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Abstract

Radioscopy is increasingly being used as a tool for
non-destructive testing in industrial production. An
example is the serial examination of cast light-alloy
workpieces used in the car industry, like aluminum
wheels and steering gears. The material defects
occurring in the casting process such as cavity,
gas, inclusion, and sponge must be detected to
satisfy the security requirements; consequently, it is
necessary to check 100% of the parts. Since most
defects are not visible, X-ray imaging is used for
this task. In this paper we present a review of the
existing approaches of automated flaw detections in
aluminum castings.

Keywords: Automated inspection, flaw detec-
tion, image processing, X-ray imaging.

1 Introduction

In the manufacture of die castings, shrinking pro-
cesses occur during the cooling of the molten metal
which can lead to inhomogeneous regions within the
workpiece. These are manifested, for example, by
bubble-shaped voids or fractures. Voids occur when
the liquid metal fails to flow into the die or flows
in too slowly, whereas fractures are caused by me-
chanical stresses when neighboring regions develop
different temperature gradients. In addition, other
casting defects can occur, such as inclusions or slag
formation.

Light alloy castings produced in the automotive

industry, such as wheel rims and steering gear boxes
are considered to be parts relevant to vehicle safety.
In order to insure the safety of their construction, a
control of their quality is required.

In the 20th century, radioscopy became the ac-
cepted method for the quality control of castings via
visual or computer-aided analysis of X-ray images.
The purpose of this non-destructive testing method is
to locate casting defects which may be located inside
the piece and are thus not detectable to the naked
eye. An example of one such defective light alloy
wheel is shown in the X-ray image in Fig. 1.

Compared to the visual evaluation of X-ray images,

Figure 1: Three voids in an aluminum wheel.
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Figure 2: Schematic diagram of an automated X-ray testing stand.

the automatic detection of casting defects offers the
advantages of objectivity and reproducibility for all
testing results. The essential disadvantages of the
proposed methods published to date are their com-
plex configuration and their inflexibility with respect
to changes in the piece to be examined (e.g. design
modifications), which is not a problem for evaluation
by humans.

The principle set up of an automated X-ray inspec-
tion unit is shown in Fig. 2. It is typically composed
of i) a manipulator for the handling of the test piece,
ii) an X-ray source, which radiates the test piece with
a conical beam and thereby generates an X-ray image
of the test piece via central projection, iii) an image
intensifier which transforms the invisible X-ray image
into a visible one, iv) a CCD camera which registers
the visible X-ray image and v) an image processor for
the automatic classification of the test piece as sat-
isfactory or defective by digital image processing of
the X-ray image and control of the manipulator for
positioning the test piece in the desired inspection
position1. Nowadays, flat detectors made of amor-
phous silicon are being used as image sensors in some
industrial inspection systems [20, 2]. In these detec-
tors, the energy from the X-ray is converted directly
into an electrical signal by a semi-conductor (without
image intensifier). However NDT using flat detectors

1This task is normally performed by a programmable logic
controller (PLC).

is not always feasible because of their high cost com-
pared to image intensifiers.

In this contribution different methods for the auto-
mated recognition of casting defects using image pro-
cessing will be presented. These methods have been
described in the literature within the past twenty
years and are considered to be the state of the art
in this field. One can see that the approaches to
detecting can be grouped into three groups: i) ap-
proaches where a filtering adapted to the structure
is performed, which will be described in Section 2;
ii) approaches using pattern recognition, expert sys-
tems, artificial neural networks, general filters or mul-
tiple view analyses to make them independent of the
position and structure of the test piece, as described
in Section 3; iii) approaches using computer tomog-
raphy to make a reconstruction of the cast piece and
thereby detect defects, as described in Section 4. Fi-
nally, the conclusions drawn in this contribution will
be presented in Section 5. A German version of this
paper is available in [34].

2 Reference Methods

In reference methods it is necessary to take still im-
ages at selected programmed inspection positions. A
test image is then compared with the reference image.
If a significant difference is identified, the test piece is
classified as defective. In order to use a stored refer-
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Figure 3: Reference method for automated detection of casting defects.

ence image, the distribution of gray values in the im-
age must correlate to the current image. This makes
a very precise positioning of the piece as well as very
strict fabrication tolerances and the reproducibility
of the X-ray parameters during imaging indispens-
able. Small variations in these variables lead to great
differences between the two images. An alternative
approach was suggested by Klatte in the year 1985,
whereby the reference image is calculated by filtering
directly from the test image [24].

A schematic block diagram for this detection
method for the automated recognition of die cast-
ing defects is presented in Fig. 3. To reduce the
noise level, multiple images taken in a short period of
time are averaged (integration) for each programmed
position2. At first, a defect-free image y is esti-
mated from each integrated X-ray image x using a
filter. In this method each test position p has a Filter
(Filterp) which consists of several small masks. The
size of these masks and the values for their coefficients
should be chosen so that the projected structure of
the test piece at position p coincides with the distri-
bution of the masks. After this, an error difference
image x − y is calculated. Casting defects are then
detected when a sufficiently large difference between
X-ray image and reference image occurs. The result
of the binary segmentation is shown as e in Fig. 3.

2To build an arithmetic mean a signal to noise ratio is
reached which is proportional to

√
n with n resulting from

the number of images added together.

2.1 The MODAN–Filter

The Modified Median filter, MODAN–Filter, was
developed by Heinrich in the 1980’s to detect casting
defects automatically [9, 17, 18]. With the MODAN–
Filter it is possible to differentiate structural contours
of the casting piece from casting defects.

The MODAN–Filter is a median filter with
adapted filter masks. Note: a median filter is a rank-
ing operator (and thus non-linear) where the output
value is the middle value of the input values ordered
in a rising sequence [7]3. If the background captured
by the median filter is constant, it is possible that
structures in the foreground will be suppressed if the
number of values belonging to the structure is less
than one half of the input value to the filter. This
characteristic is utilized to suppress the defect struc-
tures and to preserve the design features of the test
piece in the image. An example for the application
of a median filter is shown in Fig. 4 including differ-
ent structures and mask sizes compared to the effects
of two linear low-pass filters. One can see that only
the median filter completely suppresses the relatively
small structures, whereas the relatively large patterns
retain their gray values and sharp edges.

The goal of the background image function, thus,
is to create a defect-free image from the test image.
When calculating the background image function, the
MODAN–Filter is used in order to suppress only the
casting defect structures in the test image. Locally

3For an even number of input numbers the median value is
the arithmetic mean of the two middle values.
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Figure 4: Median filter application on an n × n structure using an m × m quadratic mask compared to
average and Gauss low-pass filter application.
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Figure 5: Interactive method for mask selection in a MODAN–Filter.

variable masks are used during MODAN–filtering by
adapting the form and size of the median filter masks
to the design structure of the test piece. This way,
the design structure is maintained in the test image
(and the defects are suppressed). Additionally, the
number of elements in the operator are reduced in
order to optimize the computing time by not assign-
ing all positions in the mask.

Different filter masks are suggested by Heinrich
[18]. He has developed automatic and interactive pro-
cedures for selecting the MODAN–Filter masks which
takes the adaptation to the test piece structure into
account. In both procedures the testing positions are
chosen manually to ensure that every volume element
of the cast piece is inspected. In the automatic proce-
dure the mask is selected for each pixel, which min-
imizes an objective function for the segment of the
test piece. Heinrich suggests the following objective
function:

Qij(d, e) = Qd
ij(d, e) + Qs

ij(d, e) + Qm
ij (d, e). (1)

The coordinates of the pixel are given by (i, j), and
(d, e) represent the height and width of the mask. Qd,
Qs and Qm denote the detection defects, spurious
reading4 and the mask matrix size, respectively. The
error-free reference image is estimated for the three
input values as follows:

y[i, j] = median(x1, x2, x3), (2)

with

x1 = x[i, j]
x2 = x[i + dij , j + eij ]
x3 = x[i− dij , j − eij ],

where y[i, j] are the gray values in the reference image
and x[i, j] in the test image at pixel (i, j). The filter

4For three input values of the MODAN–Filter (x1, x2, x3)
the detection error and spurious reading is defined as |x2 −
x1|+ |x2 − x3| and x2 −median(x1, x2, x3) respectively [18].
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Figure 6: Automatic mask selection for MODAN-Filter and detection after Hecker [16].

direction of the masks is determined by the distances
dij and eij . Casting defects are detected when

|y[i, j]− x[i, j]| > θij (3)

This makes it possible to create a good adaptation
to the structure of the piece, however, a greater data
storage capacity is needed because of the different
filter masks used for each pixel. The storage require-
ments can be reduced in the interactive procedure by
choosing the same mask for all rectangular areas in
the interactive procedure. This means that

dij = dk

eij = ek
for i0k ≤ i ≤ i1k, j0

k ≤ j ≤ j1
k. (4)

where i0k, i1k, j0
k and j1

k define the boundaries of the
kth rectangular mask. The adaptation to the struc-

ture is not as exact in this case as in the first proce-
dure.

The interactive procedure is shown in Fig. 5: for
every testing position masks with horizontal, vertical
and both diagonal filter directions are tested for spu-
rious readings as compared to a defect-free casting.
In this step it is decided which direction will not be
applied. Next, the objective function (1) is rated in
order to select the best mask. The filter masks are to
be selected so that variations of the regular structures
in the test piece do not lead to spurious readings. Fi-
nally, individual filter sectors are combined.

Hecker proposes a method in [16] for the automatic
adaptation of the masks to the regular structures of
the test piece. For the correct choice of a mask it is
necessary to satisfy two criteria: i) the corresponding
gray values for the structure in the mask must be
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constant, and ii) the size of the mask must be at
least twice as large as in the extent of the casting
defect to be found. To fulfill the first criterion, the
mask direction is chosen to be perpendicular to the
direction of the gradient of the piece’s contour. The
size of the mask is chosen according to the testing
specifications for the extent of the expected casting
defect. The method is shown in Fig. 6 (compare
with Fig. 3). Only four directions of the gradient are
applied: [00 − 1800], [450 − 2250], [900 − 2700] and
[1350 − 3150], which are shown as four different gray
values in Fig. 6. The method generates rectangular
regions as appropriate test regions, which have masks
with identical directions and sizes.

In [14] Hecker improved the automatic parameter-
ization of the MODAN–Filter. The method which he
calls optimized MODAN–Filtering allocates to each
pixel the mask from a mask pool which gives the
smallest amplitude error. For this search, represen-
tative piece images are used which were taken of the
same piece at the same position. The amplitude error
is described by Hecker as the difference between the
true expanse of the error depth from the detected
value. The pool mentioned above includes 128 dif-
ferent masks with three input values. The masks
are distributed among sixteen different mask sizes
(16, 17, ..., 31 pixels) along eight different directions
([00 − 1800], [22, 50 − 202, 50], ... ,[157, 50 − 337, 50]).

2.2 Signal Synchronized Filter

Hecker developed the Signal Synchronized Filter in
[14] to calculate the background image function.
This method generalizes the equation used for the
MODAN-Filter (2):

y[i, j] = median{x[i, j], x[i + dij1, j + eij1],
..., x[i + dijns , j + eijns ]},

(5)
where the filter parameters (dijk, eijk) are chosen so
that the objective function

Qijk(dijk, eijk) =∑NR

m=1{xm[i, j]− xm[i + dijk, j + eijk]}2
(6)

is minimized when the condition (dijk, eijk) 6=
(dijl, eijl) and dijk, eijk > τmin for k, l = 1, ..., ns

with k 6= l. The objective function considers NR rep-
resentative piece images {x1}, ..., {xNR}, which were
obtained from the same cast piece and same position.
During the experiments only 3 input values (ns = 2)
are processed (see Fig. 7). In order to determine
the parameters, the number of representative piece
images reportedly required is 20 ≤ NR ≤ 30.

Beyond this, Hecker developed the weighted
median operator, in which the input value
x[i + dijk, j + eijk] is entered via

aijk · x[i + dijk, j + eijk] + bijk

in (5) for k = 1, ..., ns. For the case of the weighted
median operator, the objective function is:

Qijk(aijk, bijk, dijk, eijk) =∑NR

m=1{A− aijk ·B + bijk]}2, (7)

with

A = xm[i, j]
B = xm[i + dijk, j + eijk].

Once (dijk, eijk) are identified in (7), one can calcu-
late the coefficients (aijk, bijk) to minimize the objec-
tive function by linear regression:

aijk =
NR

∑
AB−

∑
A

∑
B

NR

∑
B2−(

∑
B)2

bijk =
∑

A
∑

B2−
∑

AB
∑

B

NR

∑
B2−(

∑
B)2

(8)

with summations from m = 1 to m = NR. Since
the coefficients (aijk, bijk) are dependent on dijk and
eijk, the optimization problem can be formulated, so
that the objective function is only a function of the
distance parameter (dijk, eijk).

As the absolute minimum of the objective function
is found by searching, the determination of the fil-
ter parameters presents an enormous computational
effort. To parameterize the filter at N positions of
the test piece, NR representative piece images per
position and NI × NJ pixels per image one requires
NN2

I N2
JNR comparative operations. When using the

weighted median operator, another 8+2NR multipli-
cations and 3 + 3NR summations must be performed
for each comparison to determine the parameters a
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Figure 7: Weighted synchronized filtering (for unweighted filters aijk = 1 und bijk = 0).

and b in (8). Typically, the search for optimal pa-
rameters for a test piece takes several weeks. To re-
duce the computing time Hecker recommends, among
other things, that the reference images be subsampled
and the reference area be limited where the optimal
distance between d and e are sought. Obviously, there
must be a compromise between the reduction of com-
puting time and the robustness of the detection. For
this reason the reduced computing time required for
a robust detection is not yet acceptable for industrial
application.

2.3 The PXV 5000 Radioscopic Test
System

The radioscopic test system PXV 5000 was developed
in the early 1990’s by Philips Industrial X-ray GmbH
as a fully automatic radioscopic testing device [15,
26]. The system was further developed by YXLON
International X-ray GmbH.

The testing system evaluates a random sample of
a defect-free test piece in a learning process. Every
structure and every irregularity that the system finds
in the test piece is classified as a regular structure and

entered into an appropriate library [25]. The essential
steps in the PXV 5000 system (see block diagram in
Fig. 8) are discussed below [33]:
Integration: To suppress the noise level, depending
on the application, 4 to 16 X-ray images are inte-
grated at the same test piece position.
Filtering: The PXV 5000 makes the application of
up to eight processing steps per position, in which
different filters can be selected from a long list of
filter algorithms and masks which can be combined
freely. In this way, a defect-free X-ray image can be
identified in the test image. A difference image is
generated from the comparison of both images5.
Masking: In this step, all irrelevant structures are
removed which are located outside of a freely defin-
able mask.
Segmentation: Using a two-threshold procedure,
potential defect structures are segmented. The higher
threshold value serves to detect the potential defect
and the lower to detect the projected size in the im-
age.

5A new filtering approach –called AI (Automatic
Inspector)– based on neural networks has been recently de-
veloped by YXLON [39, 44].
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Figure 8: Block diagram of the detection approach used in the PXV 5000.

Feature extraction: Features are extracted (e.g.
center, area, perimeter, Feret coordinates6, measure
of compactness, extent, minimum, maximum and av-
erage gray level value) from the segments which de-
scribe their properties.
Matching and classification: By comparison of
the model’s features from which they were extracted
during the learning process and stored in a library, it
is possible to eliminate the regular structures of the
piece.

According to YXLON, only 3 defects were detected
during the inspection of 600 aluminum die cast pieces.
Furthermore, all casting defects larger than 1.56 mm2

were detected.

2.4 Radioscopic testing system SABA
2000T

The fully automatic radioscopic examination device
Seifert Automatic Image Evaluation (SABA) was de-
veloped in the late 1980’s by the company Rich.
Seifert & Co. [38]. Continual improvements in me-
chanical drives and computer speeds by Seifert made
it possible to develop the radioscopic examination de-
vice SABA–2000 in the year 1994 [35] and the SABA–
2000T in 1998 [36], which reached higher digital im-
age resolutions and faster testing speeds. According
to the Seifert company, as reported in [34], the detec-
tion approach used in the SABA series has remained
unchanged, as it is based on an optimization of the

6Coordinates of the lower left corner and upper right corner
for the smallest rectangle circumscribing the segment.

MODAN–Filter (see section 2.1), as developed in the
1980’s for the approximation of a defect-free X-ray
image. The detection of casting defects is performed
as in Fig. 3 . This testing system determined only
two deviations during the inspection with 1034 con-
curring decisions [10, 38].

3 Methods without a priori
knowledge

Methods will be described in this section which can
detect casting defects in a test piece without prior
knowledge of the piece’s structure.

3.1 ISAR Radioscopic testing system

The Intelligent System for Automated Radioscopic
testing ISAR was developed by the Fraunhofer In-
stitute for Integrated Circuits (IIS-A) in the 1990’s
[42, 43]. Inspection is performed with the aid of a
COMMED filter (COMbined MEDianfilter), also de-
veloped by the Fraunhofer Institute.

The die cast pieces are identified by the system, so
that an examination specifically for that piece can be
performed. After the die cast piece is identified, X-
ray parameters, testing criteria, translocation of the
handling device and inspection positions are selected.

According to IIS-A, the COMMED-Filter can de-
tect casting defects without a priori knowledge of the
test piece structure. The algorithm can differentiate
between the structure of the test piece (edges, cor-
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ners, bore holes etc.) and structures which are not
part of the piece. During the testing of wheel rims,
for example, the time for image analysis for an alu-
minum wheel with a diameter of 17” was about 35 s
for the required 25 different positions.

3.2 Gayer et al.’s Method

This method for defect detection was originally pub-
lished in 1990 by Gayer et al. for the testing of weld-
ing seams [11]. But the algorithm can also be used
for the recognition of casting defects. The proposed
method can be summarized as having two steps:
i) A quick search for potential defects in the X-ray
image: Assuming that the defects will be smaller than
the regular structure of the test piece, potential de-
fects are classified as those regions of the image where
higher frequencies are significant. The spectrum of
the X-ray image is determined with the help of a fast
Fourier transformation, which is calculated either row
by row or column by column in little 32×32 windows.
When the sum of the higher frequencies of a window
is greater than a given threshold value, the entire
window is marked as potentially defective. Another
possibility is suggested by the authors as part of this
task: A window is selected as potentially defective
when the sum of the first derivative of the rows and
columns of a window is large enough.
ii) Identification and location of the true defect: Be-
cause of the time consuming nature of this step, only
those regions which were previously classified as be-
ing potentially defective are studied here. Two algo-
rithms were developed here as well. The first leads to
a matching7 between the potential defect and typi-
cal defects which are stored in a library as templates.
Whenever a large resemblance between the potential
defect and a template is found, the potential defect
is classified as a true defect. The second algorithm
estimates a defect-free X-ray image of the test piece
by modeling every line of an interpolated spline func-
tion without special consideration for the potentially
defective region. Following this, the original and the
defect-free images are compared. True defects are

7Matching is performed with a Sequential Similarity Detec-
tion method.

identified when large difference occur compared to
the original input image.

3.3 Kehoe and Parken’s Method

In 1992 Kehoe and Parken presented in [23] an in-
telligent, knowledge-based casting defect detection
which utilizes an image processor and an expert sys-
tem to automatically recognizes die casting defects.
The method consists essentially of two steps:
Detection and Analysis: At first, possible defects
are segmented in small regions by adaptive threshold-
ing [21]. Then the detected possible defects are fused
by dilation and erosion (closing) [7]. Finally, geo-
metric characteristics are extracted from the fused
regions.
Classification: By using an expert system the re-
gions are segregated into defect classes e.g. bubbles,
slack, cracks etc.

This system was tested in the laboratory with eight
X-ray images and compared with visual detection.
The automated detector was able to identify more de-
fects than human operators could find. The difficulty
with this method lies in the creation of a knowledge
data bank which includes all possible defects.

3.4 Boerner and Strecker’s Method

At the end of the 1980’s Boerner and Strecker pre-
sented in [3] a method for the automated casting de-
fect recognition which they had developed on their
own at the Philips Research Laboratory in Hamburg.
As usual, the method is centered on the analysis of
individual X-ray images taken at the desired position
of the test piece. After improving the image quality
with a look-up-table [7] and shading correction [18],
the procedure extracts the feature to be segmented
in every pixel of the X-ray image.

A classifier is designed to segregate every pixel (i, j)
into class k. There are typically only two classes: the
class k = 1 for a regular structure of the piece and
the class k = 2 for defects. In general, the method is
valid for NK classes.

With the help of a decision function, the image’s
pixels are classified. The decision functions are cal-
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culated as linear functions with the features

dk[i, j] = ak0 +
n∑

p=1

akp zp[i, j] (9)

or as quadratic functions with the features

dk[i, j] = ak0 +
∑n

p=1 akp zp[i, j]+∑n
p=1

∑n
q=p ak,p,q zp[i, j] zq[i, j]

(10)
for k = 1, ..., NK . Here zp[i, j] are the values of the
pth extracted feature of the pixel (i, j) for p = 1, ..., n
and ak0, ak1, ... are the linear parameters in the de-
cision function. Using a linear regression, these pa-
rameters are determined in a learning phase by min-
imization of the quadratic distance between dk[i, j]
and the idealized decision function d∗k[i, j]. The func-
tion d∗k[i, j] is determined manually out of a random
learning sample and assumes the value of 1 or 0 de-
pending on whether the pixel (i, j) belongs to class k
or not.

Once the classifier has been learned, a pixel (i, j)
in a test image is placed in class k when dk[i, j] ≥
dk′ [i, j] > θk, for k′ = 1, ..., NK where θk is the
threshold value for the pth class.

Following this, the defective neighboring pixels are
combined to build regions. Finally, a region is de-
tected as being defective if it has a circular form and
covers a large enough area.

Boerner and Strecker suggested that the difference
between the original image and its image filtered by a
DoG8 or median methods and the rotation invariant
Zernike feature be named pixel features. The lat-
ter designates the use of the gray value of the pixel
relative to its surroundings developed in a series of
Zernike polynomes [40].

According to the authors, 92% of all defects were
recognized with less than 4% false detection in an in-
spection of 200 die cast pieces. However, the method
can only detect circular defects.

8The DoG (Difference of Gaussians) filter is calculated as
the difference between two Gauss filters. This filtration corre-
sponds to a band pass filter [6, 7].

3.5 Lawson and Parker’s Method

In 1994 Lawson and Parker proposed in [27] that ar-
tificial neural networks (ANN) can be used for the
automated detection of defects in X-ray images. The
method generates a binary image from the test im-
age where each pixel is either 0 when a regular struc-
ture feature of the piece or 1 when a defect is de-
tected. This entails the supervised learning of a
multi-layer perceptron network (MLP) where the at-
tempt is made to obtain a detection from training
data. A back propagation algorithm is used for the
assignment of weightings within the MLP [4].

The authors use one of two hidden layers in the
network topography of the ANN, where the input
signal corresponds to a window of m×m gray values
in the X-ray image. The output signal is the pixel
at the image center in the binary image. Since the
threshold value function for the neurons are sigmoidal
in this method, a threshold is used to obtain a binary
output signal.

The two hidden layers each have ten cells. During
the investigation it was determined that the size of
the window for the input signal must be larger than
7 × 7 (m > 7), otherwise, convergence will not be
obtained in the learning phase. A group of 50,000
randomly chosen windows were used as the basis of
the training data.

The desired detection in the training data was
obtained with a segmenting procedure based on an
adaptive threshold. During the experiments of five X-
ray images, Lawson and Parker show that the detec-
tion using ANN is superior to the segmenting method
using adapted thresholds. The defects were found
successfully and there were no false detections.

3.6 Mery and Filbert’s Method

A new method for the automated inspection of alu-
minum die cast pieces with the aid of monocular X-
ray image sequences was presented recently by Mery
and Filbert [32, 29]. The procedure is able to per-
form casting defect recognition in two stages with a
single filter and without a priori knowledge of the test
piece structure automatically. In the first step, an
edge detection procedure based on the Laplacian-of-
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Gaussian is employed to find abrupt changes in gray
values (edges) in every X-ray image. Here, the zero
crossings of the second derivative of the Gauss low-
pass filtered image are detected [7]. These edges are
then utilized to search for hypothetical flaws defined
as regions with a certain area and a high contrast
level compared to their surroundings9.

In the second step, the attempt is made to track
the hypothetical casting defects in the sequence of im-
ages. False detections can be eliminated successfully
in this manner, since they do not appear in the follow-
ing images and, thus, cannot be tracked. In contrast,
the true casting defects in the image sequence can be
tracked successfully because they are located in the
position dictated by the geometric conditions.

The tracking of the hypothetical casting defects in
the image sequence is performed according to the
principle of multiple view analysis [31, 13]. Multi-
focal tensors are applied to reduce the computation
time. Following a 3D reconstruction of the position
of the hypothetical casting defect tracked in the im-
age sequence, it is possible to eliminate those which
do not lie within the boundaries of the test piece.

The elements of this method were tested in a labo-
ratory prototype on simulated [30] and real cases and
the preliminary results of detection experiments are
promising. In these experiments 24 semi-synthetic
and 15 real image sequences were analysed. In the
367 processed images, the existing flaws and more
than 12,000 false alarms were flagged in the first step.
Nevertheless, the second step was able to recognize
100% of all existing defects with no false detection.
Above and beyond this, the required computing time
is acceptable for practical applications [41]. As the
performance of this method has only been tested on
a limited number of image sequences, it will be nec-
essary to analyse a broader databank.

9Other methods for segmenting hypothetical casting de-
fects, such as in the PXV 5000 (see Section 2.3) could be used
in this first step [33].

4 Industrial Computer Tomog-
raphy

Another method for the automated detection of
casting defects is the (X-ray) computer tomogra-
phy, which also analyzes the weakening of X-rays as
they pass through an object. In contrast to radio-
scopic testing, two-dimensional computer tomogra-
phy produces a cross-section of the test piece10: two-
dimensional images of a flat slice through the investi-
gated object are created out of one-dimensional pro-
jections. The projections show the profiles of X-rays
weakened by the object, which are measured as a
function angularly dependent of the absorption. The
emitter must be led around the object in the plane
of interest (or the object is rotated) to obtain mea-
surements at different angular positions. This differ-
entiates computer tomography from traditional ra-
dioscopic techniques, where the irradiated image is
a two-dimensional projection of the object under in-
vestigation. The structures contained in the plane
of radiation at different depths within the object
can be displayed in the cross-sectional image of the
computer tomographic reconstruction without over-
lap (compare Fig. 9).

For the calculation of the object’s cross-sectional
plane from the measured projections, a great number
of algorithms are available which can be classified in
general as transformation methods or series develop-
ment approaches. The methods used in nondestruc-
tive materials testing typically belong to the transfor-
mation methods. These are based on the projection
slice theorem, which states that a one-dimensional
Fourier transformation of a projection Pθ at the an-
gle θ is equal to the two-dimensional Fourier trans-
formation of the object function along a straight line
through the origin in Fourier coordinates at the angle
θ [5, 37] (compare with Fig. 9). The projection Pθ

is a function f(x, y) here at the angle θ is designated
as the entirety of all line integrals of this angle. A
line integral Pθ along a straight line l from A to B is

10The word “tomography” is derived from the Greek words
τ óµoς and graphos and is equivalent to cross-sectional image.
The term “computer” corresponds more directly to computa-
tion than computer in as such.
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defined as
pθ(r) =

∫

l

f(x, y)ds, (11)

where f(x, y) describes the two dimensional distribu-
tion of the X-ray absorption coefficient in the cross-
section of the irradiated object, and the straight line
l describes the path of a single monoenergetic X-ray
beam from the X-ray source through the object to
the detector element. The X-ray beam is weakened
according to the corresponding law of radiation ab-
sorption,

I = I0 exp
(
−

∫

l

µ(x, y)ds

)
(12)

where µ(x, y) describes the two-dimensional distribu-
tion of the X-ray absorption coefficient which corre-
sponds to the image function f(x, y). In Eq. (12)
I0 stands for the radiation emitted from the X-ray
source and I is the radiation incident on the detector
after being weakened by the object. After rearrang-
ing Eq. (12), the value measured at the detector
results:

pθ = ln
(

I0

I

)
=

∫

l

µ(x, y)ds (13)

A projection Pθ at the angle θ is obtained through re-
alization of a parallel beam geometry, e.g. by shifting
the radiation emitter-detector arrangement radially
after each measurement. The reconstruction of the
object function f(x, y) from its projections presents
a typical inverse problem [12].

In practice, however, these ideal conditions cannot
be realized [22]. Only a limited number of projection
measurements are available for reconstruction, and
these are generated from a limited number of line in-
tegrals. And thus, a two-dimensional function cannot
be uniquely defined. Different image functions can
always be created which posses the same projection.

For three-dimensional computer tomography,
methods are used which analyze two-dimensional
projections11. Feldkamp describes a mathematical
method in [8] for the calculation of three-dimensional

11The problems founded in the principle of tomography
persist: three-dimensional results also exhibit a dimension
one higher than the projections which are analyzed (two-
dimensional ‘images’).
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Figure 9: Comparison between a conventional X-ray
image and the result of a computer tomographic re-
construction.
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Figure 10: Projection slice theorem.

results with a cone beam projection. Other methods
adhere to another approach, whereby the results of
conventional 2D tomography are layered on top of
each other according to their respective positions
in the object and the values between the individual
(reconstructed) object planes are interpolated.

Common to all of the methods using transforma-
tion is the use of filters with low-pass characteris-
tics. This has a negative impact especially on the
use in casting piece inspection, since great disconti-
nuities in the measured values result from the object
edges in the projections (highly absorptive material
next to hollow spaces in the design). The leads to
large artifacts, which can make image analysis im-
possible. In order to obtain high local resolution in
the reconstructed object, it is desirable that the X-
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ray tube have as small a focal point as possible. In
microfocus computer tomography (µCT) resolutions
on the order of a few µm are obtainable. To pene-
trate the aluminum die cast pieces with relevant ma-
terial thickness for use in the automotive industry, a
minimum energy level is needed which lies above the
specifications of most microfocal tubes. The prob-
lem posed lies in the heat removal, which must occur
rapidly enough that any possible damage to the tube
is prevented.

Furthermore, computer tomography is a very time
intensive process requiring a minimum measurement
time for adequate signal to noise ratios as well as a
minimum number of projections for the desired local
resolution. As a result of the physical reasons which
dictate that a minimum measurement time be given
for each angular position, the only remaining way to
reduce the measurement time is to reduce the number
of measurement positions. In those cases where mea-
surement data are lacking, one speaks of a ‘limited
data problem’ [19]. Apart from the reduced measure-
ment time, it can be desirable in industrial applica-
tions to analyze only selected projections for recon-
struction. Reasons for these selections may lie both
in the difficulty in obtaining data for certain angular
positions or regions and in the projections of certain
objects which are unsuitable for analysis (e.g. poly-
valent X-ray absorption properties, inadequate signal
to noise ratio for all angular positions).

No industrial applications are known to the au-
thors for this area of ‘limited data problems’. Re-
search work is underway with different approaches to
optimizing the computations as well as modifications
to known algorithms.

5 Conclusions

In this article the fundamental principles of various
methods for the automated detection of die casting
defects have been explained. These methods have
appeared in the literature in the past twenty years
and show the development of this sector in the areas
of industry and academia.

The detection approaches were divided roughly
into three groups: reference methods, methods with-

out a priori knowledge and computer tomography.
As a result of its peak detection performance, the

methods of the first group have become most widely
established in industrial applications. These methods
suffer from the complicated configuration of their fil-
tering, which is tailored to the test piece. Typically,
this optimization process takes two or more weeks,
independently of whether it is performed manually
or automatically.

The prerequisite for the use of a method from the
second group is the existence of common properties
which define all casting defects well and also differ-
entiate them from design features of the test pieces.
These prerequisites are often fulfilled only in special
testing situations.

The industrial use of computer tomography for the
inspection of die cast parts for the automotive indus-
try is currently limited to the areas of materials re-
search and development as well as to the inspection
of especially important and expensive parts [1, 28].
The reasons for this lie both in the great time re-
quirements for measurements and in the insufficient
local resolution in economically priced systems, when
small defects are to be detected.
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prüfung: Automatische Anpassung eines Prüfsystems an
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