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Abstract: Automated inspection using multiple views (AMVI) has been recently developed to automatically 
detect flaws in manufactured objects. The principal idea of this strategy is that, unlike the noise that appears 
randomly in images, only the flaws remain stable in a sequence of images because they remain in their 
position relative to the movement of the object being analyzed. AMVI has been successfully applied in 
sequences of calibrated images for which the 3D → 2D transference function for the projection of the views, 
is known precisely. Nonetheless, its application in industrial environments is a complex task because of the 
instabilities that are inherent to the system. This investigation proposes a new strategy, based on the detection 
of flaws in a non-calibrated sequence of images. The methodology designed consists in constructing a model 
and carrying out a trifocal analysis that allows the determination of the real position of a flaw using 
corresponding control points in the sequence. Experimental results obtained on radioscopic images of die 
castings illustrate the potential in the detection of defects in non-calibrated images, detecting the totality of the 
flaws in the sequence. 
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1. Introduction 
The quality of manufactured goods is one of the 
principal objectives of the productive process. In 
order to evaluate quality, there are a variety of 
inspection and analysis tools that can be carried out 
during the manufacturing process, however, all of 
these depend on security standards set by the 
manufacturer, or by some regulatory agency. While 
it is true that some manufacturers tolerate 
production with flaws, for others safety is a critical 
issue. Among the latter are high pressure equipment, 
chemical containers, aluminum wheels, etc. The 
existence of flaws in these products can cause 
serious accidents. Generally the inspection is carried 
out visually by trained personnel due to the fact that 
human visual inspection is flexible and adaptable to 
new situations not originally considered. However 
this process has grave problems such as: deficiency 
due to the time it takes to inspect an object which 
depends on fatigues and monotony; and 
inconsistency because the process depends on the 
capacity and experience of the inspectors (Newman 
& Jain, 1995). For this reason the process of 
analysis is a target for automation which allows an 
improvement in the quality of inspection, as well as 
a reduction in costs of production. 
 

In recent years Automated Visual Inspection (AVI) 
has solved a number of problems in the area of 
quality control through the establishment of precise 
and objective control policies (Davis, 2005). 
Through image processing techniques and pattern 
recognition protocols, AVI allows the detection of 
flaws ensuring adherence to two basic conditions in 
the productive process, namely, efficiency and 
speed. Nonetheless, the majority of these techniques 
require the individual processing of each flaw in the 
image, which implies a subsequent analysis of the 
individual characteristics of each flaw. 
Subsequently, through the process of pattern 
recognition, we determined if the flaw is real or a 
false alarm. 
 
Recently, a new methodology for automated flaw 
detection has been developed; Automated Multiple 
View Inspection, (AMVI) (Mery & Filbert, 2002). 
Equivalent in form to the flaw detection process 
carried out by an inspector, AMVI detects flaws 
using the following two steps. The first step, named 
identification, consists of detecting all the 
anomalous regions or hypothetical flaws in each 
image by means of a sequence of movements of the 
object, without any a priori knowledge of the 
object’s structure. The next step, called tracking, 
consists in a follow-up of the hypothetical flaws 
found in each image in the sequence during the first 



step. If the hypothetical flaws continue the length of 
the image sequence, the hypothetical flaw is tagged 
as a real flaw, and the object is catalogued as 
defective. On the other hand if the hypothetical 
flaws do not show correspondence in the sequence, 
they are considered to be false alarms. AMVI 
methodology’s founding principle is that only real 
flaws, (and not false alarms), can be observed 
throughout the sequence of images because these 
remain stable relative to the movement of the object. 
Therefore, with two or more views of the same 
object, from different points of view, it is possible to 
improve performance with regards to real flaw 
detection. 
 
This original strategy, presented in (Mery & Filbert, 
2002), requires a previous calibration of the image 
sequence acquisition system. In calibration we seek 
to establish the transference function that projects a 
3D point in the object onto a 2D point on the image 
(Mery, 2003a). Unfortunately, the calibration 
process is difficult to carry out in industrial 
environments due to the vibrations and random 
movements that vary in time and are not considered 
in the original estimated transference function. An 
alternative method for the carrying out of the AMVI 
strategy in non-calibrated sequences was presented 
in (Mery & Carrasco, 2005) for sequences with two 
images. Nonetheless, because the robustness of the 
AMVI methodology increases with the number of 
images analyzed in the sequence, in the present 
work we propose a modification to the robust 
system designed in (Mery & Carrasco, 2005), 
processing three images instead of two. 
Additionally, in this work we increase the number 
of corresponding control points that related the 
images uses B-Spline curves, thus significantly 
improving the estimation of the multi-focal model 
necessary for carrying out the tracking. 
 
The remainder of this document is divided into the 
following sections. Section 2 includes background 
information on AMVI methodology. Section 3, 
which is dedicated to the proposed method, includes 
a description of the methodology used to segment 
hypothetical flaws, estimate the fundamental matrix 
robustly, generate artificial control points and 
estimate the trifocal tensors. Section 4 presents the 
experimental results. Finally, Section 5 presents the 
conclusions. 

2. Background 
The principal objective of AMVI is to follow only 
the hypothetical flaws, and not to estimate the 
structure of the object. Initially the methodology 

was implemented to automate the inspection of 
aluminum wheels, using a sequence of images in a 
calibrated system (Mery & Filbert, 2002). In this 
case the calibration of the object was generated off-
line. A projection model was then generated to track 
flaws throughout the sequence of images, using the 
principles of multiple view geometry (Hartley & 
Zisserman, 2000), (Mery, 2003b). The results 
obtained demonstrated the technical feasibility of 
detecting the totality of real flaws, together with a 
high rate of detection of false positives. 
Nonetheless, in industrial environments, calibration 
is a complex process due to the vibrations during the 
acquisition of images of the object, which carries 
with it a lack of precision for the estimation of the 
parameters necessary for the multiple view 
geometric model. 
 
The investigation carried out in (Mery & Carrasco, 
2005) puts forth a robust alternative model which 
requires no calibration of the image acquisition 
system. One of the principal factors for estimating 
the movement of the object is that fact that it is a 
rigid body that has a rotational and/or translational 
movement with constant velocity and smooth 
trajectory. The method presented in (Mery & 
Carrasco, 2005) searches for significant regions of 
the object to be analyzed that are present throughout 
the image sequence. Once the correspondence 
between points in these regions has been 
established, a two-view model is constructed that 
serves for establishing correspondence between 
hypothetical flaws. 
 
The proposed model initially used the following 
methodology: first, identify the structural points in 
each image in the sequence; second, find the 
correspondence, in consecutive images, of the points 
identified in the first step; third, generate a robust 
estimate of the fundamental matrix (Hartley & 
Zisserman, 2000), (Mery, 2003b) of possible 
corresponding points. Upon finishing this process a 
mathematical model is used to relate motion 
between pairs of images. The next phase relates 
hypothetical flaws in both images. Using epipolar 
geometry (Hartley & Zisserman, 2000), (Mery, 
2003b), we search for flaws that may agree with the 
properties of the hypothetical flaws in the previous 
image. This evaluation is carried out by looking at 
Euclidean distances over the set of area and 
intensity properties. 
 
Should the flaw have no correspondence in the next 
image, the latter is rejected, and is considered as a 
false positive as it does not fulfill with the epipolar 
constraint. 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Block diagram of the uncalibrated automated multiple view inspection: a) estimation of motion model, 
b) detection of defects. 
 
There are two relevant factors regarding the process 
developed in (Mery & Carrasco, 2005). First, the 
segmentation phase is designed to detect the 
majority of defects without any a priori knowledge 
of the material and/or position of the object. Within 
the image processing phases, segmentation occurs in 
an initial stage, however it has a preponderant role 
in the entire process because poor performance in 
this phase can cause poor prediction in the detection 
of real flaws (Castleman, 1996). Secondly, the 
system of correspondence must evaluate only those 
pairs of points related in both views. Nonetheless, 
there is not always a perfect correspondence due to 
geometric distortions or other anomalies in the 
capture process. Therefore, a robust algorithm has 
been used that rejects positions that contain a 
projection error, and uses only a set of related pairs, 
thus minimizing the error between the real and 
projected position, according to a Euclidean 
distance metric. This method is known as a 
RANSAC approximation (Hartley & Zisserman, 
2000). The term robust refers to the flexibility in the 
determination of a minimum set of related 
coordinates, and the rejection of those that do not 
fulfill with the minimum error allowed between the 
real and projected position. 

3. Proposed Method 
Laboratory results have shown that AMVI performs 
very well in the detection of flaws in aluminum die 
castings in calibrated environments (Mery & Filbert, 
2002). Nonetheless, in industrial environments 
calibration is a complex process and of high cost for 

the manufacturer. This section presents a new 
AMVI method proposed for the automated detection 
of flaws using trifocal analysis of non-calibrated 
images, perfecting thus the method designed by the 
same authors in (Mery & Carrasco, 2005). The 
improvement is due to the fact that we have 
extended the analyses from two to three images, 
estimating the trifocal tensors robustly, and 
increasing the points of control artificially in order 
to establish correspondence between (Fig.1). The 
steps in this new method are presented below: 
 
1. For each of the three images in the sequence (I, 

J and K), find the hypothetical flaws using the 
crossing line profile segmentation algorithm 
(Mery, 2003c), which searches in small high 
contrast areas. 

 
2. For all the structures in the object being 

analyzed in images I, J, and K, search for 
relationships between structures and generate 
artificial control points with B-Spline curves 
(Bartels et al., 1998). 

 
3. Estimate the fundamental matrix between 

images I and J using the RANSAC (Hartley & 
Zisserman, 2000) method with the structural 
and artificial points found in Step 2. 

  
4. For all the hypothetical flaws in I found in Step 

1, generate the epipolar projection using the 
fundamental matrix (Hartley & Zisserman, 
2000), (Faugeras et al., 2001), (Mery, 2003c) in 
image J, and determined which flaws are 
closest to the epipolar line in search of 
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hypothetical flaws found in Step 1 in image J 
using the practical bifocal restriction: 
a. If there is more than one hypothetical 

flaw on the epipolar line, find the best 
relationship on the basis of the 
properties of area and intensity by 
means of the smallest Euclidean 
distance, and store said relationship. 

b. Should the epipolar line not pass 
through a hypothetical flaw in image J, 
this means that there is projected flaw 
in image J and the hypothetical flaw in 
image I is rejected. 

c. If there is only one flaw on the 
epipolar line which meets the 
Euclidean distance criterion 
mentioned, then the relationship 
between the flaws in I and J is stored. 

 
5. Estimate the trifocal tensors between images I, 

J and K using RANSAC (Hartley & Zisserman, 
2000) with the structural and artificial points 
found in Step 2. 

 
6. For the flaw relationships between I and J 

found in Step 4, find the position of the center 
of mass of the hypothetical flaws, and re-
project these positions using the trifocal tensor: 
a. If there exists a projected flaw that is a 

minimum distance from the 
hypothetical flaw in image K from 
Step 1, assign this position as matching 
in three views and thus determine that 
a flaw in the sequence has been 
detected. 

b. If there is no flaw in image K, related 
to the projection, then eliminate the 
hypothetical flaw and catalogue it as a 
false positive. 

 
An explanation of these steps is presented below. 
 

3.1 Identification of hypothetical flaws  

The segmentation of hypothetical flaws allows the 
identification of regions in each image of the 

sequence which may correspond to real flaws 
(Fig.2). There are two general characteristics used to 
identify them: i) a flaw is considered as a connected 
subset in the image, ii) the differences between the 
gray levels of the flaw and its neighbors is 
considerable. Initially, identification takes place 
through a process with no a priori knowledge using 
the convolution of the image with a Laplacian-of-
Gaussian (LoG) kernel, and then a zero crossing 
algorithm (Castleman, 1996). The LoG operator 
intrinsically uses a Gaussian low-pass filter to 
reduce noise levels in the image. The results of the 
operator and the zero cross are a binary image that 
contains real flaws with connected surroundings. 
Nonetheless, these surroundings are not always 
closed. This happens when they are close to the 
edges of a regular structure (Fig.2c). The solution 
consists of augmenting the borders of the regular 
structures. This procedure consists of calculating the 
gradient of the image in order to identify these 
positions (Fig.2d) and later generate a binary image 
which employs only the levels with the most energy 
in the gradient. (Fig.2e). Once each closed region is 
segmented, characteristics are extracted through the 
grey tone profile of a straight line that passes 
through the center of the segmented region. Those 
that present a high variance profile are identified as 
hypothetical flaws (see details in Mery, 2003c). This 
hypothetical flaw contains a high number of false 
positives, it has however the following advantages: 
i) the same detector is applied to all images, ii) it 
allows the identification of hypothetical flaws, 
independently of the position or the structure of the 
object under study, in other words without a priori 
knowledge of the design of the structure, iii) the 
detection of real flaws is very high (higher than 
90%). 
  
Once the segmented regions have been determined, 
the next step is to determine the position of the 
center of mass for each hypothetical flaw. For each 
image mi will be used to denote the center of mass 
of the segmented region ri. In homogenous 
coordinates, mi represents the 2D spatial position of 
a point i 

 [ ]1i i ix y=m  (1)

 



 
 

Fig. 2. Flaw detection: a) section of a radioscopic image with a flaw inscribed on the edge of a regular 
structure, b) application of the Laplacian filter on an image with σ = 1.25 pixels (kernel = 11 × 11), c) zero 
crossing image, d) gradient of the image, e) detection of edges after increasing the edges to the highest levels 
in the gradient, and f) detection of flaws using the variance of the crossing line profile (Mery, 2003c). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 3. Non-linear matching algorithm for corresponding points in a sequence of three images: a) sequence of 
original images, b) application of Otsu’s filter to separate the valid tracking structures and generation of 
border with B-Spline curves, c) alignment of each valid structure with respect to image J, and d) result of 
alignment with normalized correlation of the pattern of the x-coordinate position. 
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3.2 Identification of control points 

The principal problem in the correspondence of the 
control points in the sequence of images used, is the 
low number of structures that have a valid projective 
transformation matrix, H. This means that some 
structures do not have a linear transformation due to 
the occlusion that results from being near the edge 
of the image. In these structures, it is possible to see 
only some regions where there is a correspondence, 
especially in the interior edges. 
 
Using the rotation information of the sequence 
analyzed, we designed a practical method for 
finding a correspondence (Fig.3). The procedure 
uses the following steps: 

a) Construct a binary image using Otsu’s 
method (Haralick & Shapiro, 1992), thus 
isolating the structures from the image 
background 

b) Generate a quadratic B-Spline curve using 
the edges of each segmented structure as 
control points (Bartels et al, 1998). 

c) Align the structures of the first and third 
view with the second view. Generally, the 
movement of the piece is known a priori 
when its inspection is carried out. This 
information allows the determination of the 
angle and initial displacement in order to 
estimate a possible alignment. 

d) Determine a common pattern for the 
rotation of the structures from the first and 
third view, using the x- coordinates 
positions from the second view as a base 
(Jain, 1989). 

e) Calculate the position of the pattern relative 
to the curve of image J, so as to minimize 
the error by means of a normalized 
correlation (Fig.4).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Determination of x-coordinate position for each the B-Spline curve: a) the x-coordinate position for the 
first structure of images I, J, K, b) estimation in the position of the pattern of structures I and K over structure 
J using the pattern correlation over curve  J. 
 

3.3  Estimation of the fundamental 
matrix 

The fundamental matrix is vital for the AMVI 
process as it relates any position in pairs of images. 
The precision of this matrix allows the correct 
determination of hypothetical flaws along the length 
of the epipolar line (Hartley & Zisserman, 2000), 
(Mery, 2003b). Nonetheless, if fundamental matrix 
is not robust, the epipolar line will be incorrect and 
the subsequent trifocal tensor process will be failed. 
In this case, if the point mp of the first view 
corresponds to mq, in the second view, the following 
relationship is established, 

T 0q pq p⋅ =m F m , (2) 

where Fpq is the fundamental matrix of the 
projection of points mp  and mq in homogenous 
coordinates. 

Once the set of corresponding positions has been 
generated in each region in both views, we use the 
robust RANSAC algorithm to estimate the 
fundamental matrix (Haralick & Shapiro, 1992). It 
should be remembered that there is a probability of 
error between the position of one region its 
corresponding pair, nevertheless, RANSAC 
minimizes this error as it uses the set of pairs of 
points that generates the best estimate of the 
fundamental matrix.  
 
The RANSAC algorithm uses seven areas of points 
to determine the fundamental matrix. For this reason 

0 200 400 600 800 1000
100

200

300

400

500

0 200 400 600 800 1000
100

200

300

400

500

(a) (b) 

x coords I 
x coords J 
x coords K 



there must be a minimum number of pairs of 
corresponding points that have been correctly 
estimated. Should there be an error in the 
correspondence of control points the fundamental 
matrix would be incorrectly estimated. Fortunately, 
it is not necessary for the process that all the points 
correspond exactly, this being the principal 
advantage of the robust algorithm in the estimation 
of the fundamental matrix. 

3.4  Evaluation in two images 

Once the robustly generated fundamental matrix has 
been constructed, it is necessary to calculate the 
epipolar line for each segmented region of the first 
view. Using the centers of mass for each 
hypothetical flaw generated in section 3.1 we 
generate the epipolar line thus 

T
qi pq pi x y z i

l l l = =  l F m , (3) 

where lqi is the epipolar line of flaw i in the second 
view, and mpi is the center of mass of flaw i in the 
first view. The result of lqi is a line in the xy-plane, 
and has an equation as follows  

qi i i iA x B y C+ +=l , (4) 

where Ai=lxi, Bi=lyi and Ci=lzi of flaw i, are the 
coefficients of the epipolar line. 
 
Once the epipolar line of flaw i of the first view has 
been generated, it is necessary to determine the 
distance between the corresponding flaw in the 
second view and the epipolar line. This distance is 
determined through the practical bifocal restriction 
(Faugeras et al., 2001). Given that the epipolar 
constraint is applied to points and not to regions, we 
consider the center of mass of each hypothetical 
region to be the corresponding points between pairs 

of images This simplification is subject to error as it 
supposes that hypothetical regions have their center 
of mass in a corresponding point in both images. 
Nonetheless, we use this restriction because the 
majority of hypothetical flaws are small and the 
angles of rotation and deformations are small for 
each image.  
 
For any flaw i in the first view and flaw j in the 
second view, we define mpi and mqj to be the centers 
of mass of the regions rpi and rqj in each view 
respectively. If the Euclidean distance between mqj 
and the epipolar line of mpi is less than a given ε , 
this implies that the hypothetical flaw in the second 
view is related to mpi. If the hypothetical flaw is 
found in both images, then it is considered to be a 
flaw in the bifocal correspondence, if this is not the 
case, the region is discarded. 

( )
2 2

, ,
T
qj pi

pi qj

x y

d
l l

ε= <
+

m Fm
m F m  (5) 

Experimentally, a given epipolar can contain more 
than one hypothetical flaw. In this case, we establish 
a degree of similarity for each hypothetical flaw, 
under the assumption that they all fulfill the epipolar 
constraint. For each flaw the characteristics of area 
and intensity are compared (Fig.5).  
 
Similarity is established when two flaws (one in  
image I, and the other in the epipolar line of image 
J) are at a minimum distance in the normalized 
space of the properties, using the Euclidean distance 
as a similarity metric. If there are still false positives 
after the analysis of the two views, it is possible to 
use the trifocal tensor to eliminate the remaining 
false positives. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Epipolar line generated automatically from the fundamental matrix: a) first view, b)  identification of a 
hypothetical flaw, c) intersection of the epipolar line in the second view with one or more corresponding 
hypothetical flaws. 
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3.5 Estimation of the trifocal tensors 

Trifocal analysis allows the modeling of all the 
geometric relationships in three views, and is 
independent of the structure contained in each 
image (Hartley & Zisserman, 2000), (Mery, 2003b). 
The tensor, a matrix structure similar to the 
fundamental matrix, only depends on the movement 
between images and the internal parameters of the 
cameras. It can be computed directly from the 
projection matrices of the views. Nonetheless, is can 
be calculated from the correspondence of the images 
without any a priori knowledge of the movement or 
calibration of the object. This characteristic justifies 
its, because the estimation of the fundamental 
matrix does not always eliminated the totality of 
false positives (Mery & Carrasco, 2005). An 
analysis in three views increases the probability of 
forming triplets that fulfill with the trifocal 
condition (Shashua & Werman, 1995).  
 
In order to determine the trifocal tensors, we must 
have correspondence between the control points of 
the three views. Nevertheless, this assumption is not 
met precisely with the non-linear method designed 
in section 3.2. It is therefore necessary to use the 
robust algorithm RANSAC (Haralick & Shapiro, 
1992) to determine the best triplets of points in 
order to minimize the projection error in the third 
view.  
 
The initial estimation of the tensors is carried out 
with Shashua’s four trilinearities (Shashua & 

Werman, 1995), (Mery, 2003b). This makes it 
possible to verify if three corresponding points mp, 
mq and ms in the first, second, and third view 
respectively, satisfy the trilinearities, in which case 
they are corresponding points in the three views, 
and they depend on the projection matrices (Hartley 
& Zisserman, 2000), (Mery, 2003b). 

3.6 Evaluation in three views 

To determine of the flaw in the third view 
corresponds to the trifocal relation, we use the 
center of mass mp and mq of regions rp and rq of the 
first and second view respectively. For this we use 
the re-projection of the trifocal tensor in the third 
view using the positions mp and mq in the two first 
views (Hartley & Zisserman, 2000), (Mery, 2003b). 
We use only the centers of mass of the two first 
views which fulfill with the bifocal relationship 
from section 3.4.  
 
Let us define ms as the center of mass of region rs 
from the third view.  If the Euclidean distance 
between the real position of the hypothetical flaw 
ms and that which is estimated with the trifocal 
tensors, m̂s is less than some valueε , we take the 
hypothetical flaw to be a real flaw, as it complies 
with the correspondence in three views. Should the 
hypothetical flaw in the third view not agree with 
the projection of the tensor, it is discarded as it does 
not fulfill with the trifocal condition (Shashua & 
Werman, 1995), (Mery, 2003b). 

ˆr r rd ε= − <m m  (6) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Generalized flaw estimation process: a) segmentation of hypothetical flaws in the first view, b) 
projection of the epipolar line in the second view using the robust fundamental matrix, c) projection of the 
coordinates of image 1 and 2, using trifocal tensors robustly over the third view. 
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Table 1. Performance in the identification of hypothetical flaws in the segmentation phase 
 

Sequence Number of images Detected defects/image False alarms/image 
Left images 70 210/70 = 3 205/70 = 2.92 
Center images 70 209/70 = 2.98 205/70 = 2.92 
Right images 70 209/70 = 2.98 206/70 = 2.94 
All images 210 628/210 = 2.99 616/210 = 2.93 

 

Table 2. Performance in the detection of real flaws with two and three views in sequence. 
 

Step Detected defects 
 in sequence 

Real defects 
in sequence 

False alarms 
in sequence 

Dectection 
Performance 

False alarm 
rate 

Bifocal 190 190 93 100% 32.9% 
Trifocal 170 172 19 98.8% 9.9% 

 
In general, given that the trifocal condition is 
analyzed for the sequences that fulfill with the 
bifocal condition, we reduce the number of false 
positives generated in two views. Therefore, the 
number of false positives in three views can only be 
less than or equal to the number that exists in two 
views.  

4. Experimental Results  
This section presents the results of experiments 
carried out on a sequence of 72 radioscopic images 
of aluminum wheels (Mery & Filbert, 2002) (Fig.6). 
There are twelve known real flaws in this sequence. 
Three of these are impact flaws detected by human 
visual inspection, (de Ø = 2.0 ~ 7.5 mm), the 
remaining nine were generated by a drill which 
made small orifices (Ø = 2.0 ~ 4.0 mm) in positions 
which would difficult their detection. 
 
We separated analysis into two steps. In the first 
step, called identification potential defects are 
automatically identified in each image of the 
sequence using a single filter and no apriori 
knowledge of the structure of the test object (Mery, 
2003c). The results indicate that it exists 2.99 real 
flaws in each image, and 2.93 false alarms (Table 
1). In the second step, called tracking, an attempt is 
made to track the identified potential defects in the 
image sequence. In this last step, we separate the 
analysis in two phases: first, the detection of pairs of 
flaws using the estimation of the fundamental 
matrix in two views, throughout epipolar constraint; 
second, using the previous results, we re-projected 
the pairs of hypothetical flaws in the third view 
using the trifocal tensor estimation. Both last phases 
are detailed below.  

4.1 Performance with two views 

The first phase is to evaluate the performance of the 
algorithm in two views using the bifocal method. 
This consists of determining the corresponding 
flaws between two images in a sequence through the 
search for flaws in the epipolar line. The method 
was applied to 70 pairs of radioscopic images (578 x 
768 pixels) of aluminum wheels generated in (Mery 
& Filbert, 2002) for which the angle of rotation 5° is 
known for each sequence in the image. This 
information is used in order to align the segmented 
structures (see details in section 3.4) 
 
The results indicate that the model detects 100% of 
the real flaws that have correspondence (Table 2, 
bifocal). This validates the assumption of 
correspondence between the positions of the real 
flaws and implies that automated detection with a 
fundamental matrix allows the detection of 
corresponding flaws contained in the epipolar line, 
which is in agreement with the results obtained in 
(Mery & Filbert, 2002), (Mery & Carrasco, 2005). 
The study showed a rate of 32.9% of false positives 
which have correspondence in image pairs. 
Although this percentage is high, we do not penalize 
false positives as these can be reduced using a third 
image. 
 
With respect to the study carried out by the same 
authors in (Mery & Carrasco, 2005), we have 
extended our analysis to the entire test image 
sequence generated in (Mery & Filbert, 2002). The 
previous study used twelve sequences selected 
specifically as the matching system was limited to 
conditions where correspondence was feasible. The 
present investigation however, includes a non-linear 
correspondence system based on control points (see 
details in section 3.2). 



 
The results show an increase in the detection of 
flaws through the use of the fundamental matrix, 
using a modified version of the original procedure 
presented in (Mery & Carrasco, 2005) (Table 3). 
This is due to the significant increase in the number 
of control points correlated in pairs and triplets of 
images through a non-linear correspondence system. 
The previous investigation used the centers of mass 
of regions with a variance of less than 7% in the 
area to be used as corresponding points. The present 
scheme uses the relation between the edges of the 
corresponding regions. For this reason RANSAC 
increases the precision of the calculation of control 
points and minimizes the estimation error of the 
fundamental matrix. 

Table 3. Comparison of the present investigation 
and the study carried out in (Mery & Carrasco, 
2005). 
 

Technique 
Sequence 
analyzed 

Detection 
performance 

False 
positives 

Bifocal AMVI 
(2005) 12 92.3% 10% 

Bifocal 
AMVI 70 100% 32.9% 

Pr
op

os
ed

 

Trifocal 
AMVI 70 98.8% 9.9% 

 
In general, it is possible to determine precisely the 
fundamental matrix for each pair of images for the 
following reasons: i) the majority of the positions of 
each region agree with the rotation and/or 
translation of the following image; ii) only those 
regions that have a variation of less than 4% are 
considered, thus eliminating possible matching 
errors: iii) RANSAC uses only the best seven pairs 
from the total of positions in all the regions. 

4.2 Performance with three views 

The second phase uses the algorithm proposed in 
section 3.6. After completing the matching of 
possible pairs of flaws in both images, we extend 
the detection of flaws to the third image in the 
sequence. In the present case the study used 70 
triplets of images.  
 
Within the tests performed, the best performance of 
the trifocal tensor did not achieve perfect results. 
However, 98.5% of the real flaws were detected 
(Table 2, trifocal). Moreover, the results indicate a 
reduction in the quantity of false positives from 
32.9% with bifocal AMVI to 9.9% with trifocal 
AMVI. This agrees with the assumption that in the 

measure that the number of sequenced images is 
increased, the number of false positives decreases as 
in general real flaws are in correspondence.  
 
Our experiments have demonstrated that there is a 
greater sensitivity in the estimation of the tensor for 
the re-projection of the flaw in the third view. This 
phenomenon can be explained by the lower 
precision in correspondence for the regions in the 
three views, and by an error in the position of the 
center of mass for each segmented region. 
Furthermore, in some cases we were able to show 
that the estimation of the projection trifocal was 
correct although in the following image the process 
of segmentation did not generate flaws that 
corresponded with previous regions. Thus it was not 
possible to generate a triplet of flaws in 
correspondence. Let us remember that our trifocal 
analysis only allows pairs of flaws contained in the 
two first images of each sequence in order to 
estimate the projection in the third view. 
 

5. Conclusions 
This investigation presents the development of a 
new flaw detection algorithm in manufactured 
goods, using a non-calibrated sequence of images. 
Using new AMVI methodology (Mery & Filbert, 
2002) we have designed a novel system of 
automatic calibration based only on the spatial 
positions of the structures. The proposed approach 
uses the projection of the epipolar line, generated by 
the fundamental matrix and the trifocal tensors in a 
robust manner, with the purpose of building a 
movement model without any a priori knowledge of 
structure. We based our investigation on the 
assumption that hypothetical flaws are real flaws if 
their positions, in a sequence of images, are in 
correspondence, because these remain stable in their 
position relative to the movement of the object. 
 
With respect to the investigation carried out in 
(Mery & Carrasco, 2005), we have extended the 
analysis from two to three images per sequence 
through the estimation of trifocal tensors. 
Furthermore we have introduced new control points 
generated artificially through the use of B-Spline 
curves due to the low quantity of structures that 
remain stable in three images of a sequence. 
 
Our results indicate that it is possible to generate an 
automatic model for a sequence of images which 
represent the movement between the points and the 
regions contained in these. The possibility of 
introducing non corresponding control points in 



triplets of images, is the principal advantage of the 
RANSAC algorithm for estimating, robustly, the 
fundamental matrix and the trifocal tensors. In this 
way we can use as reference points the edges of the 
structures or areas with no loss of information using 
a non-linear method. The principal advantage of our 
model is the automatic estimation of movement. 
Nonetheless, in some cases we saw some projection 
errors due to geometric distortions in the acquisition 
of images. Our future work is to reduce the number 
of false positives using supervised classification 
techniques through the use of neuronal networks 
(Mery et al, 2003) and to add to the model 
geometrical distortion correction methods. 
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