
Insight Vol 47 No 10 October 2005                                                                                                                                                               615                                                                                                   
                                                                                                      

1. Introduction 
Shrinkage as molten metal cools during the manufacture of die 
castings, can cause defective regions within the work-piece. These 
are manifested, for example, by bubble-shaped voids, cracks, slag 
formations or inclusions. Light-alloy castings produced for the 
automotive industry, such as wheel rims, steering knuckles and 
steering gear boxes are considered important components for overall 
roadworthiness. To ensure the safety of construction, it is necessary 
to check every part thoroughly. Radioscopy is rapidly becoming a 
major method for controlling the quality of die-cast pieces through 
computer-aided analysis of the radioscopic images[1]. The purpose 
of this non-destructive testing method is to identify internal casting 
defects, which may be located within the piece and are undetectable 
to the naked eye. The automated inspection of castings is a quality 
control task to determine automatically whether a casting complies 
with a given set of product and product safety specifications. 

Two classes of regions are possible in a digital radioscopic image 
of an aluminium casting: regions belonging to regular structures of 
the specimen, and those relating to defects. The automatic process 
used in fault detection in aluminium castings consists of five steps[2]: 
a) Image formation, in which an X-ray image of the casting under test 
is taken and stored in the computer. b) Image pre-processing, where 
the quality of the X-ray image is improved in order to enhance the 

details of the X-ray image. c) Image segmentation, in which each 
potential flaw of the X-ray image is found and isolated from the 
rest of the image. d) Feature extraction, where the potential flaws 
are measured and some significant characteristics are quantified. 
e) Classification, where the extracted features of each potential flaw 
are analysed and assigned to one of the classes (regular structure or 
defect). 

In an X-ray image, we can see that the defects, such as voids, 
cracks and bubbles (or inclusions and slags), show up as bright 
(or dark) features. The reason is that the X-ray attenuation in these 
areas is shorter (or higher). Since the contrast in the X-ray image 
between a flaw and a defect-free neighbourhood of the specimen is 
distinctive, detection is usually performed by analysing this feature. 
There are several definitions of contrast; they generally give a 
comparison between the grey level of a region (potential flaw) and 
the grey level of its corresponding neighbourhood. Nevertheless, 
the last measurement suffers from accuracy error when the 
neighbourhood is not homogeneous, for example when the flaw is 
at an edge of a regular structure of the test object. For this reason, 
many approaches compute the grey level of the neighbourhood 
using a-priori knowledge of the design structure of the test-piece 
(see for example [3, 4]). Thus, the defect-free areas are defined in 
sections where the grey level values have a small variance. 

These methods have become the most widely established in 
industrial applications owing to their high detection performance. 
However, they require a very precise positioning of the test object 
and a complicated selection process of the defect-free areas. In 
order to avoid the mentioned problems, in [5] a new approach to 
detecting defects without a-priori knowledge was proposed. 
The approach is based on features extracted from crossing line 
profiles, ie, the grey level profiles along straight lines crossing each 
segmented potential flaw in the middle. The profile that contains 
the most similar grey levels in the extremes is selected. Hence, the 
homogeneity of the neighbourhood is ensured. Thus, the detection 
is performed by analysing features from the selected crossing line 
profile. By combining crossing line profile with other contrast 
features a small improvement of the performance was obtained[2]. 
Although the detection rate of these methods is very high (typically 
95%), the number of false alarms is not good enough (typically 
more than four false alarms per image).

In order to reduce the quota of false alarms, this paper proposes 
three approaches without a-priori knowledge of the structure 
of the test-pieces. The rest of the paper is organised as follows. 
Section 2 outlines the segmentation approaches. Section 3 shows 
the experimental results obtained on real data. Finally, Section 4 
gives concluding remarks.  

2. Segmentation approaches
In this section we describe three methods for detecting flaws in cast 
aluminium specimens, based on radioscopic imaging.

2.1 Method 1 for segmentation
This method operates based on the assumption that most defects 
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have the shape of a circular high intensity spot, and therefore, can 
be detected using a template matching-like algorithm. The method 
consists of the following five steps:
q	 Pre-processing:	 In this application, we cannot perform much 

pre-processing, since any severe kind of noise removal or 
smoothing would affect the defects as well. Thus, we use a 
median filter of size 3 × 3. The result is stored in matrix I.

q	Template	matching:	We now convolve the image I (to get the 
new image I2) with a filter h2: 

           

h2 =

0 0 −1 −1 −1 −1 −1 −1 0 0
0 −1 −1 0 0 0 0 −1 −1 0

−1 −1 0 1 1 1 1 0 −1 −1
−1 0 1 1 1 1 1 1 0 −1
−1 0 1 1 2 2 1 1 0 −1
−1 0 1 1 2 2 1 1 0 −1
−1 0 1 1 1 1 1 1 0 −1
−1 −1 0 1 1 1 1 0 −1 −1
0 −1 −1 0 0 0 0 −1 −1 0
0 0 −1 −1 −1 −1 −1 −1 0 0







































The objective of this filter is to emphasise the parts of the image that 
have the same pattern as h2. That is, the maxima that have the shape 
of a circle with radius about four pixels. This filter is chosen from 
observations of the pattern that is common among the defects.
q	Thresholding:	We then threshold I2 to get a binary image B2, 

containing candidate failures. A fixed threshold seems to be good 
enough for this purpose according to the experimental results. 

q	Morphological	operations	and	postprocessing:	 In this step, 
we remove images of large structures in I2 using a morphological 
operator that determines the structures having a large area in a 
binary image. After applying the filter h2, some structures are 
produced around the edges of the image, which are not of the 
desired shape, but are caused by the severe changes in intensity 
around that area. These objects are much larger than the defects; 
therefore, they can be omitted due to their size. In the end, we 
threshold I2 to get the final binary image showing detected 
defects while masking out the images of large structures as well 
as the extremely bright and dark areas.

2.2 Method 2 for segmentation
This method deals with the defects around the edges in the image. 
It distinguishes between defects and edges noticing that the defects 
are local maxima of the image intensity, and they resemble corners 
rather than edges. The algorithm consists of the following four 
steps:
q	Preprocessing,	template	matching	and	thresholding:	In this 

step, we apply the same median and convolution filters as in 
Method 1. However, for the thresholding, we now want to keep 
the brightest parts of the image, which are located around the 
major edges and were neglected by Method 1. Thus, we use an 
adaptive threshold that keeps the 5% brightest pixels.

q	Harris	 Corner	 Detection:	 To distinguish the defects from 
the edges in the image, we use the Harris Corner Detection 
Algorithm[6]. This algorithm detects points in an image that look 
like corners, and not like edges. This is a common property of 
the defects.

q	Computing	the	Hessian	Matrix	determinant:	Since another 
common property of the defects is their local maxima nature, 
we compute the Hessian Matrix for every pixel in the image, 
and construct a matrix H of the same size as the original image, 
with entries equal to IxxIyy – I2

xy for every pixel, where Ixx, Iyy, 
and Ixy are the second derivatives of the pixel intensities at each 
point. We then keep the positive entries of H at the points where 
Ixx and Iyy are negative, and mask out others, in order to deal 
with the local maxima only. 

q	 Postprocessing:	In the end, we construct an image in which the 
points having a corner nature and a local maximum nature are 
emphasised. To get the defects, we use an adaptive threshold 
keeping 99% of the histogram, and remove the extremely small 
or large structures.

2.3 Method 3 for segmentation
The defects are detected as the union of the defects detected 
using Method 1 and Method 2, ie, the third algorithm is a simple 
combination of the aforementioned methods in which a pixel is 
considered to be a defect if it is detected as a defect by either of 
the two methods.

3. Experimental results
In our experiments, seven radioscopic image sequences (without 
frame averaging) of aluminum wheels with twelve known flaws 
were inspected. Three of these defects were existing blow holes 
(with ∅ = 2.0 ~ 7.5 mm). They were initially detected by a visual 
(human) inspection directly on the screen image. The remaining 
nine flaws were produced by drilling small holes (∅ = 2.0 ~ 
4.0 mm) in positions in the casting which were known to have 
detection difficulties. 60 radioscopic images were extracted from the 
sequences and the aforementioned methods were tested. One image 
of each sequence is shown in Figure 1, the squares indicate the 
twelve existing flaws. The twelve defects are repeated in different 
images of the sequences, resulting in 88 flaws in the 60 images. 
The squares in all images of this section were drawn intentionally 
to show the reader where the defects are located.

As we mentioned before, Method 1 works for the defects which 
are away from a casting section change or edge. An example is 
illustrated in Figure 2. Figure 3, however, shows an example of 
where it does not detect the defect, since it is close to an edge.

Method 2 works well for the defects close to the edges in the 
image, but not for others. An example of where it works, but 
Method 1 failed, is shown in Figure 4. However, an example of 
where it fails where Method 1 works is illustrated in Figure 5.

Figure 1. Seven of the 60 X-ray images used in our 
experiments

Figure 2. Detection using Method 1: the existing two flaws were 
detected successfully

Figure 3. Detection using Method 1: the existing flaw was not 
detected
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Finally, Method 3 deals with all the defects using both Method 1 
and Method 2. It works well where the image has a closer view 
of the object, or the image is smooth enough around the defect. A 
result is shown in Figure 6.

However, Method 3 does not work ideally where the image does 
not give a close view of the defect. Figure 7 shows an example 
where Method 3 misses a defect.

Additionally, in regions where the image is not smooth enough, 
Method 3 detects random extra points as defects; however, this 
problem could be solved by noticing that the images are taken from 
a sequence, and therefore, points that are detected in one image do 
not continue to be detected on the frames from the same sequence 
are not actual defects[7]. Figure 8 shows an example where several 
extra points (false alarms) are detected as defects.

The statistical results of the experiment using Method 3 in 
comparison with other two reported methods are summarised in 
Table 1. The experiments were performed on the same data. We 
observe that in all the cases, 83 of the 88 existing defects were 
successfully detected, ie, the detection rate is 94.3%. The number of 
false alarms were significantly reduced from 6.40 and 4.60 to 1.27.

4. Concluding remarks
In this paper, a new approach to detecting defects in castings 
without a-priori knowledge of the design structure is proposed. 
The approach is based on new contrast features. The detection 
performance was evaluated in 60 radioscopic images with 88 flaws. 
The best performance was achieved using the suggested third 
method yielding 94.3% detection rate with only 1.27 false alarms 
per image. It is known that false alarms flagged in this step can 
be eliminated using a-posterior analysis based on image sequence 
analysis without eliminating the real flaws[7]. The significance of 
this result is very important in this automated visual inspection, 
where it is necessary i) to detect all defects in order to ensure the 
safety of consumers, and ii) to obtain a low rate of false alarms in 
order to reduce false rejects.
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Figure 4. Detection using Method 2: the existing flaw was 
detected successfully

Figure 5. Detection using Method 2: the existing two flaws were 
not detected

Figure 6. Detection using Method 3: the existing flaw was 
detected successfully

Figure 7. Detection using Method 3: only two of three existing 
flaws were detected successfully

Figure 8. Detection using Method 3: the existing flaw was 
detected successfully, however, many false alarms were 
flagged

Table 1. Performance of the detection using Method 3

Method Ref. Detected flaws False	alarms/image
Crossing line profile (CLP) [5] 83/88 6.40
Contrast with CLP [2] 83/88 4.60
Proposed ‘Method 3’ Sec. 2 83/88 1.27


