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Detection and Classification of Weld
Discontinuities in Radiographic Images
(Part II: Unsupervised Learning)

by Germano X. de Pidua,” Romeu R. da Silva,* Domingo Mery,* Jodao M.A. Rebello$
and Luiz P. Caléba™

ABSTRACT

The importance of industrial radiography as a nondestructive testing
method is ungquestionable and has lasted more than half a century. This
paper presents innovative non-supervised pattern recognition application
methodologies, evaluating the formation of cross-sectional profile patterns
of grays corresponding to typical welding discontinuities extracted from
radiographic images. The techniques involve the development of networks
of the modified adaptive resonance theory (ART) type as well as the phe-
nomenologic study of the patterns of each class of discontinuity. The re-
sults obtained are pioneering in this kind of research and are quite promis-
ing, mainly in connection with the image processing techniques that aim to
extract data from the radiographic weld bead and in the detection and clas-
sification of discontinuities by analyzing the cross-sectional profile of the
gray level. This is the second of three articles describing the work done on
using these profiles as inputs for the classifiers.
Keywords: transversal gray level profiles, adaptive resonance theory, weld
discontinuities, radiography, nondestructive testing.

INTRODUCTION

Industrial radiography (Halmshaw, 1995) is a nondestructive
testing method with wide application in various industries, espe-
cially in the petroleum industry. Because it involves visual analysis
of images, the conventional technique is subject to interpretation er-
rors by the operator (Fiicsdk and Scharmach, 2000; Fiicsok et al.,
2002). For that reason, the development of computers, image pro-
cessing techniques and pattern recognition systems (Duda et al.,
2001; Haykin, 1994) has received much attention, with considerable
work being done on the development of a system for the digital in-
terpretation of radiographs, with radiographs of welds (da Silva et
al,, 2001; da Silva et al, 2002; da Silva et al,, 2004; da Silva et al., 2005;
da Silva and Mery, 2007a; da Silva and Mery, 2007b) and castings
(Mery, 2006) clearly standing out.

Among several lines of research for the development of an auto-
matic or semiattomatic system for detecting welding discontinu-
ities in radiographic images, there is one line that deals with the use
of transverse profiles of gray levels in the weld bead as relevant in-
formation for the detection and even the classification of welding
discontinuities (Liao and Li, 1998; Liao and Ni, 1996; Liao et al.,
1999; de Pddua et al., 2004).

This paper presents methodologies and results referring to re-
search done for finding patterns representative of transverse pro-
files of gray levels in weld beads, with the main purpose of con-
tributing to the research lines in this field and providing a tool that
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can help in case of doubt of the classes of welding discontinuities.
For that purpose, radiographic images of discontinuity patterns
manufactured by the International Institute of Welding and the
Federal Institute for Materials Research and Testing, Berlin were
used.

This work can be connected to the research of various authors
such as Liao and Ni (1996), Liao and Li (1998) and Felisberto et al,
(2006).

It is important to point out that, even though there are many
books on this matter (Haykin, 1994; Wasserman, 1989), a short de-
scription will be made of adaptive resonance theory (ART) net-
works, and mainly of the modifications made to it because it is not
a methodology used much in this field of research, and that might
hinder the correct interpretation of the results obtained by re-
searchers who are not well acquainted with it.

METHODOLOGIES

Radiographic Films

The digital radiographic images used in this work are the same
as those in Part I of this paper (published in the November issue of
this journal), and therefore their descriptions are not given again.

Unsupervised Networks

Besides supervised learning, neural networks are also capable of
receiving unsupervised or semisupervised learning (Haykin, 1994).
Besides classifying the events, this kind of learning allows the user
to obtain the class patterns. Modified ART neural networks have
been used to obtain the patterns of each class and also as dlassifiers
for comparing with the results of supervised networks (Part I).

An unsupervised network is that in which knowing the desired
output is not necessary for the network to adapt and produce the
expected response. Classifiers developed by similarity, in the case
of this work, particularly those developed by neural networks,
have interesting properties, some of which are very useful:

M training is usually much faster than with supervised training

M the network can be trained and operated simultaneously
(though performance in the operation depends on the amount of
training already done)

W every class is trained in a reasonably independent way from the
rest (this returns to the plastic network: existing classes can be al-
tered or removed, the same as new classes introduced, without al-
tering the performance of the other classes already “learned,” an
important characteristic for this work)

W its architecture is simple and open, allowing easy hybridiza-
tion with other networks and concepts, as in this work (it allows
an easy geometric interpretation of the modus operandi of the
classifier, as opposed to the feed-forward network trained by
error backpropagation)

W the network generates “patterns” for the classes, allowing the
knowledge of the phenomenology of the case to be extended.

Consider a case in which this problem can be fitted, where every
Input x can be seen as a pattern w to which a noise r was added: x =
w + 1. Assuming that the noise is a gaussian blarik, that is, the noise




of each component of r has a null mean, the same variance ¢? a
gaussian distribution, and they are not correlated, the inputs x will
be distributed in a hypersphere centered on w. Without losing gen-
erality and to facilitate visualization, let us consider x to be bidi-
mensional and x| =1 (just for visualization). Figure 1a shows the
domain of different classes with different noise and with overlap-
ping regions.
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Figure 1 — Class representations: (a) a vector classification according
to four patterns and spheres of similarity; (b) a nonspherical (C1) and
spherical (C2) class distribution.

There are cases in which the dass can be better represented by
more than one pattern, thereby losing its spherical characteristic. In
that case, several spheres (patterns) can be used to represent this

-+ dass, as shown in Figure 1b.

These kinds of data suggest that the domain of the classes is
bounded by hyperspheres. For clustering to be successful, it is es-
sential to choose the radius of the hypersphere of each dlass proper-
ly; hyperspheres with radii that are too large set limits to the do-
main much larger than those of the class and can enclose inputs
that belong to other classes of defects (rejectable discontinuities);
radii that are too small will require a large number of patterns to
Tepresent a class.

The distribution of the distances d; of the inputs x; to the corre-
sponding patterns w is a distribution of Ir|. Itis the positive side of
a gaussian with variance nc?, where 7 is the dimension of x and c?
is the variance of each of its components. Figure 2 outlines the
shape of this distribution with a solid line.

Figure 2 — Distribution scheme of p(d) and p(d;).

Considering the p(d;) distribution normal (with d;; the distance
between each input), a reasonable value for the radius of the hyper-
esphere (similarity) that contains this class is:

@ r=25Vnc

where
the constant 2.5 statistically includes 90% of the samples.

Usually, it is not practical to calculate this value in more complex
classes with various patterns (for example, class 1 of Figure 1b).

The distribution of the distances d; between the two inputs x;
and x; associated with the same pattern w corresponds to a distrib-
ution, according to the scheme of Figure 2, with a mean (and mode,
approximately) equal to:

()] m=+/2noc

In the case of a complex class with several patterns w, 71 can be
identified as the smallest mode of the distribution of djj and can be
determined easily. If we consider that the smallest diameter of a
class is equal to or greater than the diameter of the hyperspheres

- that determine its domain, then from Equations 1 and 2 we obtain:

(3) EﬁmE E

where
r = the largest radius of similarity recommended for each class.

Equations and Structure of the Modified ART Network

Considering what was described above, in the case of several
classes C; with different patterns w;, the most probable dlass for an
input x formed by a pattern corrupted by white noise is that whose
pattern w is most similar to input x, that is,

@ xeC s, >sVj#i
where
(5) 5= xtwi; xl =1

This is what is called “template matching.” But in addition to
this, we may also want a minimuim similarity to exist between the
input and its most similar pattern, that is
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2p=1-1
S$.20.=i——
()] i =P 5
where

p; = the vigilance parameter

1= called the radius of similarity.

The domain of class C; is therefore a hypersphere with center w;
and radius r;. The simultaneous use of the two above conditions
with dlasses C;, with different patterns w; and radius of similarity 7;
can be implemented using the variable u;:

) xeC ey >uNji
where
® U;= xtwi —Pp;
2
r.
)] =1
p; 5

The network that implements this classification is the “winner takes
all” of Figure 3.

co—1( )

® Y

Figure 3 — Structure of the adaptive resonance theory (ART) network
implemented (Haykin, 1994).

The winning neuron is the pattern most similar to the input that
satisfies the minimum similarity condition. In case the neuron yo
wins, no existing pattern satisfies the minimum similarity condition.

Figure 1a presents the center of the classes and their domain, as
established by the network. In the case of classes with overlapping,
the separator in the region belonging to both similarity hyper-
spheres (circles in this example) is the hyperplane (straight line in
this example) that contains the intersection of the two hyper-
spheres, as would be expected. In Figure 1b, a nonspherical dlass is
represented by three patterns. An input that activates any of these
three neurons belongs to the class.

Training the Modified ART Network

This kind of network, called a modified ART network, brings to-
gether concepts of the one-dimensional Kohonen’s layer, Gross-
berg’s ART 1 and 2 networks (Wasserman, 1989), and the counter-
propagation networks of Hecht-Nielsen (Wasserman, 1989). The
training is called semisupervised because initially an ART network is
trained for each dlass independently for different similarity radii.
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Each of these networks is said to be specialized in its class. The
training of the ART networks uses two alternative steps. If a neuron
yiis the winner, the input falls within the sphere of similarity of that
neuron i, and its synapse vector undergoes a displacement in the
direction of the input:

ao Aw; :OL(x—wi)
where
the training step o is typically 0.1.

This operation aims to lead pattern w; toward the mean of the input
it represents. If neuron yo is the winner, that means that no existing
pattern represents the input with minimum similarity, and it is nec-
essary to create a new pattern. A new neuron is then created with
synapse vector w1 = X. The stopping criterion of the training must
be defined previously; it is most common to establish the stop after
a given number of steps without creating new patterns. After the
training, all the patterns w; found must have their modulus nor-
malized for 1. The fact that |x! =1 does not imply that Iwl =1.

An important matter in this kind of network is the equilibrium
between the size of the radius of similarity and the number of pat-
terns, because a radius of similarity that is too large may not dis-
criminate between different classes, and creating many patterns im-
plies an indefinition among the classes involved.

Therefore, for each class several specialist ART networks are
trained, each with a different vigilance parameter, p, p=1-72/2,
particularly with those obtained with r around #min given by Equa-
tion 1. Each network has a different number N of patterns. That is
the criticism of the different clustering (different networks) ob-
tained depending on the section to be followed.

Quuaility of the Grouping of Each Class
An optimum grouping must present a minimum intraclass dis-
similarity and maximum interclass dissimilarity (Duda et al.,, 2001).
The intraclass dissimilarity, for a class G, can be measured by
2_ 1 ?
an D/’ = Nj VEC/- X_W]‘l

and total intraclass dissimilarity, to be minimized, can be represent-
ed by

2
@ DuiINDIE S hew)
vj Vj ¥xeC;

On the other hand, the clustering must be such that it maximizes
interclass dissimilarity, which can be measured by:

2
(13) D2, = 2N, [ = wy|

where
wy = the baricenter of all the inputs:

1

14 Wy N VZ;,( X

Optimizing two objective functions is usually complicated. For-
tunately, in our case it is possible to show that a sum of D%pger +
D%nter is constant (Duda et al., 2001), that is, if we minimize D? we
would automatically maximize D2y

Let us consider the minimization of D% As we increase the num-
ber N of patterns w used in the clustering, D? decreases, but the pat-
terns become nonrepresentative. Starting with one pattern, N =1,
for every pattern increase D? decreases, at first significantly and
then in small steps. It is usually accepted that the largest N that still
produces a significant decrease is the one that corresponds to a
good “natural” clustering (Duda et al., 2001). Since the number of




patterns depends on the radius of similarity chosen, this is a second
criterion for determining the radius of similarity.

The inflection point of D indicates only the region around which
the optimum number of clusters must be, but the choice of N, the
number of patterns of classes, needs to be complemented by a phe-
nomenological or numerical analysis. The reason for this is that a
region with a high population can present a considerable drop of D
if it is represented by two quite similar patterns, and a low popula-
tion region can be using a single pattern to represent rather unsimi-
lar inputs. Phenomenologically, the first case can be evidenced by
very similar patterns and the second by strange, unexpected pat-
terns as a result of only the mean of two patterns and without phys-
ical meaning (Duda et al,, 2001).

Numerically, the problem can be analyzed calculating a popula-
tion N; served by each pattern w;, that is, the inputs x for which w;
is the winning pattern and the value of D7 for that population,
given by

(15) Dl=— % px-wf
VxeCwi

1
N;
where

Cwi = the set of vectors x such that w; is the winning neuron.

The calculation of the mean of the distances between the various
patterns wj, pdy;, Vi # f), where djj = |wi - w;195, also supplies es-
sential information (Duda et al., 2001).

Two patterns w; and w; whose distance dj; is considerably less
than the mean and whose D7 and Df? are also considerably smaller
than the mean, are strong candidates to be compacted into a single
pattern.

A pattern wi with a low population Ny and a high D¢ is a candi-
date to be partitioned into two or more different patterns. The result
of the analysis of the quality of the clusters is the choice of the ART
network that will represent each class. This kind of critical analysis
of the dlusters was made in this work.

Complete Neural Network

For every specialist network in each class, the neurons that rep-
resent the different class patterns have their outputs connected to a
neuron of a nearby layer that implements a logical “or” and whose
output indicates the relevance of the input to the class. In Figure 4,

Figure 4 — Scheme of the complete modified ART network.

class 1 is made of patterns w; through ws, class 2 of patterns we
through wy; and class 3 of patterns wig through wii. All the special-
ist networks are therefore connected in a single “winner takes all”
(Wasserman, 1989).

In the complete network, an active C;j outlet indicates that the
input belongs to class Cj and an active yp outlet indicates that the
input does not present sufficient similarity with any of the estab-
lished patterns. If neuron yy is eliminated, the network will still pre-
sent a classification; this is similar to the redlassification process that
we use in the backpropagation networks (Part I). In this case, the in-
dicated class is that which contains the pattern whose surface of the
hypersphere of minimum similarity is closest to the input. Once the
final network has been obtained, it must be tested with the training
and testing sets.

Wrong classifications are called “invasions,” because they mean
that a pattern, with its sphere of similarity, invaded the domain of
another class. To correct the problem, the radius of similarity of the
neuron responsible for the wrong classification must be reduced
until the classification is right. This implies, therefore, a recomposi-
tion of the specialist network that contained the neuron because its
domain was reduced; it may be necessary to include new patterns
so that it continues to reach the domain of its class. A large number
of erroneous classifications may require correcting the networks.

RESULTS

Obtaining the Class Patterns

It should be noted that the profiles used will be subjected to the
same preprocessing for amplitude normalization, noise softening
and interpolation as the work done with the supervised networks
described in the first paper, with the same number of points (276),
and for this work the training and testing sets were formed by 100
profiles for each class: no discontinuity, porosity, longitudinal crack,
slag inclusion, lack of fusion, lack of penetration and undercutting.

The first step in the process of dlustering each class is to deter-
mine the radius of similarity and then the number of patterns to be
used. As described above, there are two criteria: the first aimed pri-
marily at the definition of the class domain, and the second trying
to generate “natural” patterns for the classes. Since the objective of
using clusters was mainly to generate patterns for the classes, the
second technique was used. Since the number of “natural” patterns
for each class must be quite Hmited, it started with a large radius of
similarity in order to generate a single pattern, and then it was re-
duced gradually to generate a greater number of patterns, N. In this
way the class patterns were obtained individually for each class of
discontinuity: undercutting, lack of penetration, lack of fusion,
porosity, slag inclusion and longitudinal crack, and for the class of
“no discontinuity,” by means of a processing routine in which the
sets are inserted and the vigilance parameter is increased in fixed
increments in order to increase the number of patterns created.
Then the relation between the demerit factor D of the clusters of
each class versus the number of patterns formed was studied,
looking for the inflection point of the curve that characterizes the
“natural” clustering. To visualize this relation, the graphs of N
(number of patterns) versus D (demerit factor) were drawn. Fig-
ure 5 shows the graphs obtained for each class of weld disconti-
nuity studied.

Analysis of the N x D graphs leads to the possible inflection
points presented in Table 1 (arrows in Figure 5). These points are

Table 1Possible inflection points (N) for each class analyzed

Class Number of

Patterns
No discontinuity 3
Porosity 2and 9
Crack 4
Slag inclusion 2and 5
Lack of fusion 2and 4
Lack of penetration 2and 7
Undercutting 2and 3
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not absolute in the decision about the number of patterns represen-
tative of each class, but they define a study region.

The patterns generated for each of these cases are shown in Fig-
ures 6 through 10. For the similarity and individuality of the patterns

to be appreciated, the figures are shown containing all the patterns
found for each class of each N of Table 1. In the phenomenological

analysis (Part ITI of this paper), the patterns adopted separately will
be shown.
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and N = 9; (d) longitudinal crack with p = 0.55 and N = 4.

Figure 6 — Patterns generated for: (a) no discontinuity with p = 0.56 and N = 3; (b) porosity with p = 0.22 and N = 2; (c) porosity with p = 0.43
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 Figure 7 — patterns generated for: (a) slag inclusion with p = 0.45 and N = 2; (b) slag inclusion with p = 0.50 and N = 5.
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