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Abstract. This work presents a digital image processing technique for
the automated visual inspection of glass bottles based on a well-known
method used for inspecting aluminium die castings. The idea of this
method is to generate median filters adapted to the structure of the
object under test. Thus, a “defect-free” reference image can be estimated
from the original image of the inspection object. The reference image
is compared with the original one, and defects are detected when the
difference between them is considerable. The configuration of the filters
is performed off-line including a priori information about real defect-free
images. In the other hand, the filtering self is performed on-line. Thus,
a fast on-line inspection is ensured. According to our experiments, the
detection performance in glass bottles was 85% and the false alarms rate
was 4%. Additionally, the processing time was only 0.3s/image.

Keywords: automated visual inspection, median filter, glass bottles,
ROC curves.

1 Introduction

Visual inspection is defined as a quality control task that determines if a product
deviates from a given set of specifications using visual data1. Inspection usually
involves measurement of specific part features such as assembly integrity, sur-
face finish and geometric dimensions. If the measurement lies within a deter-
mined tolerance, the inspection process considers the product as accepted for
use. In industrial environments, inspection is performed by human inspectors

1 For a comprehensive overview of automated visual inspection, the reader is referred
to an excellent review paper by Newman and Jain [1]. The information given in this
paragraph was extracted from this paper.
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and/or automated visual inspection (AVI) systems. Human inspectors are not
always consistent and effective evaluators of products because inspection tasks
are monotonous and exhausting. Typically, there is one rejected in hundreds
of accepted products. It has been reported that human visual inspection is at
best 80% effective. In addition, achieving human ‘100%-inspection’, where it is
necessary to check every product thoroughly, typically requires high level of re-
dundancy, thus increasing the cost and time for inspection. For instance, human
visual inspection has been estimated to account for 10% or more of the total
labour costs for manufactured products. For these reasons, in many applications
a batch inspection is carried out. In this case, a representative set of products is
selected in order to perform inferential reasoning about the total. Nevertheless,
in certain applications a ‘100%-inspection’ is required. This is the case of glass
bottles fabricated for the wine industry, where it is necessary to ensure the safety
of consumers. For this reason, it is necessary to check every part thoroughly.

Defects in glassware can arise from an incompletely reacted batch, from batch
contaminants which fail to melt completely, from interactions of the melted
material with glass-contact refractories and superstructure refractories, and by
devitrification. If conditions are abnormal many defects can be produced and
even just one defect of only 1-2mg in every 100g article can be enough to give
100% rejection rates. The source identification of these defects can then be a
matter of urgency [2].

The inspection of glass bottles is performed by examining each bottle through
backlighting. In this case, the bottles are placed between light source and a
human or computer aided inspector. This technique makes the defects of the
bottle visible. There are two known approaches used in the inspection of glass
bottles:
• The automated detection of flaws is performed by a typical pattern recognition
schema (segmentation, feature extraction and classification), in which images
from at least four view points are taken, potential flaws are segmented and
according to the extracted features the defects are detected. Examples with
neural networks can be found in [3–5], where a high detection performance was
achieved in a laboratory prototype.
• In the second group, the image is taken by a linear scanner that stores the
corresponding middle vertical line of the bottle. By rotating the bottle around
its vertical axis, an extended image is acquired in which the whole bottle is
represented . The flaws are detected by comparing the grey levels of the image
with a threshold. Due to the required high-speed inspection (1 bottle/s), this
method is employed in the glass industry of wine bottles. However, with this
methodology only the body of the bottle can be satisfactorily inspected. Due
to the edges of the regular structure of the bottleneck, the inspection requires a
human operator for this part of the bottle. No results of this method are reported
in the literature.

In this paper, we present the results obtained in the inspection of (empty)
wine bottles using a new technique in the inspection of glass. Nevertheless, the
presented technique is not new in the automated inspection of aluminium die
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(a)                          (b)(a)                          (b)

Fig. 1. (a) A flaw in an aluminium wheel. (b) Flaws in a glass bottleneck.

castings [6]. After the observation that the X-ray images acquired in the inspec-
tion of aluminium castings are similar to those photographic images obtained
in the inspection of glass (see for example Fig. 1), we decided to investigate the
inspection of glass bottles using a well known AVI technique for die castings,
namely, the MODAN filter [7]. We demonstrate that this approach, based on
the adapted median filtering, can be used in the automated quality control of
wine bottles successfully.

The rest of the paper is organised as follows: in Section 2 the adapted median
filter is outlined; the results obtained using this technique is presented in Section
3; and finally, the concluding remarks are given in Section 4.

2 Adapted median filtering

The adapted median filtering is known as a reference method in the automated
visual inspection of aluminium die castings [6]. In reference methods it is nec-
essary to take still images at selected programmed inspection positions. The
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Fig. 2. Flaw detection in a glass bottle using a reference method.



4

inspection process is illustrated in Fig. 2. The image of the object under test (x)
is compared with a defect-free image (y), called the reference image. If a signif-
icant difference is identified (e), then the test piece is classified as defective. In
these approaches, the reference image is estimated from the test image using a
filter consisting of several masks. The key idea of reference methods is that the
masks of the filter are configured off-line from a training set of real defect-free
images, and the filtering self is performed on-line. Thus, a fast on-line inspection
is ensured.

There are several reference methods used in the inspection of aluminium
castings, however, as a result of its peak detection performance, the reference
methods based on Modified Median (MODAN) filter [7] have become most
widely established in industrial applications in this field [6]. With the MODAN–
Filter it is possible to differentiate regular structures of the piece from defects.
The MODAN–Filter is a median filter with adapted filter masks. If the back-
ground captured by the median filter is constant, it is possible that structures
in the foreground will be suppressed if the number of values belonging to the
structure is less than one half of the input value to the filter. This characteristic
is utilised to suppress the defect structures and to preserve the design features
of the test piece in the image.

The goal of the adapted median filtering is to create a defect-free image
from the test image. Thus, the MODAN–Filter is used in order to suppress only
the defect structures in the test image. Locally variable masks are used during
MODAN–filtering by adapting the form and size of the median filter masks to the
design structure of the test piece. This way, the design structure is maintained
in the estimated reference image (and the defects are suppressed). Additionally,
the number of elements in the operator are reduced in order to optimise the
computing time by not assigning all positions in the mask. This technique is
known as a sparsely populated median filter [8]. Typically, only three inputs are
used in the MODAN filter. In this case, the reference image is computed as:

y[i, j] = median(x1, x2, x3), (1)

with

x1 = x[i, j]
x2 = x[i + dij , j + eij ]
x3 = x[i− dij , j − eij ],

where x[i, j] and y[i, j] are the grey values at pixel (i, j) in the test and refer-
ence images respectively. The filter direction of the masks is determined by the
distances dij and eij . Defects are detected when

|y[i, j]− x[i, j]| > θij . (2)

where θij is the threshold of pixel (i, j).
The parameters dij , eij and θij are found in an off-line configuration process.

For this task, a bank of 75 different filter masks with three inputs is used [9]. In
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Fig. 3. Some 5×5 masks used in a MODAN filter with 3 inputs.

the bank, there are masks of 3×3, 5×5, ..., 11×11 pixels. Some of them are shown
in Fig. 3. Additionally, N training images of different pieces without defects are
taken in the same position. A mask is selected for pixel (i, j) when the objective
function

Jij =
N∑

n=1

[Qij(dij , eij)]n (3)

is minimised. In the objective function, [Qij(dij , eij)]n is computed from the n-th
image of the training set for n = 1, ..., N as:

[Qij(dij , eij)]n =
[
Q1

ij(dij , eij) + Q2
ij(dij , eij) + Q3

ij(dij , eij)
]
n

, (4)

where functions Q1, Q2 and Q3 denote the detection error, flagged false alarms,
and the matrix size2.

Threshold θij is computed from the training images as

θij = max(|yn[i, j]− xn[i, j]|) + α. (5)

With α = 0 we ensure that no false alarm is flagged in all training images.
However, it is convenient to set α > 0 to give a larger confidence region. The
selection of this parameter will be studied in next section.

Thus, once the mask is selected, the error-free reference image is estimated
on-line using (1) when condition (2) is satisfied.

3 Results

We evaluate the performance of the MODAN filter by inspecting glass bottle-
necks, because this part of the bottle is the most difficult to inspect. In our
experiments, 56 images (with and without flaws) of 320×200 pixels were taken
from 7 (empty) wine bottles at 8 different viewpoints by rotating the bottle
around its vertical axis. 20 images without flaws were selected for the training.
The other 36 images were used for the inspection.
2 For three input values (x1, x2, x3) (see equation (1)), the mentioned functions are

defined as follows: detection error is Q1 = |x2 − x1|+ |x2 − x3|, flagged false alarms
is Q2 = x2 −median(x1, x2, x3), and matrix size is Q3 = (dmax − d)2 + (emax − e)2,
where the size of the largest mask in the bank is dmax × emax [9].
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In order to assess the performance of the inspection, the Receiver Operation
Characteristic (ROC) [10] curve is analysed. The ROC curve is defined as a plot
of the ‘sensitivity’ (Sn) against the ‘1-specificity’ (1− Sp):

Sn =
TP

TP + FN
, 1− Sp =

FP

TN + FP
, (6)

where

TP is the number of true positives (flaws correctly classified);
TN is the number of true negatives (regular structures correctly classified);
FP is the number of false positives (false alarms, i.e., regular structures classified

as defects); and
FN is the number of false negatives (flaws classified as regular structures).

Ideally, Sn = 1 and 1−Sp = 0, i.e., all flaws are detected without flagging false
alarms. The ROC curve permits the assessment of the detection performance at
various operating points (e.g., thresholds in the classification). The area under
the ROC curve (Az) is normally used as a measure of performance because it
indicates how reliable the detection can be performed. A value of Az = 1 gives
a perfect classification, whereas Az = 0.5 corresponds to random guessing.

A ROC curve was computed for the inspection of the 36 test images for
α = 0, 5, 10, 15, 20. The obtained area was Az = 0.8932 and the best operating
point was Sn = 0.85 and 1 − Sp = 0.04, i.e., 85% of the existing flaws were
detected with only 4% of false alarms (see ROC curve in Fig. 4). The detection
in two of the test images is illustrated in Fig. 5.

In addition, the detection performance was evaluated in real images with
simulated flaws. The simulated flaws were obtained using the technique of mask
superimposition [11], where certain original grey values of an image without flaws
are modified by multiplying the original grey value with a factor p. Fig. 6 shows
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Fig. 4. ROC curve for 36 test images.
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Fig. 5. Test images and their corresponding detections (see false alarm in right detec-
tion).

(a)                                            (b)    

Fig. 6. Detection in images with simulated flaws: a) test image without flaws, b) test
image with simulated flaws and its corresponding detection.

the results obtained for p = 1.10. In this example, only one simulated flaw was
not detected, and there is no false alarm. In the simulation, the obtained area
was Az = 0.9810.

Finally, we evaluate the computational time. In our experiments, we used a
PC Athlon XP, 1.6 GHz with 128 MB RAM. The selection of the masks was
programmed in Matlab. In this case, 7.5 hours were required to find the filters.
The detection algorithm, on the other hand, was programmed in C. The median
filtering was implemented considering that only three inputs are to be evaluated.
The detection was achieved in only 0.3s/image.

4 Conclusions

In this paper, the implementation and evaluation of a well-known technique for
inspecting aluminium castings was used for the automated visual inspection of
glass bottles. The idea is to generate a defect-free reference image obtained from
the original image of the inspection object. The reference image is compared with
the original one, and defects are detected when the difference between them is
considerable. The filter is configured off-line from a training set of real defect-
free images, and the filtering itself is performed on-line. Thus, a fast on-line
inspection is ensured.
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In our experiments, the detection performance was 85% and the false alarms
rate was 4%. Additionally, the detection was achieved in only 0.3s/image. This
means that the obtained computational time satisfies industrial requirements.

It is very interesting to demonstrate that a well-known technique used in the
automotive industry for inspecting aluminium die castings, can be used in the
inspection of glass bottles. In this case, no modification of the original method-
ology was required.
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