformation

(13)

where and are scale factors, and and are, re-
spectively, the translation and the rotation betweenand
axes. Denoting by the 3 3 matrix of (13), the transforma-
tion from to is computed as

(14)

The inverse transformation ofis given by

(15)

with .

The problem of calibration is to estimate the parameters
of our model ( , , , , , , , , , , ,

, and ). For this reason, radioscopic images of a
calibration object, with points whose object coordinates

(for ) are known, are taken at different
positions by rotating the axis in , , , .
The corresponding image coordinates are measured.
Using the projection model (4) and (14), the inferred image
projections are calculated from the calibration points

. The parameters of the model are estimated by
minimizing an objective function defined as the mean Euclidean
distance between and [14]. The objective
function must be iteratively minimized, starting with an initial
value for the parameters. In our experiments, we calibrated
the imaging system with and . The obtained
mean error between measured and estimated calibration points
was 1.34 pixels.
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