
1. Introduction
As illustrated in Figure 1, the methodology used in this 
investigation follows the pattern recognition schema: image 
segmentation, feature extraction and classification (Castleman, 
1996; Mery et al, 2003). The segmentation process is oriented 
towards the detection of edges by employing the LoG filter (Mery 
& Filbert, 2002). This technique searches for changes in the grey 
values of the image (edges) thus identifying zones delimited by 
edges that indicate flaws. The segmentation detects regions that are 
then denominated as ‘hypothetical defects’. However, only some 
of them are defects and the others are false alarms. Subsequently, 
the feature extraction is centred principally on the measurement of 
properties of the regions. Finally, classification divides segmented 
regions into specific regions according to extracted features, 
assigning each region to one of a number of pre-established groups, 
which represent all possible types of regions expected in the image. 
We will differentiate between the detection of defects and the 
classification of defects (Liao, 2003). In the detection problem, the 
classes that exist are only two: ‘defects’ or ‘no defects’, whereas 
the recognition of the type of the defects (for example, porosity, 
slag, crack, lack of penetration, etc.) is known as classification of 
flaw types. In this paper, we study some texture features in order to 
detect the defects present in welding seams.

The paper is organised as follows. Section 2 briefly gives 
an overview of the existing methods of automatic detection and 
classification of welding defects. Section 3 presents the texture 
features used in our investigation. Section 4 carries out a feature 
selection in order to reduce computational cost of classification. 
In Section 5, the experiments and the results obtained by using 
statistical classifiers are shown. Finally, our conclusions are 
presented.

2. State-of-the-art
In this Section we present several methods that have been 
published in the last 15 years that perform an automatic detection 
or classification of welding defects.

2.1 Method of Gayer et al 

This proposed method (Gayer et al, 1990) can be summarised as 
having two steps:
q A quick search for potential defects in the X-ray image: 

Assuming that the defects will be smaller than the regular 
structure of the test-piece, potential defects are classified 
as those regions of the image where higher frequencies are 
significant. The spectrum of the X-ray image is determined with 
the help of a fast Fourier transformation, which is calculated 
either row by row or column by column in 32 x 32 windows. 
When the sum of the higher frequencies of a window is greater 
than a given threshold value, the entire window is marked as 
potentially defective. Another possibility is suggested by the 
authors as part of this task: A window is selected as a potentially 
defective region when the sum of the first derivative of the rows 
and columns in a window is large enough.

q Identification and location of the true defect: Because of the 
time-consuming nature of this step, only those regions which 
were previously classified as containing potential defects are 
studied here. Two algorithms were also developed here. The 
first leads to a matching1 between the potential defect and 
typical defects, which are stored in a library as templates. 
Whenever a large resemblance between the potential defect 
and a template is found, the potential defect is classified as 
a true defect. The second algorithm estimates a defect-free 
X-ray image of the test-piece by modelling every line of an 
interpolated spline function without special consideration for 
the potentially defective region. Following this, the original and 
the defect-free images are compared. True defects are identified 
when a large difference occurs compared to the original input 
image.

2.2 Lawson and Parker’s Method

In 1994 Lawson and Parker proposed in (Lawson & Parker, 1994) 
that artificial neural networks (ANN) be used for the automated 
detection of defects in X-ray images. The method generates a binary 
image from the test image where each pixel is either 0 - a regular 
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structure feature of the piece - or 1 when a defect is detected. This 
entails the supervised learning of a multi-layer perceptron network 
(MLP) where the attempt is made to obtain detection from training 
data. A back projection algorithm is used for the assignment of 
weightings within the MLP.

The authors use one of two hidden layers in the network 
topography of the ANN, where the input signal corresponds to 
a window of m x m grey values in the X-ray image. The output 
signal is the pixel at the image centre in the binary image. Since 
the threshold value function for the neurons are sigmoidal in this 
method, a threshold is used to obtain a binary output signal.

The desired detection in the training data was obtained with 
a segmenting procedure based on an adaptive threshold. During 
experiments on five X-ray images, Lawson and Parker show that 
detection using ANN is superior to the segmenting method using 
adapted thresholds.

2.3 Defect recognition using shape features

A method for automated recognition of welding defects was 
presented in (Sofia & Redouane, 2002). The detection follows 
a pattern recognition methodology: i) Segmentation: regions of 
pixels are found, and isolated from the rest of the X-ray image using 
a watershed algorithm and morphological operations (erosion and 
dilation). ii) Feature extraction: the regions are measured and shape 
characteristics (diameter variation and main direction of inertia 
based on invariant moments) are quantified. iii) Classification: the 
extracted features of each region are analysed and classified using a 
k-nearest neighbour classifier. According to the authors, the method 
is robust and achieves a good detection rate.

2.4 Defect recognition using linear classifiers

In (Silva et al, 2002) a method for welding defect classification 
is proposed. In a first step, called image pre-processing, the 
quality of the X-ray image is improved using a median filter and a 
contrast enhancement technique. The defect detection follows the 
pattern recognition schema mentioned above: i) Potential defects 
are segmented in the X-ray image. ii) Geometric and grey value 
features (contrast (C), position (P) , aspect ratio (a), width-area 
ratio (e/A), length-area ratio (L/A) and roundness(R)) are extracted. 
The correlation between features and each considered defect class 
(slag inclusion, porosity, lack of penetration and undercutting) was 
evaluated by analysing the linear correlation coefficient. iii) The 
most relevant features were used as input data on a hierarchic linear 
classifier (Silva et al, 2001).

In order to achieve a higher degree of reliability Reference 
Radiographs from the International Institute of Welding were used, 
with 86 films containing the main defect classes. The experimental 
results shown that the features P and e/A are able to classify the 
classes undercutting and lack of penetration. Nevertheless, the six 
mentioned features are required to obtain a high performance by 
classifying porosity and inclusion defects.

2.5 Background subtraction method

Liao and Li (1998) propose a detection approach based on curve 
fitting. The key idea of this work is to simulate a 2D background 
of a normal welding bead characterised by low spatial frequencies 
in comparison with the high spatial frequencies of the image of the 
defects. Thus, a 2D background is estimated by fitting each vertical 
line of the weld to a polynomial function. Then, the obtained image 
is subtracted from the original image. The defects are detected 
where the difference is considerable. Wang & Liao (2002) and Liao 
(2003) propose a fuzzy k-nearest neighbour, multi-layer perceptron 
neural network and a fuzzy expert system for the classification of 
welding defect types. The features used for the classification are 
distance from centre, circularities, compactness, major axis, width 
and length, elongation, Heywood diameter2 and average intensity 
and standard deviation of intensity. 

In this literature review, we observe that usually features that 
provide information about the grey values (intensity features) are 
used to detect the flaws, whereas geometric features are employed 
to classify them.

3. Texture features
Texture is one of the most important features used in recognising 
patterns in an image. However, this feature is not yet commonly 
exploited in the automated analysis of X-ray images in NDT (see 
literature review in Section 2). In this Section, we describe two 
groups of widely used texture features: 1) features based on the co-
occurrence matrix, and 2) features based on 2D Gabor functions. 
Once the X-ray image is segmented, the edge detection provides 
windows (see for example window W in Figure 1) from which 
texture features can be extracted. Each window W is defined as 
the rectangle that includes the segmented hypothetical defect and 
its surroundings.

2 The Heywood diameter is defined as the diameter of a circle having the 
same area of the segmented defect (Wang & Liao, 2002).

Figure 1. Detection of welding defects using a pattern recognition schema
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3.1 Texture features based on co-occurrence matrix

These features give a measurement of how often one grey value 
will appear in a specified spatial relationship to another grey value 
on the image. We use, in this case, the pixels of each window 
W that contains the hypothetical defect and its surrounding (see 
Figure 1).

The co-occurrence matrix Pkl (Castleman, 1996; Haralick et al, 
1973) is defined as follows. The element Pkl(i, j) of this matrix for 
a window is the number of times, divided by NT, that grey-levels
i and j occur in two pixels separated by that distance and direction 
given by the vector (k,l) or (-k,-l), where NT is the number of pixels 
pairs contributing to Pkl. In order to decrease the size Nx x Nx of the 
co-occurrence matrix the grey scale is often reduced from 256 to 8 
grey levels. From the co-occurrence matrix several texture features 
can be computed. The 14 Haralick features (Haralick et al, 1973) 
are defined as follows for p(i, j): = Pkl(i, j):
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where µx, µy, σx and σy are the means and standard deviations of px 
and py respectively, and
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The texture features are extracted for four directions
(0º-180º, 45º-225º, 90º-270º and 135º-315º) for different distances 
d = max(k,l); ie, for a given distance d we have four possible
co-occurrence matrices: P0d, Pdd, Pd0 and P-dd. For example for
d = 1, we have (k,l) = (0,1); (1,1); (1,0); and (-1,1). After
Haralick, et al (1973), 14 textures features using each
co-occurrence matrix are computed, and the mean and range 
for each feature are calculated, ie, we obtain 14 x 2 = 28 texture 
features for each distance d. The features will be denoted as f'i for 
the mean and f"i for the range, for i = 1,..., 14. 

3.2 Texture features based on Gabor functions

The Gabor functions are Gaussian-shaped bandpass filters, with 
dyadic treatment of the radial spatial frequency range and multiple 
orientations, which represent an appropriate choice for tasks 
requiring simultaneous measurement in both space and frequency 
domains. The Gabor functions are a complete (but a nonorthogonal) 
basis set given by:
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where σx and σy denote the Gaussian envelope along the x and
y-axes, and u0 defines the radial frequency of the Gabor function. 
Examples of Gabor functions are illustrated in Figure 2. In this 
case a class of self-similar functions are generated by rotation and 
dilation of f(x,y).

Each Gabor filter has a real and an imaginary component that 
are stored in M x M masks, called Rpq and Ipq respectively, where
p = 1, ..., S, denotes the scale, and q = 1, ..., L, denotes the 
orientation (for details see (Kumar & Pang, 2002)). In our work 
we use S = 8 scales, and L = 8 orientations as shown in Figure 2, 
with M = 27.

The Gabor filters are applied to each segmented windows 
W that contains the hypothetical defect and its surrounding (see 
Figure 1). The filtered windows Gpq are computed using the 2D 
convolution of the window W of the X-ray image with the Gabor 
masks as follows:
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where * denotes the 2D convolution operation. The Gabor features, 
denoted by gpq, are defined as the average output of Gpq, ie, it yields 
S x L Gabor features for each segmented window:
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where the size of the filtered windows Gpq is nw x mw.

4. Feature selection
In this work, 28 texture features based on co-occurrence matrix for 
3 distances, and 64 texture features based on Gabor functions were 
extracted. That is, there are 28 x 3 + 64 = 148 extracted features for 
each segmented region. 

The ROC (receiver operation characteristic) analysis is 
commonly used to measure the performance of a two-class 
classification. In our case, each feature is analysed independently 
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using a threshold classifier. This way, a hypothetical flaw is 
classified as a ‘no-defect’ (or ‘defect’) if the value of the feature 
is below (or above) a threshold value. The ROC curve represents a 
‘sensitivity’ (Sn) versus ‘1-specificity’ (1-Sp), defined as:

                        

€ 

Sn =
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TP + FN
1− Sp =

FP
TN + FP

.................(18)

in which TP is the number of true positives (correctly detected 
defects), TN is the number of true negatives (correctly detected 
no-defects), FP is the number of false positives (false alarms, 
or no-defects detected as defects) and FN false negatives (flaws 
detected as no-defects). Ideally, Sn = 1 and 1-Sp = 0; this means that 
all defects were found without any false alarms. The ROC curve 
makes it possible to evaluate the performance of the detection 
process at different points of operation (as defined, for example, by 
means of classification thresholds). The area under the curve (Az) 
is normally used as a measure of this performance as it indicates 
how flaw detection can be carried out: a value of Az = 1 indicates 
an ideal detection, while a value of Az = 0.5 corresponds to random 
classification (Egan, 1975).

In order to reduce the computational time required for 
classification it is necessary to select features; this way the 
classifier only works with non-correlated features that provide 
flaw detection information. There are a variety of methods for 
evaluating the performance of the extracted features. The present 
Section includes only the Sequential Forward Selection (SFS) 
method (Jain, et al, 2000). This method requires an objective 
function J obtained from the Fisher discriminant (Fukunaga, 
1990) that evaluates the performance of the classification using 
m features. The method begins with one feature (m=1), and a 
search is performed for the feature that maximises the function J. 
Subsequently, a second search is carried out for that feature that 
maximises the function J with two features (m=2). This method 
ensures that neither features that are correlated with the already 
selected feature nor those that do not maximise f are considered. 
This process is repeated until the best n features are obtained. This 
approach works best with normalised features, ie, those that have 
been linearly transformed in such a way as to obtain a mean value 
equal to zero, and a variance equal to one.

5. Experiments and results
The X-ray image BAM-5, shown in Figure 1, was analysed. The 
size of the image is 3512 x 366 pixels. After the segmentation step, 
1419 hypothetical defects were obtained. According to a human 
eye visual inspection, in the segmented regions only 198 were 
defects. Nevertheless, the segmentation process could detect all 
defects bigger than 15 pixels. The 28 x 3 texture features based 
on co-occurrence matrix and the 64 texture features based on 
Gabor functions were extracted for each of the 1419 segmented 
hypothetical defects.

Table 1 presents the top ten values obtained by computing the 
area under the ROC curve (Az) and the Fisher discriminant (J) in 
our data. The best texture features based on the co-occurrence 
matrix are the mean of the difference entropy and the mean of the 
difference variance (equations (8) and (7) respectively), for the 
distances d = 3, 2, 1. In the other hand, the best Gabor features are 
at p = 6 (scale) and the orientations: \, — , and /. The ROC and the 
class distribution of feature f'11@ d=3 is shown in Figure 3. 

The results obtained by the features selection based on the 
SFS method are shown in Figure 4 for the first seven features. 
We observe that only one Gabor feature was selected. The feature 
space is illustrated in Figure 5 for the first three selected features. 
The Figure shows that the class ‘defect’ and ‘no-defect’ are good 
separable in the extreme. In the middle, the two classes are mixed.

Finally, we present the results obtained by statistical 
classifications with the seven selected features. In these 
experiments, we use the polynomial, Mahalanobis and nearest 
neighbour classifiers (Mery et al, 2003). The results are summarised 
in Table 2, where the true positives, false positives, false negatives, 
true negatives, sensibility, and 1-specificity are tabulated for the 

Feature Az Feature J
g63 0.9287 f'11@ d=3 1.1376

f'11@ d=3 0.9285 f'10@ d=3 1.0496

f'10@ d=3 0.9207 g63 0.9132

g65 0.9178 g67 0.8997

g67 0.9124 f'11@ d=2 0.8948

f'11@ d=2 0.8969 f'10@ d=2 0.7638

f'10@ d=2 0.8620 f'11@ d=1 0.6936

g57 0.8600 f'10@ d=1 0.6700

f'2@ d=3 0.8523 g65 0.6525

f'2@ d=2 0.8474 f'5@ d=1 0.5998

(a)

(b)
Figure 2. Example of Gabor functions in spatial domain:
a) imaginary components of self-similar filter bank by using
p = 1,..., 8 scales and q = 1,..., 8 orientations, b) 3D 
representations of two functions of a)

Table 1. ROC analysis and Fisher discriminant
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ideal detector and the mentioned classifiers. The best performance 
is obtained by the polynomial classifier, where 91% of the existing 
flaws were detected with 8% of false alarms. 

6. Conclusions
A new approach is presented to detecting weld defects based on 
two groups of widely used texture features: 1) features based on 
the co-occurrence matrix; and 2) features based on 2D Gabor 
functions. The best texture features based on the co-occurrence 
matrix are the mean of the difference entropy and the mean of the 
difference variance, for a distance of d = 3. In the other and, the best 
Gabor features are at p = 6 (scale) and the orientations: \, — , and /. 

The area under the ROC curve for these cases is about Az = 0.93. 
The best performance is obtained by the polynomial classifier, fast 
91% of the existing flaws were detected with 8% of false alarms. 
This preliminary study makes a contribution to the improvement of 
the automatic detection of welding defects.
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