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Abstract

In this paper a new explicit model of a radioscopic imaging system is presented. The model includes three parts: X-ray projection, image

intensifier and CCD camera. The X-ray projection is modelled as a linear central projection. The image intensifier is modelled using a new

explicit model that considers the curved input screen and the non-linear projection caused by electromagnetic fields. The CCD camera is

modelled according to a general 2D projective transformation of the output screen of the image intensifier. Thus, the back-projection,

required for 3D reconstruction, can be expressed in a closed-form. The model is compared to seven other known models. The presented

model achieves high accuracy.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Radioscopy rapidly became the accepted way for

controlling the quality of die cast pieces through visual or

computer-aided analysis of X-ray images. The purpose of

this non-destructive testing method is to identify casting

defects, which may be located within the piece and thus are

undetectable to the naked eye [1]. The principal aspects of

an automated X-ray inspection unit are shown in Fig. 1.

Typically, it comprises the following five steps: (i) a

manipulator for handling the test piece; (ii) an X-ray source,

which irradiates the test piece with a conical beam to

generate an X-ray image of the test piece; (iii) an image

intensifier which transforms the invisible X-ray image into a

visible one; (iv) a CCD camera which records the visible X-

ray image, and (v) a computer to process the digital image of

the X-ray image and then classify the test piece by accepting

or rejecting it.

Flat amorphous silicon detectors can be used as image

sensors in some industrial inspection systems. In such

detectors, using a semi-conductor, energy from the X-ray is

converted directly into an electrical signal (without image

intensifier). However, NDT using flat detectors is less

feasible due to their higher cost in comparison to image

intensifiers. In this paper, we will use the term radioscopic

imaging systems for imaging systems based on image

intensifiers. We concentrate on modelling these systems

because they suffer from two significant distortions:

geometric and electromagnetic field distortions (EFDs).

Additionally, imaging systems based on flat detectors do not

suffers from these distortions, and they can be easily

modelled with a simple pinhole camera model [2].

The geometric model of the radioscopic imaging system

establishes the relationship between 3D coordinates of the

object under test and their corresponding 2D digital X-ray

image coordinates. The model is required by both

reconstructing 3D information from image coordinates

and reprojecting 2D image coordinates from 3D infor-

mation. The 3D reconstruction is the process of determining

the 3D position of a point in the object under test, which is

identified and matched in at least two different X-ray images

of the object. The 3D reconstruction is achieved by the

method of triangulation that finds the intersection in 3D

space of the rays that have produced the image points [2].

This can be performed if we know the back-projection of the

corresponding image points. 3D reconstruction is performed

for example, for inspecting the internal and external

geometry of a casting using CAD-models [3]; and for

locating features of a 3D object using a stereoscopic

technique [4]. An example of inferring 3D and 2D

information is given in Ref. [5] where a novel automated
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inspection method is presented. In this case the defects are

detected by considering the correspondences in multiple

views.

The process of determining the parameters involved in

the geometric model is called calibration [6]. Calibration of

imaging systems is a very important issue in computer

vision applications that require high accuracy in 3D or 2D

measurements. Actual imaging systems are not perfect and

show a diversity of deviations. The nominal values of the

dimensions of the systems, if they are voluntarily provided

by manufacturers, suffer from imprecision. In addition,

many parameters of the model cannot be measured or they

can be measured only imperfectly. For these reasons, the

parameters must be estimated from indirect measurements

using a calibration process.

In this paper, we will give a geometric viewpoint about

how a radioscopic imaging system can be explicitly

modelled. When using explicit models, the physical

parameters of the imaging system, like image centre, focal

length, etc. are considered independently [7]. The model

presented in this paper maps the 3D object into a digital

radioscopic image using three transformations as shown in

Fig. 1: (i) linear central projection in the X-ray projection;

(ii) non-linear transformation in the image intensifier; and

(iii) 2D projective transformation in the CCD camera. The

goal of our paper is the introduction of a new high accuracy

explicit model of the image intensifier, which takes into

account the non-linear distortion caused by the curved input

screen of the image intensifier (Fig. 1), and the non-linear

projection in the image intensifier caused by electromag-

netic fields. Using this model, the back-projection func-

tion—required for 3D reconstruction—can be calculated in

a closed-form.

Finally, we compare the performance of seven existing

models with the performance of our explicit model by

calibrating a real radioscopic imaging system. The existing

models evaluated in our experiments were developed in the

last 15 years for calibrating radioscopic systems and

cameras, with and without lens distortion.

The paper is organized as follows. Section 2 gives a

theoretical background on this topic. The proposed model is

described in Section 3. In Section 4, the experiments and

results are presented. Finally, Section 5 gives concluding

remarks.

2. Theoretical background

2.1. A general model

In this section we present a general model which relates

the 3D coordinates of the test object to the 2D coordinates of

the digitalised radioscopic image pixel. The model consists

of two parts as shown in Fig. 1: X-ray projection and digital

image formation. The coordinate systems used in our

approach are shown in Fig. 2.

First we will describe how a 3D point M is projected onto

a projection plane P, called the retinal plane of the X-ray

projection, in which the X-ray image is formed through an

operation called central projection [8]. In this case, the

retinal plane is fictitious and is located tangentially to

the input screen of the image intensifier, as shown in Fig. 3.

The optical centre C of the central projection corresponds to

the X-ray source, modelled as a point.2 The optical centre is

located at a distance f ; the focal length of the retinal plane.

The central projection of M onto projection plane P is the

point m: It is defined as the intersection of the line that

contains the points C and M with the retinal plane P. The

optical axis is defined as the line going through the optical

centre C and perpendicular to the retinal plane P.

We define a 3D world coordinate system (WCS) in the

optical centre C of the central projection. The coordinates of

this coordinate system are �X; �Y; and �Z; where the �Z-axis

coincides with the optical axis, as represented in Fig. 3. In

WCS, the retinal plane P is defined by �Z ¼ f : The

coordinates of the 3D point M are denoted by ð �X; �Y; �ZÞ in

this coordinate system.

Fig. 1. Diagram of a radioscopic imaging system.

2 Although industrial X-ray generators use standard tubes with larger

focal size that blur the X-ray images slightly, the assumption that the X-ray

source can be modelled as a point is valid for geometrical measurements.

This is because the position of a point in the X-ray image can still be

estimated as the centre of the blurred point [9].
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Now, we define a 3D object coordinate system (OCS)

that is attached to the object to be projected. The

coordinates of the 3D point M are denoted by ðX;Y ;ZÞ in

OCS. The centre of the object is assumed to be at the

origin O of this coordinate system, as shown in Fig. 3.

The OCS is then considered as a rigid displacement of

the WCS represented by a translation 3-component

vector t ¼ ½tX tY tZ�
T and a 3 £ 3 rotation matrix R:

Vector t represents the origin of OCS given in

coordinates of WCS. Matrix R depends on the Euler

angles vX ; vY and vZ (Fig. 3) defined by [6]

R ¼ RðvX ;vY ;vZÞ ¼

R11 R12 R13

R21 R22 R23

R31 R32 R33

2
664

3
775; ð1Þ

with

R11 ¼ cosðvY ÞcosðvZÞ

R12 ¼ cosðvY ÞsinðvZÞ

R13 ¼ 2sinðvY Þ

R21 ¼ sinðvXÞsinðvY ÞcosðvZÞ2 cosðvXÞsinðvZÞ

R22 ¼ sinðvXÞsinðvY ÞsinðvZÞ þ cosðvXÞcosðvZÞ

R23 ¼ sinðvXÞcosðvY Þ

R31 ¼ cosðvXÞsinðvY ÞcosðvZÞ þ sinðvXÞsinðvZÞ

R32 ¼ cosðvXÞsinðvY ÞsinðvZÞ2 sinðvXÞcosðvZÞ

R33 ¼ cosðvXÞcosðvY Þ

The perspective projection of M onto the projection

plane is the 2D point m that is represented as ð�x; �yÞ in a new

2D coordinate system called the X-ray projection coordi-

nate system (PCS). The �x; �y-axes are parallel to the �X; �Y-

axes, respectively. Applying Thales theorem, the coordi-

nates of m in this 2D system are �x ¼ f �X= �Z and �y ¼ f �Y= �Z: In

this approach, homogeneous coordinates [2] are used: a

point ða1; a2;…; aNÞ in a N dimensional space is expressed

as a homogeneous vector with N þ 1 elements

ðb1; b2;…; bN ; bNþ1Þ where ai ¼ bi=bNþ1 for i ¼ 1;…;N: In

addition, we use the notation of Faugeras [2], where we

differentiate between the projective geometric objects

themselves and their representations, e.g. a point in the

space will be denoted by M whereas its vector in

Fig. 2. Diagram of the coordinate systems (see also Fig. 1).

Fig. 3. X-ray projection.
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homogeneous coordinates will be denoted by M: Thus, the

coordinates of point m can be calculated from

�x

�y

1

2
664

3
775 ø

f 0 0 0
0 f 0 0
0 0 1 0

� �
|fflfflfflfflffl{zfflfflfflfflffl}

E

R t
0T 1

h i
|fflffl{zfflffl}

S

X

Y

Z

1

2
6666664

3
7777775; ð2Þ

where 0T ¼ ½0 0 0�: We use the notation ø to indicate

equality up to multiplication by a scale factor, i.e. a ø b

means la ¼ b; where l is a scale factor. Eq. (2) can be

rewritten in matrix form as

m ø PM; ð3Þ

where P ¼ ES; and the 3-component vector m and the 4-

component vector M are homogeneous representations of

ð�x; �yÞ and ðX;Y ;ZÞ; respectively (e.g. m ¼ ½�x �y 1�T and

M ¼ ½X Y Z 1�T). Eq. (3) is a linear equation that maps

object coordinates to projection plane coordinates. This

equation depends on seven parameters:

Qext ¼ ½f vX vY vZ tX tY tZ�
T
: ð4Þ

They are called the extrinsic parameters of the X-ray

imaging system.

Finally, we introduce the 2D image coordinate system

(ICS) to represent the pixel coordinates ðu; vÞ of the digital

image. The point ðu; vÞ in ICS can be calculated from the

point ð�x; �yÞ in PCS using a function g

w ø gðmÞ; ð5Þ

where the 3-component vectors w and m are homogeneous

representations of ðu; vÞ and ð�x; �yÞ; respectively. Several

linear and non-linear models of g; that were developed for

radioscopic imaging systems and CCD cameras, will be

discussed in Section 2.3. The parameters of g are called the

intrinsic parameters. They will be denoted by Qint:

To summarise, using Eq. (3) for the perspective

projection and Eq. (5) for the digital image formation, an

object point M; whose homogeneous coordinates are

M ¼ ½X Y Z 1�T (in OCS), can be mapped into a 2D point of

the digital X-ray image as w; whose homogeneous

coordinates are w ¼ ½u v 1�T (in ICS) using the following

expression

w ø gðPMÞ U FðQ;MÞ; ð6Þ

where Q ¼ ½QT
ext Q

T
int�

T is the vector of parameters involved

in the projection model.

2.2. Calibration

The calibration of an X-ray imaging system—in the

context of 3D machine vision—is the process of estimating

the parameters of the model, which is used to determine the

projection of the 3D object under test into its 2D digital

X-ray image. This relationship 3D ! 2D can be modelled

with the transfer function F : R3 !R2 expressed in Eq. (6).

There are several techniques developed to calibrate an

imaging system. They can be roughly classified into two

categories: photogrammetric calibration and self-cali-

bration [10]. The first one is a 3D reference object-based

calibration, where the calibration is performed by observing

a calibration object whose geometry in 3D space is known

with high accuracy [2]. The second technique uses the

identification of matching points in several views of a scene

taken by the same camera. Self-calibration does not use a

calibration object with known 3D geometry because it aims

to identify the intrinsic parameters of the imaging system

and to reconstruct 3D structure up to a scale similarity [11].

Due to the high precision feature measurement of 3D

geometry required in the NDT applications, it would be

necessary to do a true reconstruction of the 3D space

without a scale factor. For this reason, the calibration

technique used in our work belongs to the photogrammetric

category.

In the calibration, we estimate the parameters of the model

based on n points whose object coordinates Mi ¼ ½Xi Yi �

Zi 1�T are known whose image coordinates ~wi ¼ ½~ui ~vi 1�T

are measured, for i ¼ 1;…; n: Using Eq. (6) we obtain the

reprojected points wi ¼ ½ui vi 1�T; i.e. the inferred projec-

tions in the digital image computed from the calibration

points Mi and the parameter vector Q: The parameter vector

is then estimated by minimising the distance between

measured points ð ~wiÞ and inferred points ðwi ø FðQ;MiÞÞ:

Thus, the calibration is performed by minimising the

objective function mðQÞ defined as the mean-square

discrepancy between these points:

mðQÞ ¼
1

n

Xn

i¼1

k ~wi 2 wik! min: ð7Þ

The calibration problem is a non-linear optimisation

problem. Generally, the minimisation of mðQÞ has no

closed-form solution. For this reason, the objective function

must be iteratively minimised starting with an initial guess

Q0 that can be obtained from nominal values or preliminary

reference measurements.

2.3. Geometric model of the imaging system: a review

In this section, we present seven existing models that can

be used to calibrate an X-ray imaging system. Five models

were conceived to calibrate cameras with and without

distortion. The others were developed to calibrate imaging

systems with image intensifiers. In all these models, the

perspective projection OCS ! PCS is done using Eq. (3).

For this reason, in this section only the transformation

PCS ! ICS will be described. We use the definition given

in Eq. (5), where a point m ¼ ½�x �y 1�T in PCS is transformed

by a function g into a point w ¼ ½u v 1�T in ICS. Recall that

D. Mery / NDT&E International 36 (2003) 587–599590



the parameters of g are the intrinsic parameters of the

imaging system.

Camera models. Faugeras and Toscani present in Ref.

[12] a linear model without considering distortion:

u

v

1

2
664

3
775 ¼

ku s u0

0 kv v0

0 0 1

2
664

3
775

�x

�y

1

2
664

3
775: ð8Þ

The five (intrinsic) parameters of the model consider scale

factors ðku; kvÞ in each ordinate, a skew factor ðsÞ that models

non-orthogonal u; v-axes, and a translation of the origin

ðu0; v0Þ that represents the projection of ð�x; �yÞ ¼ ð0; 0Þ in

ICS. In this linear model, the focal length is normalised to

f ¼ 1: A linear approach based on a least-squares technique

is proposed in Ref. [12] to estimate the intrinsic and

extrinsic parameters in a closed-form. However, Faugeras in

Ref. [2] proposes minimising the distances between the

observations and the model in ICS using the objective

function m of Eq. (7). Faugeras reported that this non-linear

method clearly appears to be more robust than the linear

method of Faugeras and Toscani when the measured data is

perturbed by noise.

In order to model the distortion, a positional error ðdu; dvÞ

can be introduced:

u
v
1

� �
|{z}

w

¼
ku 0 u0
0 kv v0
0 0 1

� �
�x
�y
1

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

w0

þ

duð�x; �yÞ

dvð�x; �yÞ

0

2
664

3
775: ð9Þ

In this model, the ideal non-observable position w0 is

displaced to the real position w as shown in Fig. 4. The

amount of the displacements, du and dv; usually depends on

the point position ð�x; �yÞ: Several models for the positional

error were reported in the literature to calibrate a camera

[6,9,13,14]. In these models, the skew s is zero, because in

modern digital cameras the u; v-axes can be considered as

orthogonal.

The distortion is decomposed into two components:

radial and tangential distortions as shown in Fig. 4. Radial

and tangential distortion depend on r and f; respectively,

where ðr;fÞ are the polar coordinates of the ideal position

ð�x; �yÞ represented in PCS. Tsai in Ref. [6] uses a simple

radial distortion model with only one additional parameter,

because his experience with cameras shows that only radial

distortion, which is principally caused by flawed radial

curvature of the lens elements, needs to be considered.

Weng et al. proposes in Ref. [9] an implicit model that

includes radial, decentring and prism distortion. Decentring

distortion arises when the optical centres of the lens

elements are not exactly collinear, whereas the prism

distortion occurs from imperfection in lens design, manu-

facturing and camera assembly. The last two distortions,

modelled with five parameters, have both radial and

tangential components.

Heikkilä introduces in Ref. [13] an implicit model for

radial and decentring distortion that takes into account an

inverse distortion model to express the distorted image

coordinates in terms of their undistorted coordinates. The

number of parameters of this model is four.

Swaminathan and Nayar present in Ref. [14] a model for

wide-angle lenses and polycameras. The model considers a

shift of the optical centre, radial distortion and decentring

distortion. A shift of the optical centre means a shift of the

image detector in the image plane. The suggested total

distortion includes four parameters.

Image intensifier models. Two models were reported in

the literature to calibrate a radioscopic imaging system

composed by image intensifier and CCD camera. The first

model was proposed independently by Jaeger in Ref. [15]

and Brack et al. in Ref. [16]. They propose an implicit

model between PCS and ICS. The transfer function g is a

third degree polynomial with 20 parameters ðai; bi; i ¼

0;…; 9Þ given by:

u

v

" #
¼

a0 · · · a9

b0 · · · b9

" #
½1 �x �y �x�y �x

2
�y

2
�y�x

2
�x�y

2
�x

3
�y

3�T: ð10Þ

This cubic function can model not only the distortion caused

by the curved input screen, but also the distortion introduced

Fig. 4. Radial and tangential distortions [9].
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by electromagnetic fields present around the image

intensifier.

The second model was developed by Mery and Filbert

in Refs. [5,17], in which a hyperbolic surface is used to

model the input screen of the image intensifier [18] that is

defined by

�Z ¼ Sð �X; �YÞ ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ð �X=aÞ2 þ ð �Y=bÞ2

q
; ð11Þ

with f (the focal length of the X-ray projection) being the

real half axis of the hyperboloid; a and b the imaginary

half axes. The projection of point M onto the input screen

of the image intensifier is denoted by p: It is calculated as

the intersection of the line that contains points C; M and

m with the 3D surface S (Fig. 3). Its coordinates are given

by: x0 ¼ �x=kð�x; �yÞ and y0 ¼ �y=kð�x; �yÞ; with kð�x; �yÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 2 ð�x=aÞ2 2 ð�y=bÞ2

p
: The point p is imaged at the CCD

camera as w; whose coordinates can be estimated

approximately using an affine transformation [2]

u

v

1

2
664

3
775 ¼

ku 0 u0

0 kv v0

0 0 1

2
664

3
775

þcosðuÞ þsinðuÞ 0

2sinðuÞ þcosðuÞ 0

0 0 1

2
664

3
775

�

�x=kð�x; �yÞ

�y=kð�x; �yÞ

1

2
664

3
775; ð12Þ

where u represents rotation between �x; �y- and u; v-axes.

This model has only three additional parameters a; b

and u:

3. Proposed model

In this section, we present an explicit model based on

the hyperbolic model of Mery and Filbert [5,17] to

perform the transformation PCS ! ICS that takes place in

the image intensifier and CCD camera. The original

hyperbolic model, presented in Section 2, does not take

into account the non-linear projection between input

screen and output screen of the image intensifier, because

it is considered as an affine transformation. Additionally,

there is no decentring point, since in this model the

optical axis of the X-ray projection coincides with

the optical axis of the image intensifier. Furthermore,

the skew parameter of the CCD camera is not included.

Finally, the distortion that arises when electromagnetic

fields are present around the image intensifier is not

considered. In this section, we propose a complete model

that incorporates the mentioned distortion effects.

This section is organized as follows: first, the image

intensifier model will be outlined; second the model of the

CCD camera will be presented; finally, the solution for the

back-projection problem is presented.

3.1. Image intensifier

The image intensifier converts the X-ray image into a

bright visual image, that can be captured by a CCD camera

[19]. Due to the curvature of the input screen of the image

intensifier, the radioscopic image received at the output

screen is deformed, especially at the corners of the image.

An additional distortion can be caused by electromagnetic

fields that perform a non-linear projection. An example of

these distortion effects is shown in Fig. 5, where a

radioscopic image of a plate containing holes that have

been placed in a regular grid manner is illustrated.

First, we will consider a model without electromagnetic

field distortion (EFD). The geometry of the model used to

compute the distortioned perspective projection is shown in

Fig. 6. It consists of a curved input screen S and an output

screen F; on which the image is projected. The output screen

F coincides with the retinal plane of this projection. We have

shown in Section 2.1, how the 3D object point M is projected

onto plane P as point m: Thus, the perspective X-ray

projection OCS ! PCS, is given by Eq. (3). In this section

we will calculate, how point m is projected onto input screen

S as point p and then onto the retinal plane F as point r:

The X-ray image present on the input screen is projected

onto the output screen through an optical centre of the image

intensifier. We may assume without loss of generality that

the optical axis of the image intensifier (z-axis) is parallel to

the optical axis of the X-ray projection ( �Z-axis), because, in

a central X-ray projection, there is always a ray that is

parallel to the optical axis of the image intensifier. However,

the displacement of these axes must be determined. For this

reason, we modify the hyperbolic surface of Eq. (11) by

introducing a shift of the centre of the hyperboloid as shown

in Fig. 6. Therefore, the hyperbolic surface S is defined in

WCS by

�Z ¼ Sð �X; �YÞ ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ

ð �X 2 �x0Þ
2

a2
þ

ð �Y 2 �y0Þ
2

b2

s
; ð13Þ

with f being the real half axis of the hyperboloid; a and b

the imaginary half axes; and ð�x0; �y0Þ the coordinates of

Fig. 5. Radioscopic image of a plate with holes distributed in a regular grid

manner.
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the centre of the hyperboloid. The focal length of the X-ray

projection ðf Þ; defined in Section 2.1, is the minimal value

that takes the surface S: This occurs in ð�x0; �y0Þ; that is

represented as q in Fig. 6. The displacement between �Z- and

z-axis is given by ð�x0; �y0Þ:

The projection of point M onto the input screen of the

image intensifier is calculated as the intersection of the line

that contains points C; M and m with the 3D surface S: This

intersection is denoted by p in Fig. 6, whose coordinates in

WCS are given by ð�x0; �y0; �z0Þ

�x0 ¼ �z
0
�x=f ; �y0 ¼ �z

0
�y=f and

�z
0 ¼

2B þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 2 4AC

p

2A
;

ð14Þ

with

A ¼
1

f 2
1 2

�x2

a2
2

�y2

b2

 !
; B ¼

2

f

�x�x0

a2
þ

�y�y0

b2

� �
;

C ¼ 2 1 þ
�x2

0

a2
þ

�y2
0

b2

 !
:

The coordinates of point p depend on the coordinates ð�x; �yÞ

of point m in PCS. Using homogeneous coordinates, p can

be expressed as follows

p ¼ gðmÞ; ð15Þ

where p ¼ ½�x0 �y0 �z0 1�T; m is a homogeneous representation

of ð�x; �yÞ; and g is the non-linear function defined from

Eq. (14).

As shown in Fig. 6, point p is projected through the

optical centre of the image intensifier onto the output

screen F as point r: The projected point r has coordinates

ðx; yÞ in a new 2D coordinate system, called the output

screen coordinate system (SCS). This coordinate system is

centred in e; and its x; y-axes are parallel to the �x; �y-axes

of PCS. We can conclude from consideration of similar

triangles that

x

y

1

2
664

3
775 ø

d 0 0 2d�x0

0 d 0 2d�y0

0 0 1 2ðf þ cÞ

2
664

3
775

�x
0

�y
0

�z
0

1

2
6666664

3
7777775; ð16Þ

where c and d are the distances of the input and output

screen to the optical centre of the image intensifier

(Fig. 6). This equation can be expressed in matrix form as

r ø Dp; ð17Þ

where the 3-component vector r is a homogeneous

representation of ðx; yÞ; and D is the 3 £ 4 projective

matrix of the image intensifier expressed in Eq. (16).

From Eqs. (15) and (17) we obtain the non-linear

equation, which depends on six parameters: a; b; c; d;

�x0 and �y0; that maps a projected point on the retinal plane

P of the X-ray projection onto a point on the retinal plane

F of the image intensifier:

r ø DgðmÞ: ð18Þ

To model the effect of the EFD we propose an empirical

model, in which a point r on plane F will be transformed

into a new point r0: We observed that the projection of a

regular grid seems to have an additional harmonic signal

(Fig. 5). For this reason, we can empirically model this

distortion with sinusoidal functions.

The EFD is modelled in two steps. The first step

introduces a distortion in the x direction and the second one

in the y direction. Thus, x is firstly transformed into x0 from

ðx; yÞ and secondly, y is transformed into y0 from ðx0; yÞ as

follows

x0 ¼ x þ A1 sinðB1y þ C1Þ;

y0 ¼ y þ A2 sinðB2x0 þ C2Þ;

ð19Þ

where Ai; Bi and Ci; i ¼ 1; 2; are the parameters of the EFD

model. Formally, r0 can be expressed using homogeneous

Fig. 6. Geometric model of the image intensifier (axes parallel to �Y are not shown).
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coordinates as follows

r0 ¼ fðrÞ ¼ ½x0 y0 1�T; ð20Þ

where f is the non-linear function defined from Eq. (19).

Other sinusoidal functions can be used to model the

distortion introduced by electromagnetic fields. The reason

why we use a two-step based model is because Eq. (19) can

be back-projected in a closed-form as shown in Section 3.3.

3.2. CCD camera

The 2D image coordinate system (ICS) is used to

represent the pixel coordinates of the radioscopic image

captured by the CCD camera. The point r (or r0 if we

consider the EFD) at the output screen of the image

intensifier (Fig. 6) is projected onto the plane G of the CCD-

array as point w as shown in Fig. 7.

The camera could be modelled as a general pinhole

camera [2], in which a projective mapping from a 3D point

of the space to a 2D projective space takes place. However,

in our model the 3D points to be mapped belong to a plane,

namely the plane F: For this reason, in this work we use a

2D ! 2D general projective transformation called homo-

graphy [8] which relates the coordinates of plane F to

retinal plane G of the camera. This transformation is

defined by

w ø Hr; ð21Þ

where the 3-component vectors r and w are homogeneous

representations of ðx; yÞ and ðu; vÞ (coordinates of r in SCS

and w in ICS), respectively. Matrix H is a homogeneous

3 £ 3 matrix that causes a general perspective transform-

ation where rotation, translation, scaling, skew and

perspective distortion are considered. Matrix H has nine

elements where only their ratio is significant, so the

transformation is defined by only eight parameters, e.g.

h11; h12;…; h32: Parameter h33 can be defined as h33 ¼ 1:

3.3. Back-projection

The 3D reconstruction is the process of determining the

3D position of a point in the object under test, which is

identified and matched in at least two different X-ray views

of the object. The 3D reconstruction is achieved by the

method of triangulation that finds the intersection in OCS of

the rays that have produced the image points. This can be

performed if we know the corresponding image points in

PCS, i.e. if the image points ðu; vÞ are back-projected into

the retinal plane P as ð�x; �yÞ: Having ð�x; �yÞ the corresponding

3D point can be reconstructed using for example a least-

square technique [2]. In this section we present how a point

w; whose coordinates in ICS are ðu; vÞ; can be back-

projected into a point m; whose coordinates in PCS are

ð�x; �yÞ: The back-projection is done in two steps: transform-

ation ICS ! SCS and transformation SCS ! PCS.

Transformation ICS ! SCS. Without considering the

EFD, the transformation ICS ! SCS can be directly

obtained from (Eq. (21)):

r ø H21w: ð22Þ

However, if the EFD is considered, the inverse function of

Eq. (20) r ¼ f21ðr0Þ must be obtained from Eq. (19):

y ¼ y0 2 A2 sinðB2x0 þ C2Þ;

x ¼ x0 2 A1 sinðB1y þ C1Þ:

ð23Þ

Therefore, it yields

r ¼ f21ðH21wÞ: ð24Þ

Transformation SCS ! PCS. The second transformation

is non-linear because it takes into account the geometric

distortion of the image intensifier. Given the coordinates

ðx; yÞ of point r in SCS, a point p on the surface S (Fig. 6)

that is the back-projection of r can be computed by finding

the coordinates ð�x0; �y0; �z0Þ that satisfy Eqs. (13) and (16)

Fig. 7. Imaging process in the CCD camera.
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simultaneously. The solution is

�x
0 ¼ �x0 2

x

d
ðf þ c 2 �z

0Þ; �y
0 ¼ �y0 2

y

d
ðf þ c 2 �z

0Þ;

�z
0 ¼

2B0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B02 2 4A0C0

p

2A0
;

ð25Þ

where

A0 ¼
g

f 2
2 1; B0 ¼ 2ðf þ cÞ; C0 ¼ 2g 2 ðf þ cÞ2;

g ¼
d2

x2

a2
þ

y2

b2

;

or using matrix notation

p ¼ hðrÞ; ð26Þ

where p ¼ ½�x0 �y0 �z0 1�T; r is a homogeneous representation

of ðx; yÞ; and h is the non-linear function defined from

Eq. (25).

Now, the coordinates of the back-projected point m on

the projection plane can be calculated from Eq. (25) and the

first two equations of Eq. (14):

�x ¼ f �x
0
=�z
0 and �y ¼ f �y

0
=�z
0
: ð27Þ

Eqs. (22), (26) and (27) can be joined in

m ø EhðH21wÞ; ð28Þ

where E is the 3 £ 4 perspective projection matrix

expressed in Eq. (2). However, if the EFD is taken

into account, the homogeneous representation of m is

from Eq. (24):

m ø Ehðf21ðH21wÞÞ: ð29Þ

3.4. Summary

In Section 3, we propose a model which relates the

transformation 3D ! 2D, from a 3D point M of the test

object to a 2D point w of the digitalised radioscopic

image pixel using homogeneous coordinates. There-

fore, the transformation is expressed by M ! w; where

M ¼ ½X Y Z 1�T and w ¼ ½u v 1 �T: There are two possi-

bilities for performing the transformation, namely without

and with considering the EFD. In the first case, the

transformation is given by: M ! m ! r ! w using Eqs.

(3), (18) and (21), respectively, i.e.

w ø HDgðPMÞ: ð30Þ

This model has seven intrinsic parameters (defined in Eq.

(4)) and 14 intrinsic parameters: a; b; c; d; �x0; �y0; h11;

h12;…; h31 and h32:

In the second case, where the EFD is modelled, the

transformation is expressed by: M ! m ! r ! r0 ! w

using Eqs. (3), (18), (20) and (21), respectively, i.e.

w ø HDfðgðPMÞÞ: ð31Þ

In comparison with the first case model, the consideration of

the EFD requires six more intrinsic parameters: Ai;Bi and

Ci; for i ¼ 1; 2:

Finally in Section 3.3, we give the equations for the back-

projection w ! m in a closed-form. The equation are

expressed in Eqs. (28) and (29) for the cases without and

with EFD, respectively.

4. Experiments and results

In this section, we present the experiments which we

did in order to evaluate the performance of the models,

and their corresponding results obtained by calibrating a

real radioscopic imaging system. The tested models and

their principal features are summarised in Table 1. They

are the seven models outlined in Section 2.3 and the two

proposed models of Section 3 (without and with

considering EFD). In the presentation of the results,

each model will be identified by the name given in the

second column of Table 1.

As explained in Section 2.2, the calibration process

estimates the parameters of a model based on points

whose object coordinates are known, and whose image

coordinates are measured. The calibration object used in

our experiments is shown in Fig. 8(a). It is an aluminium

object with an external diameter of 70 mm. A CAD-model

was developed by measurement of the calibration object

(Fig. 8(b)). It has 70 small holes ðf ¼ 3–5 mmÞ

distributed on four rings and the centre. As shown in

Fig. 8, the centres of gravity of the holes are arranged in

three heights.

The search for the calibration points within the X-ray

image is done with a simple procedure that detects regions

with high contrast and defined size for the area. The centres

of gravity of the detected regions, computed with a subpixel

accuracy, are defined to be the calibration points. Only

complete enclosed regions will be segmented. Fig. 8(c)

shows an example of the search for the calibration points

within a X-ray image. The correspondence between the 3D

object points and their images was established manually.

The image intensifier used in the experiments was the XRS

2323 with 22 cm input screen. The size of the images was

576 £ 768 pixels.

In our experiments, the calibration object was placed in

different positions using the MU20003 manipulator. The

positions of the calibration object were achieved by rotating

one of the axes of the manipulator. Some of the images

obtained are shown in Fig. 9. In order to incorporate the

movement of the manipulator into the geometric model, we

3 Developed by YXLON International Inc. [20].
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modify Eq. (2) by:

�x

�y

1

2
664

3
775 ø

f 0 0 0
0 f 0 0
0 0 1 0

� �
|fflfflfflfflffl{zfflfflfflfflffl}

E

�R �t
0T 1

h i
|fflffl{zfflffl}

�S

R t
0T 1

h i
|fflffl{zfflffl}

S

X

Y

Z

1

2
6666664

3
7777775: ð32Þ

In this equation, we have two 4 £ 4 matrices (S and �S) that

define, respectively, two 3D Euclidean transformations: (i)

between object and manipulator coordinate systems, and

(ii) between manipulator and WCSs. The translation

vectors (t and �t) and the rotation matrices (R and �R) are

related to the corresponding translation and rotation of the

mentioned transformations. Since the calibration object is

fixed to manipulator, matrix S is constant for each position:

t ¼ ½tX tY tZ�
T and a matrix R is calculated from the Euler

angles vX ; vY and vZ : However, matrix �S depends on the

position of the manipulator respect to the WCS. Matrix �S is

defined by a translation vector �t ¼ ½�tX �tY �tZ�
T and a rotation

matrix �R computed from the Euler angles �vX ; �vY and �vZ : In

our experiments, �tX ; �tY ; �tZ ; �vX and �vY were constant.

Nevertheless, �vZ was incremented by the manipulator in

constant steps. Thus, the rotation of this axis can be linearly

modelled by �vZðkÞ ¼ �vZ0 þ kD �vZ ; where k denotes the

number of the position. This new model introduces seven

additional extrinsic parameters (�tX ; �tY ; �tZ ; �vX ; �vY ; �vZ0 and

D �vZ) that must be estimated in the calibration process as well.

The calibration is performed by minimising the mean

reprojection error ðmÞ computed as the average of

Table 1

Characterisation of the implemented models

Model Name Reference Year Intrinsic

parameters

Back-projection Calibration Distortion Model

1. Faugeras Linear [2] 1993 5 Direct Iterative None Explicit

2. Tsai Radial [6] 1987 5 Indirect Iterative Radial Implicit

3. Weng et al. Rad-Tan-1 [9] 1992 9 Indirect Iterative Radial,

tangential

Implicit

4. Heilikkä Rad-Tan-2 [13] 2000 8 Direct Iterative Radial,

tangential

Implicit

5. Swaminathan

and Nayar

Rad-Tan-3 [14] 2000 8 Indirect Iterative Radial,

tangential

Implicit

6. Jaeger,

Brack et al.

Cubic [15,16] 1990,

1996

20 Indirect Iterative Cubic Implicit

7. Mery and Filber Hyp-Simple [5,17] 2000 7 Direct Iterative Hyperbolic

simple

Explicit

8. Proposed 1

without EFD

Hyp-Full Sections 3.1

and 3.2

2003 14 Direct Iterative Hyperbolic Explicit

9. Proposed 2

with EFD

Hyp-EFD Sections 3.1

and 3.2

2003 20 Direct Iterative Hyperbolic,

sinusoidal

Explicit

Fig. 8. Calibration object: (a) photography; (b) CAD-model; and (c) radioscopic image of the calibration object and calibration points.
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the distance between measured points ð ~wikÞ and inferred

points ðwikÞ—in the ICS—obtained from the kth projection

of the ith object point Mi according to the model of the

imaging system. As explained in Section 2.2, the calibration

problem is a non-linear optimisation problem, where the

minimisation of the objective function has no closed-form

solution. For this reason, the objective function must be

iteratively minimised starting with an initial estimated value

for the parameters involved in the model. In our experiments,

the estimation is achieved using the well known algorithm for

minimisation problems: the BFGS Quasi-Newton method,4

which is implemented by MathWorks Inc. in the optimisation

toolbox of MATLAB [21].

We subdivided the calibration points into two groups: the

points measured from seven images ðk ¼ 1; 3; 5;…; 13Þ;

were used as control points to calibrate the imaging system,

whereas the points extracted from seven other images ðk ¼

2; 4; 6;…; 14Þ were used as test points in order to evaluate

the accuracy of calibration.

An example of the calibration using our proposed model

Hyp-EFD is shown in Fig. 9. We can see that the modelled

projection of a CAD-model of the calibration object

coincides with the radioscopic image very well. Although

points of the top right and the bottom left images of Fig. 9

could not be used as control (or test) points because they are

Fig. 9. Calibration results using the proposed method Hyp-EFD.

4 This is a gradient method that uses the Broyden–Fletcher–Goldfarb–

Shanno formula for updating the approximation of the Hessian matrix

iteratively, which reduces the computational cost of the minimisation.
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very intricate, the inferred projection of the CAD-model in

these positions seems to be fine.

In order to asses the performance of each model, we

carried out two experiments: 2D reprojection and 3D

reconstruction. The results are summarised in Table 2.

The first experiment estimates the parameters of each

model by minimising the average error of the reprojection

error—in ICS given in pixels—of the control points. The

accuracy is assessed with the reprojection error in the test

points. Once the calibration is done, the second exper-

iment is performed using the parameters estimated in the

first. The 3D reconstruction of the measured points was

performed using a least square technique [2]. As a

performance measurement of the second experiment, the

Euclidean distance between measured and reconstructed

points in OCS was calculated in millimetres. The mean m

and the standard deviation s of the computed distances

errors in control and test points were tabulated for each

experiment. For emphasis, we remind the reader that the

calibration is performed by minimising the average of the

reprojection error of the control points (first column in

Table 2), i.e. the control points in the experiments of 3D

reconstruction were not used to calibrate, but also as test

points too.

Since the results obtained on control and test points are

very similar, our analysis will consider test point measure-

ments only. The two values x/y given below correspond to

the mean error values obtained by computing the 2D

reprojection and 3D reconstruction given in pixels and

millimetres, respectively. We observe that the best results

were obtained by Cubic and Hyp-EFD models in both

experiments. In these cases the mean errors were on the

order of 1.16–1.17/0.14, i.e. 1.16–1.17 pixels for the 2D

reprojection, and 0.14 mm for the 3D reconstruction.

Although Cubic model obtains a little bit better accuracy

than model Hyp-EFD (see standard deviations), we must

take into account that Cubic model uses an implicit model

with 20 parameters for the projection, and 20 other

parameters for the back-projection. On the other hand,

model Hyp-EFD uses the same 20 parameters for both

projection and back-projection.

In our experiments, the radioscopic imaging system

could not be adequately modelled without consideration of

the lens distortion or with only radial and tangential

distortion. The models that were originally developed for

cameras (Linear, Radial, Rad-Tan-1, Rad-Tan-2
and Rad-Tan-3, where the mean errors were 2.45/0.41,

1.64/0.17, 1.39/0.15, 1.66/0.21 and 1.62/0.18, respect-

ively), did not work appropriately for our radioscopic

imaging system. In many cases, the maximum reprojec-

tion error was greater than 4 pixels. The reason for this is

that the distortion introduced by the image intensifiers is

different than the distortion introduced by a camera lens

and the camera models do not consider the EFD in the

image intensifier.

On the other hand, hyperbolic models are used by Hyp-
Simple, Hyp-Full and Hyp-EFD. The results obtained

with model Hyp-Simple are comparable with the best

results obtained from camera models (Rad-Tan-1), where

the mean errors were 1.40/0.17 and 1.39/0.15, respectively.

In relation to model Hyp-Simple, model Hyp-Full
introduces a decentring point and a non-linear transform-

ation in the image intensifier. This additional complexity in

the model has a significant decrease in the reprojection error

(1.40/0.17 vs. 1.29/0.16). In addition, another important

reduction of both errors is achieved by considering the EFD

in model Hyp-EFD (1.29/0.16 vs. 1.17/0.14).

5. Concluding remarks

In this paper a new high accuracy model of a radioscopic

imaging system was presented. The proposed explicit model

considers the physical parameters of the imaging system,

like image centre, focal length, etc. independently. The

model is able to map the 3D coordinates of a test object to

the 2D coordinates of the corresponding pixel on the digital

radioscopic image. The model consists of three parts: X-ray

projection, image intensifier and CCD camera. The distor-

tion introduced by the image intensifier was modelled using

a hyperbolic surface for the input screen and sinusoidal

functions for electromagnetic fields. Using our explicit

model, the back-projection function—required for 3D

reconstruction—can be calculated directly using a closed-

form solution.

The suggested model was experimentally compared with

seven other models, which are normally used to calibrate an

imaging system with and without lens distortion. Fourteen

radioscopic images were taken of a calibration object in

different positions. Seven of them were used to calibrate the

imaging system and the other seven were employed to test

the accuracy of calibration. The results show that the

consideration of only radial and tangential distortions is not

good enough if we are working with image intensifiers. In

this case, other models must be used for high accuracy

Table 2

Error of the models in control (C) and test (T) points

Model # 2D reprojection (pixels) 3D reconstruction (mm)

m s m s

C T C T C T C T

1. Linear 2.52 2.45 1.57 1.53 0.47 0.41 0.229 0.157

2. Radial 1.70 1.64 0.96 0.83 0.18 0.17 0.087 0.075

3. Rad-Tan-1 1.40 1.39 0.85 0.76 0.15 0.15 0.076 0.071

4. Rad-Tan-2 1.62 1.66 0.87 0.87 0.25 0.21 0.123 0.092

5. Rad-Tan-3 1.64 1.62 0.92 0.81 0.20 0.18 0.102 0.079

6. Cubic 1.16 1.16 0.67 0.59 0.15 0.14 0.079 0.063

7. Hyp-Simple 1.36 1.40 0.77 0.73 0.18 0.17 0.090 0.074

8. Hyp-Full 1.25 1.29 0.72 0.69 0.17 0.16 0.096 0.072

9. Hyp-EFD 1.18 1.17 0.71 0.64 0.16 0.14 0.084 0.069
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requirements. For this reason, Cubic or Hyp-EFD models

are recommended. Their mean errors are very similar as

shown in Table 2. However, for the back-projection, it is

convenient to use the proposed model Hyp-EFD because

the same parameters are used for both the projection and the

back-projection model.
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[16] Brack Ch, Götte H, Gossé F, Moctezuma J, Roth M, Schweikard A.

Towards accurate X-ray camera calibration in computer-assisted

robotic surgery. In Proceedings of International Symposium on

Computer Assisted Radiology (CAR), Paris 1996;721–8.

[17] Mery D, Filbert D. The epipolar geometry in the radioscopy: theory

and application. at—Automatisierungstechnik 2000;48(12):588–96.

in German.
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