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Abstract 

The automatic detection of flaws through non-destructive testing uses pattern recognition 
methodology with binary classification. In this problem a decision is made about whether 
or not an initially segmented hypothetical flaw in an image is in fact a flaw. Neural 
classifiers are one among a number of different classifiers used in the recognition of 
patterns. Unfortunately, in real automatic flaw detection problems there are a reduced 
number of flaws in comparison with the large number of non-flaws. This seriously limits 
the application of classification techniques such as artificial neuronal networks due to the 
imbalance between classes. This work presents a new methodology for efficient training 
with imbalances in classes. The premise of the present work is that if there are sufficient 
cases of the smaller class, then it is possible to reduce the size of the larger class by using 
the correlation between cases of this latter class, with a minimum information loss. It is 
then possible to create a training set for a neuronal model that allows good classification. 
To test this hypothesis a problem of great interest to the automotive industry is used, which 
is the radioscopic inspection of cast aluminium pieces. The experiments resulted in perfect 
classification of 22936 hypothetical flaws, of which only 60 were real flaws and the rest 
were false alarms. 

 
Key Words: automatic flaw detection, neuronal networks, classification, aluminium 
castings. 
 
1. Introduction 
The automatic detection of flaws in non-destructive testing based on image processing uses 
pattern recognition methodology for its implementation. This process has the following 
stages: image formation, pre-processing, segmentation, feature extraction, and their 
classification (Mery et al, 2003). Image formation is obtained by X-ray irradiation of the 
studied piece creating a digital image of the object on the basis of the original image 
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obtained. The purpose of pre-processing is to improve the quality of the image for better 
recognition of possible flaws, reducing noise, enhancing contrast, and restoring. 
Segmentation consists of obtaining regions of the images that correspond to possible flaws. 
During feature extraction segmented regions are measured, and finally in classification, in 
accordance with the extracted features segmented regions are separated into two classes: 
“defects” (flaws) and “regular structures” (non-flaws). Because the classification is binary, 
it becomes a flaw detection problem. 

There are different classifiers used in the recognition of patterns such as linear 
discriminators, (Schalkoff, 1992), those based on distances (Tou et al., 1974), Bayesian 
classifiers (Tou et al., 1974), Neural Networks (Bishop, 1995) and others. 

Neuronal classifiers exhibit some significant advantages over other classifiers, such 
as their ability to perform non-linear discrimination, the possibility of including different 
types of variables (real, nominal, and binary) in the same model, and their processing and 
adaptive capacity (Mitchell,1997). This allows the inclusion of a great deal of features for 
discrimination. Nonetheless, the importance of these advantages could be diminished when 
there is a great deal of difference in the size of the classes. 

Unfortunately, in real automatic flaw detection problems, the number of flaws is 
very small in comparison to the large number of non-flaws. This seriously limits the 
application of powerful classification techniques such as artificial neuronal networks due to 
the fact that training methods based on minimization of the mean quadratic error do not 
adequately weigh the smaller subset (Haykin, 1994). 

This problem, known in the pattern recognition literature as a skewed class 
distribution, has been dealt with in other works, e.g. Chan et al, 1999 and Chih et al, 2002, 
which propose the creation of training subsets, combining some of the larger group’s cases 
with the totality of the smaller group’s cases, (the smaller group is replicated in all of the 
subsets). Subsequently, a classification model is created for each subset, and finally a meta-
classifier which combines the predictions made by the individual classifiers. The ratio 
between cases in these works is 1:49 and 1:4, respectively. 

The basis of the present work is that if there are sufficient examples of the smaller 
size class, it is possible to reduce the number of the other class, with a minimum loss of 
information, thus creating a representative subset of the larger class, which together with 
the smaller class make up a training set for a neuronal model that allows good 
classification. 

The working hypothesis is that the training set of the neuronal network can be made 
up of the data from the smaller class size, and a reduced set of cases from the larger class 
size, which will allow increasing the discrimination capacity of the classifier, without 
modifying the error minimization algorithms used by neuronal networks. The reduction of 
the larger class is carried out by eliminating those cases that have a certain correlation with 
other cases in the same class. 

In order to evaluate this hypothesis, we have used a problem which is of great 
interest in the automotive industry, the radioscopic inspection of cast pieces, which have 
already been tested with other methods of classification (Mery et al, 2003). The results of 
this inspection are 60 cases of flaws, and 22876 cases of non-flaws. The difference between 
these two groups is notable, and the ratio of flaws to non-flaws is 1:381. 

The present work is divided into the following sections: Section 2 presents a brief 
description of the methods used to solve this problem, Section 3 presents our results, and 
Section 4 presents the conclusions of this work. 
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2. Description of Methods 
  
2.1 Artificial Neuronal Networks 
 
Artificial neuronal networks are mathematical tools derived from what is known about the 
mechanisms and physical structure of biological learning, based on the function of a 
neuron. They are parallel structures for distributed processing of information (Haykin, 
1994). The basic processing unit is the neuron, made up of multiple inputs and only one 
output. This output is determined by an  activation function that operates on input values, 
and a transfer function that operates on the activation value. In other words, if we consider 

 inputs, W  weights,  as the activation value and Z as the output value of the neuron, 
the values of   and 
X i i A

A Z  can be described by: 

 ,        (1) biasXWA
n

i
ii +⋅= ∑

=1

      
   Z = g(A),         (2) 

 
where g(A) is the so-called transfer function and is generally a sigmoid or linear function. 
 The structure of a neuronal network can have one or more neurons and depending 
on the type of problem and the training, these networks receive different names. They have 
the capacity to associate and classify patterns, compress data, perform process control and 
approximate non-linear functions (Mitchell, 1997).  

 The most often used type of neural network in classification is the Multi Layer 
Perceptron (MLP) which consists of sequential layers of neurons . The structure of an MLP 
is shown in Figure 1 where each neuron has equation (2) associated to it. 

 Backpropagation is the learning algorithm normally used to train this type of 
network. Its goal is to minimise the error function constructed from the difference between 
the desired and modelled output. 
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Figure 1: Multi Layer Perceptron  
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 The initially developed backpropagation algorithm used a steepest descent first 
order method as learning rule. Nonetheless, other more powerful second order methods are 
in common use now. The method used in this paper is conjugate gradient, which consists of 
finding the gradient directions that satisfy: 

 

 ,        (3) ( ) ( ) 01 =+ tTt Hdd

 

where d is the slope direction and H is the Hessian matrix evaluated at point w(t+1). Vector 
w is the network weight vector and it is updated by means of: 

 

w(t+1) = w(t) + λ(t)d(t).        (4) 
 

Parameter λ(t) is selected for minimising: 

 

E(λ)=E(w(t) + λd(t)).        (5) 
 

where E is the error function (Bishop, 1996). 

 
2.2 Detecting flaws in cast pieces 
As mentioned in the introduction, the automatic detection of flaws in non-destructive 
testing is commonly carried out by means of a pattern recognition method, which is made 
up of: image formation, pre-processing, segmentation, feature extraction, and classification 
(Mery et al, 2003). 
 Segmentation is carried out by means of an edge detection technique in which the 
digital image, obtained in the previous steps, is divided into disconnected regions with the 
purpose of separating those areas of interest from the rest of the image, thus detecting 
hypothetical flaws. In the feature extraction process the properties of each region obtained 
in segmentation are measured. The concept is that, on the basis of the extracted features it 
can be decided whether the “hypothetical flaw” corresponds to a “defect” (flaw) or to a 
“regular structure” (non-flaw). 
 The present study analyses the data presented in (Mery et al, 2003) generated on the 
basis of 50 radioscopic images cast aluminium pieces. These data correspond to a total of 
22936 segmented regions of which 60 are defects and 22876 are regular structures. 
 The features extracted from the cast pieces correspond to two types: geometric 
features and intensity. The total number of features extracted from the pieces is, for this 
case, 405. Taking into consideration the computational cost required to process the 405 
features only 28 were pre-selected. In order to carry out this pre-selection two methods 
were used, ROC analysis and the Fisher discriminant (Mery et al, 2003). Of the 405 
features, those with an area under the ROC curve Az < 0.8 and a Fisher discriminant J < 0.2 
Jmax, (where Jmax corresponds to the maximum Fisher discriminant obtained from evaluating 
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all features), were eliminated. If two features had a correlation coefficient with an absolute 
value greater than or equal to 0.95, the one with the smaller Az was eliminated. Thus, of the 
405 features 376 were eliminated, leaving only 281. For details of the extracted and pre-
selected features the reader is referred to Tables 1 and 2 of (Mery et al, 2003). 
 Figure 2 shows a representation, for the two first components (62.8 % of the 
information), of a Principal Component Analysis of the flaw and no-flaw cases which 
include the 28 features, in which the difficulty in separating these classes can be clearly 
observed. 
 

 

 
 

 Figure 2: Principal Component Analysis of the 2936 cases of flaws and non-flaws 
 

2.3. Neuronal Model for classifying unbalanced classes 
In this problem there is a clear imbalance in the quantity of elements in each class, and the 
ratio of flaws to non-flaws is 1:381. 

The hypothesis for this work is that by reducing the larger class and considering that 
there are sufficient examples or cases in the other class, a neuronal model can be 
constructed which uses the previously mentioned cases as a training set, and has the 
capacity to classify each case correctly, without having to modify the error minimization 
algorithms that the neuronal network use. 

The general procedure for constructing a neuronal model that satisfactorily classifies 
cases into their respective classes is the following: 
 

i. Normalise the data between 0 and 1 for both classes. 
ii. Decrease the number of elements that belong to the larger class, leaving the group 

that is most representative of the class. This is achieved by eliminating highly 
correlated cases, the details of which will be explained later on. 

iii. Create the neuronal model, considering an MLP with a hidden layer (Funahashi, 
1989), a sigmoid transfer function for both the hidden layer and output, and a 
backpropagation learning method with conjugate gradient. The number of neurons 
in the hidden layer will depend on the number of cases available for training. 

                                                 
1 The data are available at http://www.diinf.usach.cl/~dmery/papers/PANNDT2003a.htm 
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iv. Assemble the training set for the neuronal model, defining as elements of the set 
the subset of cases of the larger size class which are obtained after making the 
reduction referred to in point ii above, and all of the cases in the smaller class. 

v. Train the network with the set assembled in step iv. 
vi. Test the model on all cases, both flaws and non-flaws. 

vii. Finally, use the same neuronal classifier to reduce even further the features used 
for classification. In this way considerable time is saved in the pre-processing and 
segmentation stages. 

 
 The procedure that allows the reduction of the larger class in such a way that the 
elements left represent the total set for that class, (point ii of the previous algorithm), is 
given below. 

 
ii.1 Create groups of correlated cases. To this end, the quantity and type of cases 

with a correlation coefficient greater than 0.99 are calculated, and then for 0.98, 
and so forth until a correlation greater than 0 is reached. For each calculation the 
total set of cases is used. This process generates pairs (n,r) in which n represents 
the quantity of cases with a correlation greater than the valued indicated by r. 

ii.2 Create a correlation curve placing the index of correlation r (where r ∈ [0, 
0.99]), on the ordinate in intervals of 0.01 and the on the abscissa the quantity of 
cases that are correlated with a correlation coefficient greater than r. 

ii.3 Find a point on the correlation curve which indicates how many and what cases 
represent the larger class in order to use this point in the training of the neuronal 
network. In order to find the point it is necessary to progress as far as possible to 
the right of the correlation curve while maintaining a fixed height. Keeping a 
fixed height ensures that the information regarding the subset of cases is kept 
unaltered and moving to the right reduces the number of cases in the larger 
class. In order to find the cut-off point it is necessary to determine how much 
information about the cases one is willing to lose vs. the number of cases that 
represent the larger class. In this case for each 1% loss of information there must 
be a corresponding decrease in the number of cases of at least between 0.5 % 
and 1%. This point will indicate that the cases observed in the abscissas are 
correlated with a higher index of correlation than that indicated on the ordinate 
axis. In order to form the reduced set the complement of these cases is 
considered. 

 
3. Analysis and discussion of results 
In this section we will present the results obtained from various experiments carried out in 
which different sets are used for training the neuronal network. These results are analysed 
by looking at “sensitivity” (Sn) versus ‘1- specificity’ (1-Sp), defined as: 
 

FNTP
TPSn +

= ,  
FPTN

FPS p +
=−1     (6) 
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where TP is the number of true positives (defects correctly classified), TN is the number of 
true negatives (regular structures classified correctly), FP is the number of false positives 
(false alarms or regular structures classified as defects) and FN is the number of false 
negatives (defects classified as regular structures). Ideally Sn=1 and 1-Sp= 0, i.e., all defects 
are detected without flagging false alarms. 

 

3.1 Results obtained using all cases as a training set 
The neuronal network created for this case was an MLP network, with a hidden layer and 
76 neurons in that layer. A sigmoid transfer function was used, both for the hidden layer 
and the output.  

The data set used was the set of 22936 cases of flaws and non-flaws used for 
training and testing. The results are shown in Table 1, Experiment 1. Although the training 
gave good results, it lasted three hours (considering that this job was carried out with an 
x86 Family 6, AT/AT Compatible machine with a Windows NT operating system and 
NeuroSolutions as the neuronal modeling tool) and was unable to recognise 100% of both 
flaws and regular structures. Additionally, when attempts are made to train the network 
with fewer features results decrease significantly. 
 

Table 1. Performance of the Neuronal Network in Diverse Experiments 
 

 
Experiment 

Reduction of the 
number of cases 

in the larger class 

 
Selected 
features 

 
 

TP 

 
 

FP 

 
 

Sn 

 
 

1-Sp 
1 No All 59/60 2/22876 98.3% 0.00% 
2 Yes All 60/60 1/22876 100% 0.00% 
3 Yes YDCT, YDCT 

(360, 376) 
60/60 88/22876 100% 0.38% 

4 Yes ∆’Q, F1, Tx5 
(33, 37, 186) 

60/60 0/22876 100% 0.00% 

5 Yes K, ∆’Q, F1 
(31, 33, 37) 

60/60 14/22876 100% 0.06% 

6 Yes ∆’Q, F1, Tx3 
(33, 37, 128) 

59/60 3/22876 98.3% 0.00% 

7 Yes K, F1, σ2
g 

(31, 37, 59) 
59/60 30/22876 98.3% 0.13% 

8 Yes Kσ, K, Tx5 
(30, 31, 179) 

59/60 36/22876 98.3% 0.15% 

9 Yes C, Kσ, K 
(25, 30, 31) 

59/60 54/22876 98.3% 0.24% 

10 Yes C, F1, Tx5 
(25, 37, 186) 

59/60 56/22876 98.3% 0.24% 
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3.2 Results obtained using the reduced class as part of the training set 
 
3.2.1 Results obtained reducing the larger size class 
In order to reduce the larger size class, in this case the non-flaws class, the steps presented 
in Section 2.3 were followed. The correlation curve shown in Figure 3 was created with the 
data obtained after calculation of the correlation between cases. The ordinate axis 
represents the correlation index r and the abscissa represents the number of cases n with a 
correlation greater than r. The vertical lines on the graph represent the first eight points (n, 
r) calculated the values of which are tabulated in Table 2.  

 
Figure 3. Correlation curve for non-flaws. 

 
Table 2. Percentage of cases which could be eliminated from the training set 

 

Points of 
Figure 3 

r N % cases to be 
eliminated 

(n/total_cases)

% cases in the 
reduced class 

1 0.99 18184 79.5% 20.5% 

2 0.98 20806 91.0% 9.0% 

3 0.97 21763 95.1% 4.9% 

4 0.96 22198 97.0% 3.0% 

5 0.95 22426 98.0% 2.0% 

6 0.94 22569 98.7% 1.3% 

7 0.93 22642 99.0% 1.0% 

8 0.92 22700 99.2% 0.8% 
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Thus, in order to determine the cut-off point, the percentage of cases that would be 
eliminated was calculated for each point on the curve. Table 2 shows the results evaluated 
for the first points on the curve. As can be appreciated, the number of correlated cases 
increases as the correlation index decreases. 

After the sixth point on the curve, for every drop of 0.01 correlation points, (1% of 
the total information), the number of cases eliminated is very few. At this sixth point, a 
significant reduction in cases is achieved while maintaining 94% of the information of all 
the cases in the original class in the remaining subset. Consequently, this point (22569, 
0.94) was selected for effecting the reduction which means that 22569 cases have a 
correlation greater than 0.94. The complement of these cases, 307 non-flaws, are 
incorporated into the training set. 

In this way a training set with 60 flaws and 307 non-flaws was created. A Multi 
Layer Perceptron network with a hidden layer with 4 neurons and a logarithmic sigmoid 
activation function was trained. The test data used comprised all the data available, 
including those used in the training, in other words these data included 60 flaws and 22876 
non-flaws.  
 The training included 1000 iterations. The results are shown in Table 1, Experiment 
2. As can be seen the results show a 100% recognition of flaws, and a 99.99% recognition 
of non-flaws. This shows that the reduced set stored sufficient information for recognising 
the majority of no-flaw cases without interfering with the recognition of flaws. 

 
3.2.2 Results obtained using as a training set the reduced class with features reduced 
by means of a sensitivity analysis 
In order to reduce pre-processing and segmenting times in the feature extraction, and thus 
be able to work with a smaller set of features, some tests were carried out and a few of 
these were selected using a sensitivity analysis (Principe, 2000), to determine the set of 
features that best defined the classes. Two of these gave the best results. 

The features that define both classes well are feature 360 and feature 376 which 
correspond to components (3,3) and (5,3) of the transformed DCT (YDCT), respectively. The 
training set was then made up of 60 flaws and 307 non-flaws. The test was performed on 
the complete data set (like wise considering only those columns that corresponded to the 
features above).  

The results are shown in Table 1, experiment 3. The network was able to recognise 
100% of the flaws and 99.6% of the non-flaws, using the reduced class and all the data 
from the other class as a training set, while using only 2 of the 28 features. 
 
3.3 Results obtained using as part of the training set the reduced class and selected 
features 
Other tests were carried out with other data sets, considering features that can be 
computationally extracted easily and quickly in addition to being easy to interpret. Of the 
28 features 10 were selected: features 25, 30, 31, 33, 37, 59, 100, 128, 179 and 186. These 
were combined among each other to form groups of three features. Table 1, experiments 4 
to 9 show the best results obtained with reference to sensitivity and (1-specificity) of all the 
combinations tried. 
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 As Table 1 shows, the results were very good. By reducing the larger class and 
selecting only three features the network is able to classify both classes with a 100% 
accuracy (experiment 4), thus surpassing the results obtained with the sensitivity analysis. 
 
 
4. Conclusions 
In flaw detection problems, there are many cases of unbalanced classes in which non-linear 
methods such as neuronal networks do not work if traditional methodologies are used in 
their application, principally because the smaller class is not adequately weighted. 

In the present work we present the hypothesis that if there are sufficient cases of the 
smaller class, it is possible to reduce the larger class by carrying out a correlation analysis 
between cases, thus creating a more balanced training set and in this way achieving a 
neuronal model that can adequately classify both classes. 

With this method, the non-flaw set was reduced from 22876 cases to just 307 cases 
that represented the larger size class. The network was trained with 307 non-flaws, 60 
flaws, and 28 features. It was then tested on all the data resulting in 100% recognition of 
flaws, and over 99% of the non-flaws. Additionally good results were also achieved by 
selecting some of the features (see Table 1). 

The best results for this work (Table 1, experiment 4) compared with Mery et al., 
2003, can be found in Table 3. Upon comparison of these results it can be seen that those of 
the present work surpass those obtained by Mery et al., 2003, which used traditional 
classifiers and neuronal networks, the second case replicating the smaller size set. 

Thus, it can be seen that the reduction of the larger size class is possible, and that 
excellent results are obtained in classification, even when training with two or three 
features. This work may be replicable in other cases with unbalanced classes. 
  

Table 3. Comparison of performances 
 

 
Method 

 
Classifier 

Selected 
features 

 
TP 

 
FP 

 
Sn 

 
1-Sp 

Mery et al. 
2003 

Threshold Kσ, F1 
(30, 37) 

57/60 230/22876 95% 1.00% 

Mery et al. 
2003 

Neuronal 
Networks 

Kσ, F1 
(30, 37) 

60/60 558/22876 100% 2.44% 

Proposed 
Method 

Neuronal 
Networks, 
applying a 

reduction to 
the larger size 

class 

∆’Q, F1, Tx5 
(33, 37, 186) 

60/60 0/22876 100% 0.00% 
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