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Av. Vicuña Mackena 4860(183), Santiago de Chile

Tel: (+562) 354 5820, Fax: (+562) 354 4444
E-mail : dmery@ieee.org

URL : www.ing.puc.cl/∼dmery

September 12, 2005

Abstract

Castings produced for the automotive industry are considered important components
for overall roadworthiness. To ensure the safety of construction, it is necessary to check
every part thoroughly using non-destructive testing. Radioscopy rapidly became the
accepted way for controlling the quality of die cast pieces. In this paper the fundamental
principles of the automated detection of casting discontinuities are explained. A general
automated inspection schema is presented, and several methods that have appeared in
the literature in the past twenty years were explained showing the development of this
sector in the areas of industry and academia. Finally, advances in the simulation of
defects, used for assessing the performance of an inspection method, are outlined.

Keywords: Automated inspection, discontinuity detection, aluminum castings, com-
puter vision, X-ray testing, flaw simulation.

1 Introduction

Shrinkage as molten metal cools during the manufacture of die-castings, can cause non-
homogeneous regions within the work piece. These are manifested, for example, by bubble-
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Figure 1: Void in a radioscopic image of an aluminum wheel.

shaped voids or fractures. Voids occur when the liquid metal fails to flow into the die or flows
in too slowly, whereas fractures are caused by mechanical stresses when neighboring regions
develop different temperature gradients on cooling. Other possible casting discontinuities
include inclusions or slag formation.

Light-alloy castings produced for the automotive industry, such as wheel rims, steering
knuckles and steering gear boxes are considered important components for overall roadwor-
thiness. To ensure the safety of construction, it is necessary to check every part thoroughly.

Radioscopy rapidly became the accepted way for controlling the quality of die cast pieces
through visual or computer-aided analysis of X-ray images. The purpose of this non-destructive
testing (NDT) method is to identify casting discontinuities, which may be located within the
piece and thus are undetectable to the naked eye. An example of such discontinuities in a
light-alloy wheel is shown in the X-ray image in Fig. 1.

The automated radioscopic inspection of castings is a quality control task to determine
automatically whether a casting complies with a given set of product and product safety spec-
ifications. Over the past decades radioscopic systems have been introduced in the automotive
industry that detect discontinuities without human interaction, i.e., automatically [2, 9, 18].
Compared to a manual evaluation of X-ray images, automated detection of casting disconti-
nuities offers the advantages of objectivity and reproducibility for every test. Fundamental
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Figure 2: Schematic diagram of an automated X-ray testing stand.

disadvantages of the methods proposed to date are the complexity of their configuration and
inflexibility to any changes in the design of the work piece, which is something that people can
accommodate easily. Research and development is, however, on going into automated adaptive
processes to accommodate design modifications [38]. In recent years, automated radioscopic
systems have not only raised quality, through repeated objective inspections and improved
processes, but have also increased productivity and profitability by reducing labor costs [3].

The principle aspects of an automated X-ray inspection unit are shown in Fig. 2. Typically,
it comprises the following five steps [42]: i) a manipulator for handling the test piece; ii) an
X-ray source, which irradiates the test piece with a conical beam to generate an X-ray image
of the test piece; iii) an image intensifier which transforms the invisible X-ray image into
a visible one, iv) a CCD camera which records the visible X-ray image; and v) a computer
to perform the digital image processing of the X-ray image and to classify the test piece
accepting or rejecting it. The computer may also control the manipulator for positioning
the test piece in the desired inspection position, although this task is normally performed
by a programmable logic controller (PLC). Nowadays, flat amorphous silicon detectors are
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used as image sensors in some industrial inspection systems [45]. In such detectors, using a
semi-conductor, energy from the X-ray is converted directly into an electrical signal (without
image intensifier). However, NDT using flat detectors is less feasible due to their higher cost
in comparison to image intensifiers. In automated discontinuity detection in die castings the
throughput cycle time is principally determined by the mechanical speed. In order to optimize
the mechanical cycle, a new concept was presented recently in [49], in which the test object and
the X-ray source can be moved simultaneously. This concept gives 30% higher throughput.

In this paper, we will discuss the use of computer vison as a tool in the automated ra-
dioscopic inspection of aluminum die castings. The paper is organized as follows: Section
2 introduces the reader to the computer vision theory employed when inspecting aluminum
castings. Section 3 presents a survey of several of the automated visual inspection approaches
adopted for aluminum castings that have been reported since 1985. In order to evaluate the
performance of a method that inspects castings, it is convenient to examine simulated data.
This evaluation gives the possibility of tuning the parameters of the inspection method and of
testing how the method works in critical cases. For this reason, Section 4 is dedicated to the
state-of-the-art of discontinuity simulation techniques in castings. Finally, Section 5 concludes
and offers suggestions for future research.

2 Computer Vision

In X-ray examination, X-ray radiation is passed through the material under test, and a detec-
tor senses the radiation intensity attenuated by the material. A discontinuity in the material
modifies the expected radiation received by the sensor [13]. This phenomenon, called differ-
ential absorption, is illustrated in Fig. 3 where a blowhole with diameter d is located inside
of the specimen.
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Figure 3: Differential absorption in a specimen with a blowhole.
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In an X-ray image we can see that the discontinuities, such as voids, cracks and bubbles
(or inclusions and slags), show up as bright (or dark) features. The reason is that the X-ray
attenuation in these areas is shorter (or higher). The contrast in the X-ray image between
a defect and a defect-free neighborhood of the specimen is distinctive. Hence, according
to the principle of differential absorption, the detection of discontinuities can be achieved
automatically using computer vision techniques that are able to identify unexpected regions
in a digital X-ray image.

In the computer-aided inspection of castings, our aim is to identify discontinuities au-
tomatically using computer vision techniques. The general automated inspection process,
presented in Fig. 2, consists of image formation, preprocessing, segmentation, feature extrac-
tion, detection/classification and multiple view analysis. The inspection methods outlined in
Section 3 follows at least two steps of the general schema presented in Fig. 2 (image formation
and segmentation). However, since there are some approaches that use pattern recognition
and multiple view techniques, we prefer in this Section to define a general schema with the
mentioned six steps:
• Image formation: An X-ray image of the casting under test is taken and stored in the
computer. The X-ray image is usually captured with a frame-grabber and stored in a matrix.
The eye is only capable of resolving around 40 grey levels [6], however for the detection of
discontinuities in aluminum castings, grey level resolution must be a minimum of 28 levels. In
some applications, 216 grey levels are used [45], which allows one to evaluate both very dark
and very bright regions in the same image.
• Image preprocessing: The quality of the X-ray image is improved in order to enhance the
details of the X-ray image. Usually, the pre-processing techniques are used to remove noise,
enhance contrast, correct the shading effect and restore blur deformation.
• Image segmentation: The digital images is divided into disjoint regions with the purpose
of separating the parts of interest from the rest of the scene. The idea is to segment those
regions that correspond to the defects of the specimen.
• Feature extraction: Since some structural parts of the object could be erroneously segmented
as defectively regions in previous step, they are denoted as hypothetical defects. Subsequently,
additional steps are required to eliminate the false alarms of the hypothetical defects. The
first of these steps is feature extraction, which is centered principally around the measurement
of geometric properties and on the intensity characteristics of regions. It is important to know
which features provide information about discontinuities. With this end, a feature selection is
carried out to find those features that best describe discontinuities, eliminating for example
features that are correlated or provide no information whatsoever.
• Detection/classification: The extracted (and selected) features of each region are analyzed
in order to detect or classify the existing defects. We will differentiate between the detection
of discontinuities and the classification of discontinuities. Detection corresponds to a binary
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classification, because in the detection problem, the classes that exist are only two: ‘discon-
tinuities’ (defects) or ‘regular structures’ (no defects), whereas the recognition of the type of
discontinuity (e.g., voids, cracks, bubbles, inclusions and slags) is known as classification of
discontinuity types.
• Multiple view analysis: Some methods use an additional step based on multiple view geome-
try. The key idea of the multiple view analysis is to gain more information about a test object
by analyzing multiple views taken at different viewpoints. It is a useful and powerful alter-
native for examining complex objects were uncertainty can lead to misinterpretation, because
two or more views of the same object taken from different viewpoints can be used to confirm
and improve the diagnostic done by analyzing only one image.

3 A review

In this Section, different methods for the automated detection of casting discontinuities using
computer vision techniques will be briefly presented. These methods have been described in the
literature within the past twenty years and are considered to be the state of the art in this field.
One can see that the approaches to detecting can be grouped into three groups: i) approaches
where an error-free reference image is used; ii) approaches using pattern recognition, expert
systems, artificial neural networks, general filters or multiple view analyzes to make them
independent of the position and structure of the test piece; and iii) approaches using computer
tomography to make a reconstruction of the cast piece and thereby detect discontinuities.
Since the industrial use of computer tomography for the inspection of die cast parts for the
automotive industry is currently limited to the areas of materials research and development as
well as to the inspection of especially important and expensive parts1, we limit this review to
approaches of the i) and ii) only. Extended reviews of existing approaches (published before
2003) of automated discontinuity detection in aluminum castings can be found in [43, 30].

3.1 Reference Methods

In reference methods it is necessary to take still images at selected programmed inspection
positions. A test image is then compared with the reference image. If a significant difference
is identified, the test piece is classified as defective. In order to use a stored reference image,
the distribution of grey values in the image must correlate to the current image. This makes
a very precise positioning of the piece as well as very strict fabrication tolerances and the

1The reasons for this lie both in the great time requirements for measurements and in the insufficient local
resolution in economically priced systems, when small discontinuities are to be detected. See an explanation
and examples of this method in the inspection of aluminum die castings in [14, 43].
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Figure 4: Reference method for automated detection of casting discontinuities.
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Figure 5: Some 5×5 masks used in a MODAN–filter with 3 inputs.

reproducibility of the X-ray parameters during imaging indispensable. Small variations in
these variables lead to great differences between the two images. An alternative approach was
suggested by Klatte in the year 1985, whereby the reference image is calculated by filtering
directly from the test image [24].

A schematic block diagram for this detection method for the automated recognition of die
casting discontinuities is presented in Fig. 4. To reduce the noise level, multiple images taken
in a short period of time are averaged (integration) for each programmed position2. At first,
a defect-free image y is estimated from each integrated X-ray image x using a filter. In this
method each test position p has a filter (Filterp) which consists of several small masks. The
size of these masks and the values for their coefficients should be chosen so that the imaged
structure of the test piece at position p coincides with the distribution of the masks. After this,
an error difference image x− y is calculated. Casting discontinuities are then detected when
a sufficiently large difference between X-ray image and reference image occurs. The result of
the binary segmentation is shown as e in Fig. 4. The key idea of reference methods is that the
masks of the filter are configured off-line from a training set of real defect-free images, and the

2To build an arithmetic mean a signal to noise ratio is reached which is proportional to
√

n with n resulting
from the number of images added together [6].
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filtering self is performed on-line. Thus, a fast on-line inspection is ensured. In the following
sections, several reference methods will be explained.
• MODAN–filter: The modified median (MODAN) filter was developed by Heinrich in the
1980’s to detect casting discontinuities automatically [9, 18]. With the MODAN–filter it is
possible to differentiate regular structures of the casting piece from casting discontinuities.

The MODAN–filter is a median filter with adapted filter masks. If the background cap-
tured by the median filter is constant, it is possible that structures in the foreground will
be suppressed if the number of values belonging to the structure is less than one half of the
input value to the filter. This characteristic is utilized to suppress the defect structures and
to preserve the design features of the test piece in the image.

The goal of the adapted median filtering is to create a defect-free image from the test
image. Thus, the MODAN–filter is used in order to suppress only the defect structures in
the test image. Locally variable masks are used during MODAN–filtering by adapting the
form and size of the median filter masks to the design structure of the test piece. This
way, the design structure is maintained in the estimated reference image (and the defects are
suppressed). Additionally, the number of elements in the operator are reduced in order to
optimize the computing time by not assigning all positions in the mask. This technique is
known as a sparsely populated median filter [6]. Typically, only three inputs are used in the
MODAN–filter. In this case, the reference image is computed as:

y[i, j] = median(x1, x2, x3), (1)

with

x1 = x[i, j]
x2 = x[i + dij, j + eij]
x3 = x[i− dij, j − eij],

where x[i, j] and y[i, j] are the grey values at pixel (i, j) in the test and reference images
respectively. The filter direction of the masks is determined by the distances dij and eij.
Defects are detected when

|y[i, j]− x[i, j]| > θij. (2)

where θij is the threshold of pixel (i, j).
The parameters dij, eij and θij are found in an off-line configuration process. For this task,

a bank of 75 different filter masks with three inputs is used [18]. In the bank, there are masks
of 3×3, 5×5, ..., 11×11 pixels. Some of them are shown in Fig. 5. Additionally, N training
images of different pieces without defects are taken in the same position. A mask is selected
for pixel (i, j) when the objective function

Jij =
N∑

n=1

[Q(dij, eij)]n (3)
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is minimized. In the objective function, [Q(dij, eij)]n is computed from the n-th image of the
training set for n = 1, ..., N as:

[Q(dij, eij)]n =
[
Q1(dij, eij) + Q2(dij, eij) + Q3(dij, eij)

]
n
, (4)

where functions Q1, Q2 and Q3 denote the detection error, flagged false alarms, and the matrix
size3.

Threshold θij is computed from the training images as

θij = max(|yn[i, j]− xn[i, j]|) + α. (5)

With α = 0 we ensure that no false alarm is flagged in all training images. However, it is
convenient to set α > 0 to give a larger confidence region. Thus, once the mask is selected,
the error-free reference image is estimated on-line using (1) when condition (2) is satisfied.
• Signal synchronized filter: Hecker developed the signal synchronized filter in [16] to
calculate the background image function. This method generalizes the equation used for the
MODAN–filter (1) according to Fig. 6.

3For three input values (x1, x2, x3) (see equation (1)), the mentioned functions are defined as follows:
detection error is Q1 = |x1 − x2|+ |x1 − x3|, flagged false alarms is Q2 = x1 −median(x1, x2, x3), and matrix
size is Q3 = (dmax − dij)2 + (emax − eij)2, where the size of the largest mask in the bank is dmax × emax [18].
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The estimation of the parameters of this filter can be formulated as an optimization problem
that minimizes an objective function that considers around N = 20 representative images per
position of the casting [16, 43]. As the absolute minimum of the objective function is found
by exhaustive searching, the determination of the filter parameters presents an enormous
computational effort. Typically, the search for optimal parameters for a test piece takes
several weeks.
• Trained median filter: A new filter, called the trained median filter (TMF), based on the
signal synchronized filter discussed in previous paragraph, was developed for the automatic
discontinuity recognition of aluminum castings [20, 21]. TMF is a non-linear, non-local filter
where the kernel consists of the whole X-ray image. In the filtering, the output pixel y[i, j] is
defined as the median of the input pixel x[i, j] and three pixels that are similar to x[i, j], i.e.,
y[i, j] = median(x[i, j], R1, R2, R3). In a training phase, the three similar pixels are selected
for each pixel of the image. The idea is to find those pixels (in the whole image) that have a
similar behavior to x[i, j] in representative piece images which were obtained from the same
cast piece and same position without discontinuities. Since the test images are flawless, the
training is unsupervised in the sense that all regions obtained in the segmentation process
belong to the class ‘regular structure’. In this unsupervised training the TMF generates a
knowledge database of flawless X-ray images of the cast piece. The obtained knowledge base
is used in a classification process in order to distinguish between discontinuities and regular
structures automatically. According to the authors, both very small discontinuities with very
low contrast and big low intensity discontinuities with superposed structures can be detected.
The computation time of this method is very low. Experimental results of this method are
not published.
• System PXV–5000: The radioscopic test system PXV–5000 was developed in the early
1990’s by Philips Industrial X-ray GmbH as a fully automatic radioscopic testing device [17,
26]. The system was further developed by YXLON International X-ray GmbH. The testing
system evaluates a random sample of an error-free test piece in a learning process. Every
structure and every irregularity that the system finds in the test piece is classified as a regular
structure and entered into an appropriate library [25]. In order to suppress the noise level,
depending on the application, 4 to 16 X-ray frames are averaged at the same test piece position.
The PXV–5000 makes the application of up to eight processing steps per position, in which
different filters can be selected from a long list of filter algorithms and masks which can be
combined freely. In this way, an error-free X-ray image can be identified in the test image. A
difference image is generated from the comparison of both images. Afterward, all irrelevant
structures which are located outside of a freely definable mask are removed. Later, potential
discontinuity structures are segmented, using a two-threshold procedure. The higher threshold
value serves to detect the potential discontinuity and the lower to detect the projected size
in the image. Geometric and intensity features are extracted from the segmented regions.
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Finally, by comparison of the model’s features from which they were extracted during the
learning process and stored in a library, it is possible to eliminate the regular structures of the
piece. According to YXLON, only 3 false detections were flagged during the inspection of 600
aluminum die cast pieces. Furthermore, all casting discontinuities larger than 1,56 mm2 were
detected. However, details of the filters are not published.
• System SABA–2000T: The fully automatic radioscopic examination device Seifert Auto-
matic Image Evaluation (SABA in German) was developed in the late 1980’s by Rich. Seifert
& Co. [47]. Continual improvements in mechanical drives and computer speeds by Seifert
made it possible to develop the radioscopic examination device SABA–2000 in the year 1994
[46] and the SABA–2000T in 1998 [48], which reached higher digital image resolutions and
faster testing speeds. According to the Seifert company, as reported in [34], the detection
approach used in the SABA series has remained unchanged, as it is based on an optimization
of the modified median (MODAN)–filter, as developed in the 1980’s for the approximation
of an error-free X-ray image. The detection of casting discontinuities is performed as in Fig.
4. According to the authors, this testing system determined only two deviations during the
inspection with 1034 concurring decisions [47].
• Block correlative approach: Usually, the reference methods estimate the defect free
image from the test image itself. Another way is the use of a golden image, i.e., a stored
defect-free image as reference. However, it is well known in discontinuity recognition based on
reference methods, that the use of a golden image makes a very precise positioning of the piece,
as well as very strict fabrication tolerances, and the reproducibility of the X-ray parameters
during imaging, indispensable, because the distribution of grey values in the reference image
should correlate to the test image very well. Small variations in these variables lead to great
differences between the two images [43]. A solution to this problem was recently suggested in
[53], whereby a block correlative approach and confidence based filtering are used.

The block correlative approach is based on an optical flow methodology: the test image
is divided into blocks, and for each block X of the test image a local translation vector is
estimated by finding a block Y in the golden image where the correlation between X and Y is
maximal. The resulting displacement field is regularized using a confidence index. Thus, the
accuracy of the displacement of blocks containing few structures can be improved by including
neighboring blocks. The reference image is then warped into the geometry of the inspected
one by translating each block according to the estimated displacement vectors. Once this
procedure is done, the detection is performed by simple difference between corrected golden
image and test image. According to the authors, the new algorithm achieves a satisfactory
detection rate on real X-ray images. However, the parameters of the method must be correctly
tuned. Experimental results of this method are not published.
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3.2 Methods without a priori knowledge

Methods will be described in this section which can detect casting discontinuities in a test
piece without prior knowledge of the piece’s structure.
•Boerner and Strecker’s Method: At the end of the 1980’s Boerner and Strecker presented
in [2] a method for the automated casting discontinuity recognition which they had developed
on their own at the Philips Research Laboratory in Hamburg. As usual, the method is centered
on the analysis of individual X-ray images taken at the desired position of the test piece. After
improving the image quality with a look-up-table [6] and shading correction [18], the procedure
extracts the feature to be segmented in every pixel of the X-ray image.

A classifier is designed to assign every pixel (i, j) to only one class, namely class k. There
are typically only two classes: the class k = 1 for a regular structure of the piece and the class
k = 2 for discontinuities. In general, the method is valid for NK classes. Once the classifier
has been learned using a linear regression, a pixel (i, j) in a test image is placed in class k
when dk[i, j] ≥ dk′ [i, j] > θk, for k′ = 1, ..., NK where θk is the threshold value for the pth

class. Following this, the defective neighboring pixels are combined to build regions. Finally,
a region is detected as being defective if it has a circular form and covers a large enough
area. Boerner and Strecker suggested that the difference between the original image and its
image filtered by a DoG [4, 6] or median methods and the rotation invariant Zernike feature
be named pixel features. The latter designates the use of the grey value of the pixel relative
to its surroundings developed in a series of Zernike polynomes [54]. According to the authors,
92% of all discontinuities were recognized with less than 4% false detection in an inspection
of 200 die cast pieces. However, the method can only detect circular discontinuities.
• Intelligent System for Automated Radioscopic testing (ISAR): ISAR was developed
by the Fraunhofer Institute for Integrated Circuits (IIS-A) in the 1990’s [56]. Inspection is
performed with the aid of a COMbined MEDian (COMMED) filter, also developed by the
Fraunhofer Institute. The die cast pieces are identified by the system, so that an examination
specifically for that piece can be performed. After the die cast piece is identified, X-ray
parameters, testing criteria, translocation of the handling device and inspection positions are
selected. According to IIS-A, the COMMED-filter can detect casting discontinuities without
a priori knowledge of the test piece structure. The algorithm can differentiate between the
structure of the test piece (edges, corners, bore holes etc.) and structures which are not part
of the piece. During the testing of wheel rims, for example, the time for image analysis for an
aluminum wheel with a diameter of 17” was about 35 s for the required 25 different positions.
• Kehoe and Parker’s Method: In 1992 Kehoe and Parker presented in [23] an intelli-
gent, knowledge-based casting discontinuity detection which utilizes an image processor and
an expert system to automatically recognizes die casting discontinuities. At first, possible
discontinuities are segmented in small regions by adaptive thresholding. Then the detected
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possible discontinuities are fused by dilation and erosion (closing) [6]. Afterward, geometric
characteristics are extracted from the fused regions. Finally, by using an expert system the
regions are classified into disjoint classes e.g. bubbles, slack, cracks etc. This system was
tested in the laboratory with eight X-ray images and compared with visual detection. The
automated detector was able to identify more discontinuities than human operators could find.
The difficulty with this method lies in the creation of a knowledge data bank which includes
all possible discontinuities.
• Lawson and Parker ’s Method: In 1994 Lawson and Parker proposed in [27] that artificial
neural networks (ANN) can be used for the automated detection of discontinuities in X-ray
images. The method generates a binary image from the test image where each pixel is either
0 when a regular structure feature of the piece or 1 when a discontinuity is detected. This
entails the supervised learning of a multi-layer perceptron network (MLP) where the attempt
is made to obtain a detection from training data. A back propagation algorithm is used for
the assignment of weightings within the MLP. The authors use one of two hidden layers in the
network topography of the ANN, where the input signal corresponds to a window of m ×m
grey values in the X-ray image. The output signal is the pixel at the image center in the binary
image. Since the threshold value functions for the neurons are sigmoidal in this method, a
threshold is used to obtain a binary output signal. The two hidden layers each have ten cells.
During the investigation it was determined that the size of the window for the input signal
must be larger than 7×7 (m > 7), otherwise, convergence will not be obtained in the learning
phase. A group of 50 000 randomly chosen windows were used as the basis of the training data.
The desired detection in the training data was obtained with a segmenting procedure based on
an adaptive threshold. During the experiments of five X-ray images, Lawson and Parker show
that the detection using ANN is superior to the segmenting method using adapted thresholds.
The discontinuities were found successfully and there were no false detections.
•Automatic Inspector (AI): A new methodology based on neuronal networks for automatic
discontinuity recognition in aluminum castings was presented in [50] developed by YXLON
Industrial X-ray GmbH. The neuronal networks are used in two tasks: a) selection of regions
of interest (ROI’s), and b) configuration of detection filters. The ROI’s are selected in order
to inspect every part of the image with different settings. For each ROI a filter is configured.
After an automated training phase, where no action of the operator is required, the filters are
able to estimate a reference image from the test image. Discontinuities are detected where the
difference is considerable. More details of the algorithm are not given in the paper.
• Automated multiple view inspection (AMVI): Motivated by visual inspections that
are able to differentiate between regular structures and discontinuities by looking at the moving
radioscopic image of the casting under test with the aid of monocular X-ray image sequences,
a new method based on geometric computer vision [15, 8], was presented in [38]. The key idea
of this multiple view analysis is to gain more information about a test object by processing
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X-ray images taken at different viewpoints. It is a useful and powerful alternative for exam-
ining complex objects were uncertainty can lead to misinterpretation, because two or more
views of the same object taken from different viewpoints can be used to confirm and improve
the diagnostic done by analyzing only one image. The procedure is able to perform casting
discontinuity detection in two stages with a single filter and without a priori knowledge of the
test piece structure automatically.
[+] Detection: In the first step, an edge detection procedure based on the LoG operator is
performed in every X-ray image of the sequence without frame averaging [6]. These edges are
then utilized to search for hypothetical discontinuities defined as regions with a certain area
and a high contrast level compared to their surroundings4. In [31], the detection is improved
by analyzing the contrast of crossing line profiles, i.e., the grey level profiles along straight
lines crossing each segmented potential discontinuity in the middle. After the segmentation,
the automatic detection of discontinuities uses pattern recognition methodology with binary
classification. In this problem a decision is made about whether or not an initially segmented
hypothetical discontinuity in an image is in fact a discontinuity. The binary classification
problem is outlined in [37], where more than 400 features are evaluated and statistical classifiers
are implemented. Unfortunately, in real automatic discontinuity detection problems there are a
reduced number of discontinuities in comparison with the large number of regular structures.
This seriously limits the application of classification techniques such as artificial neuronal
networks due to the imbalance between classes. In [5], a new methodology for efficient training
with imbalances in classes is presented. The premise of this approach is that if there are
sufficient cases of the smaller class, then it is possible to reduce the size of the larger class by
using the correlation between cases of this latter class, with a minimum information loss. It
is then possible to create a training set for a neuronal model that allows good classification.
Additionally, the classification problem was outlined using a neuro-fuzzy approach [19] and
fusion strategies [36]. By analyzing 50 X-ray images, more than 22 000 regions were segmented,
however only 60 of them were discontinuities (the rest were false alarms). Nevertheless, after
the binary classification with neuronal networks, 57 of 60 discontinuities were detected, with
only one ore two false alarms per image.
[+] Tracking: In the second step, an attempt is made to track the hypothetical casting dis-
continuities in the sequence of images. False detections can be eliminated successfully in this
manner, since they do not appear in the following images and, thus, cannot be tracked. In
contrast, the true casting discontinuities in the image sequence can be tracked successfully
because they are located in the position dictated by the geometric conditions. The tracking
of the hypothetical casting discontinuities in the image sequence is performed according to

4Other methods for segmenting hypothetical casting discontinuities, such as in the PXV –5000 (outlined in
Section 3.1) could be used in this first step [40].
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the principle of multiple view analysis [33, 34]. Multi-focal tensors are applied to reduce the
computation time. Following a 3D reconstruction of the position of the hypothetical casting
discontinuity tracked in the image sequence, it is possible to eliminate those which do not lie
within the boundaries of the test piece. Further details of the tracking algorithm can be found
in [44].

The elements of this method were tested in a laboratory prototype on simulated and real
cases [55]. The preliminary results obtained with multiple view analysis are promising in
calibrated image sequences, i.e., where the projection model 3D → 2D is off-line estimated
[32]. In these experiments, 15 real image sequences and 24 semi-synthetic image sequences
(real images with simulated discontinuities [28]) were analyzed. The tracking step was able to
recognize 100% of all existing discontinuities with no false detection. Above and beyond this,
the required computing time is acceptable for practical applications [55]. In addition, positive
preliminary results were reported in [39], where aluminum castings in motion were inspected
automatically by analyzing sequences of radioscopic images.

Nevertheless, it is difficult to implement this method in industrial environments. The
main reasons are i) the calibration process is a very difficult task (for details see [32]); ii)
the vibrations of the imaging system induce inaccuracies in the estimated parameters of the
multiple view geometric model, i.e., the calibration is not stable and the imaging system must
be calibrated periodically; and iii) the configuration of the method is performed manually.
There is however, ongoing research and development into developing a tracking method for
uncalibrated image sequences to avoid the problems mentioned above [35].

4 Simulation of flaws

Generally, the automatic defect recognition consists on a binary classification, where a decision
is performed about whether or not an initially identified hypothetical defect in an image
is in fact a defect. Unfortunately, in real automatic flaw detection problems there are a
reduced number of flaws in comparison with the large number of non-flaws. This skewed
class distribution seriously limits the application of classification techniques [5]. Usually, the
performance of an inspection method can be assessed on a few images, and an evaluation on a
broader and a representative data base is necessary. In these cases, the evaluation on simulated
data can play a significant role, because it gives the possibility of tuning the parameters of
the inspection method and of testing how the method works in critical cases.

Among the NDT community there are two groups of methods to obtain this simulated
data: invasive and non-invasive methods.
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4.1 Invasive Methods

In the invasive methods, discontinuities are produced in the test object artificially. There are
two published invasive methods: i) drilling holes on the object surface [38], and ii) designing a
test piece with small spherical cavities [1]. Usually, the first technique drills small holes (e.g.,
∅ = 1.0 ∼ 4.0 mm) in positions of the casting which are known to be difficult to detect. In the
second technique, a sphere is produced for example by gluing together two aluminum pieces
containing half-spherical concavities. The principal advantage of these methods is that the
discontinuity image is real. However, the disadvantages are: i) it is impossible to introduce
concavities in the middle of the object without destroying it, and ii) concavities like cracks
are practically impossible to reproduce.

4.2 Non-invasive Methods

In the non-invasive methods, X-ray images are generated or modified without altering the test
object. There are three widespread approaches that produce this simulated data [28]: i) mask
superimposition, ii) CAD models for casting and flaw and iii) CAD models for flaws only.
They will be described in further detail:

• Mask superimposition. The first technique attempts to simulate flaws by superim-
posing circles with different gray values onto real radioscopic images [9, 18, 16]. This
approach is quite simple, because it does not need any complex 3D model of the object
under test nor of the flaw. Additionally, it offers a real radioscopic image with real
disturbances (with simulated flaws). Nevertheless, the flaws simulated by this method
differ significantly from the real ones. The reason being that a real flaw does not look
like a projection of a disc. This method can only be used in restricted cases.

• CAD models for casting and flaw. The second approach makes a simulation of the
entire X-ray imaging process [52, 51, 10, 7, 11, 22]. There are many commercially avail-
able full-scale simulation tool for X-ray applications (see for example XRSIM developed
at Iowa State University’s Center for Nondestructive Evaluation). In this approach,
the characteristic of the X-ray source, the geometry and material properties of objects
and their defects, as well as the imaging process itself are modeled and simulated in-
dependently. Complex objects and defect shapes can be simulated using CAD models.
Although this approach offers excellent flexibility in setting the objects and flaws to be
tested, it presents the following three disadvantages to the evaluation of the inspection
methods’ performance: i) the radioscopic image of the object under test is simulated (it
would be better if we could count on real images with simulated flaws); ii) the simulation
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Figure 7: Flaw simulation process using CAD models for the flaw [41]).

approach is only available when using a sophisticated computer package; iii) it is very
time consuming.

• CAD models for flaws only. In order to avoid the mentioned problems, a new
approach that simulates only the flaws and not the whole X-ray image of the object
under test was presented in [29] as shown in Fig. 7. This method can be viewed as
an improvement of the first non-invasive technique (mask superimposition) in the sense
of using real digital images and of the second non-invasive technique (CAD models for
casting and flaw) in the sense of allowing the user to model complex flaws. In this
approach, a 3D modeled flaw is projected and superimposed onto a real X-ray image of
a homogeneous object according to the exponential attenuation law for X-rays [12]. A
first approach was made in [29], where the flaws were strictly ellipsoidal, which restricts
the kind of flaws that can be superimposed. Recently, a general approach using manifold
surfaces was presented in [41]. This approach suits best reality not only for defects like
voids or blowholes, but also cracks and any complex flaw located at any position of an
aluminum casting.

5 Summary

In this paper the fundamental principles of the automated detection of die casting discontinu-
ities have been explained. A general inspection schema was presented, and several methods
that have appeared in the literature in the past twenty years were explained showing the
development of this sector in the areas of industry and academia.
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As a result of its peak detection performance, the reference inspection methods have be-
come most widely established in industrial applications. These methods suffer from the com-
plicated configuration of their filtering, which is tailored to the test piece. Typically, this
optimization process takes two or more weeks, independently of whether it is performed man-
ually or automatically.

On the other hand, the prerequisite for the use of a method with no a priori information
of the piece’s structure, is the existence of common properties which define all casting dis-
continuities well and also differentiate them from design features of the test pieces. These
prerequisites are often fulfilled only in special testing situations.

Since the reported experiments do not use the same data, it is evident that an objective
comparison is very difficult. Furthermore, the performance of some methods has only been
tested on a limited number of cases, i.e., the reported performances are not comparable either.
In addition, some methods are not reproducible because they were developed by the industry,
where the know-how details may not be published.

However, it is clear that the recent progress in computer technology allows the handling
of various theoretical and experimental problems in science and technology which were inac-
cessible before. Currently, the processing of image sequences, the use of sophisticated filters
in digital image processing and the simulation of discontinuities using CAD tools –to cite a
few– are possible. However, in order to asses the performance objectively, it will be necessary
to analyze a broader and public databank.
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