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Abstract This paper describes the main activities and achievements of our research

group on Machine Intelligence and Robotics (Grima) at the Computer Science De-

partment, Pontificia Universidad Catolica de Chile (PUC). Since 2002, we have been

developing an active research in the area of indoor autonomous social robots. Our

main focus has been the cognitive side of Robotics, where we have developed algo-

rithms for autonomous navigation using wheeled robots, scene recognition using vision

and 3D range sensors, and social behaviors using Markov Decision Processes, among

others. As a distinguishing feature, in our research we have followed a probabilistic ap-

proach, deeply rooted in machine learning and Bayesian statistical techniques. Among

our main achievements are an increasing list of publications in main Robotics confer-

ence and journals, and the consolidation of a research group with more than 25 people

among full-time professors, visiting researchers, and graduate students.

Keywords mobile robots · autonomous navigation · social robots · scene understand-

ing
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1 Introduction

Robotics is reaching a level of maturity that is starting to allow robots to move out

of research labs. During the last years, diverse companies have emerged offering a first

generation of robots aimed to operate in partially structured applications such as lawn

mowing [60], building surveillance [32][43], and floor cleaning [33][60], among others.

This new technological scenario illustrates some of the notable progress in the field,

however, the creation of truly adaptive and robust robots is still an open research

issue. In particular, research issues such as robust operation in dynamic enviroments,

high level semantic understanding, human-computer interaction, reasoning about other
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agents, knowledge transfer, real time inference schemes, and integration of behaviors

and tasks, appear as some of the research challenges in the cognitive side of Robotics

[10].

At Grima [30], our research group on Machine Intelligence, we are facing some of

the previous challenges by conducting theoretical and applied research on 3 main areas:

Robotics, Computer Vision, and Machine Learning. In particular, in terms of Robotics

our focus has been the creation of new techniques for the development of autonomous

social mobile robots for the case of indoor environments. Since its inception in 2002,

our group has been actively working in this task. At present, our group is composed

by 4 full-time faculty professors and more than 20 graduate students, including PhDs

and MSc.

Autonomous robots able to interact with people and to perform useful tasks in in-

door environments have been a long standing goal for the Robotics community. Leaving

aside hardware and locomotion issues, this goal requires the development and inter-

connection of a large number of robot behaviors such as mapping, localization, path

planning, people detection and recognition, and scene undertanding, among many oth-

ers. Furthermore, the social aspects of a robot behavior requires the development of

algorithms able to follow social rules, detect and eventually recognize humans, express

emotions, etc. Most of these issues have marked our research agenda, where our main

efforts have been focused on the cognitive aspects of mobile robotics.

In this paper, we describe our main research activities and contributions to the area

of indoor mobile robotics. Most of our activities are closely connected, however, to im-

prove the clarity of this document, we classify them around 3 main lines of research:

autonomous indoor navigation, semantic scene understanding, and social robots. Ac-

cordingly, this paper is organized as follows. Section 2 describes our progress in au-

tonomous indoor navigation. Section 3 presents our algorithms for scene understanding.

Section 4 presents our social robot, as well as activities using robots in the area of edu-

cation. Finally, Section 5 presents the main conclusions of this work and future avenues

of research.

2 Autonomous Indoor Navigation

Starting from the restrictions of the block world of Shakey [52] and the static world

limitations of the Stanford Cart [50], the mobile robotics community has made lots of

progress during the last 50 years. The research emphasis has been on providing robots

with the ability of autonomously navigate natural environments using information

collected by their sensors. In terms of indoor environments, one of the main peculiarities

is that globally accurate positioning systems, such as GPS, are not available. As a

result, the problems of automatic construction of maps of the environment and accurate

estimation of the position of the robot within a map, tasks known as mapping and

localization, have been highly relevant. Most practical activities of mobile robots require

that the robot knows its location within the environment, and this in turn requires

that the robot knows the environment where it is moving. This has led to research

considering the problem of mapping and localization at the same time, which has been

called the Simultaneous Localization and Mapping (SLAM) problem, or the Concurrent

Mapping and Localization (CML) problem [40].

There has been an extensive research literature dealing with mapping and local-

ization for mobile robots, e.g. see [69][19][5] [72]. The pioneering development in this
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area was the paper by Smith et al. [63] who proposed a SLAM technique based on the

Kalman filter to the problem of estimating topological maps. For the non-Gaussian

case, Thrun et al. [71] presented a general approach that can be used with general dis-

tribution functions. A more recent successful approach to solve the SLAM problem is

the FastSLAM algorithm [49]. This approach applies to topological maps, and is based

on a factorization of the posterior distribution of maps and locations. During the last

couple years new developments in the area of computer vision have led to intensive

research to the so-called area of visual SLAM, where illustrative papers are [14] and

[37]. In our case, our focus has been on developing new techniques for the problem of

localization and mapping for indoor wheeled robots. Similarly to most works in this

area [62] [72], our research evolution has closely followed advances in the perceptual

side, starting from early work using sonar and basic visual perception routines [66],

then using 2D laser range finders [3][2], and, more recently, incorporating 3D range

sensors and more robust semantic vision based solutions [22]. As a distinguishing fea-

ture, in all these cases we have followed a probabilistic approach, deeply rooted in

machine learning and Bayesian statistical techniques. We describe next some of our

contributions to this area.

2.1 Localization and mapping using range sensors

In terms of SLAM, in [3] and [2] we present a complete probabilistic representation

to this problem. We consider the case of a robot equipped with an odometer and

range sensors, such as sonars or 2D laser range finders. We formalize the problem of

mapping as the problem of learning the posterior distribution of the map given sensing

information, where the map is represented by an occupancy grid [20]. Our key idea

is based on noting that the posterior distribution of the map is determined by the

posterior joint distribution of the locations visited by the robot and the distances to

the obstacles from those locations. The advantage of this method is that it does not

provide a single estimate of the map, as the EM-based solution [71], but it produces

multiple maps showing the notion of variability from the expected posterior map.

Figure 1 shows a graphical representation of our probabilistic model, where non-

observable variables have been circled for clarity. This representation forms the basis of

our model and has some similarities to the work in [51], as well as to probabilistic graphs

of the sort we could formulate related to Kalman filter approaches. Our representation

was developed in earlier unpublished work and has been implicitly adopted in [72].

According to Figure 1, the distribution of the process is determined by three mod-

els. A motion model [68] describes the dependency of the current location, Zt, on the

previous one and the current odometer reading, Zt−1 and Ut, respectively. We adopt

a Gaussian motion model. A perception model [68] describes the dependency of laser

readings Vt on the true distances to obstacles, θt. We adopt a truncated Gaussian

distribution, with standard deviation σ. The limits of the distribution correspond to

0 and dmax, where dmax corresponds to the maximum range of the laser device. Fi-

nally, we need a prior distribution for the map, M. We assume that cells in the map

are independent, having the same probability of being occupied, p. These models are

discussed in greater detail in [2].

Using these models we derive expressions for the posterior joint distribution of lo-

cations Zt and distances θt given odometer readings Ut and range readings Vt. We

show that there is no closed form solution to the posterior, but by exploiting different
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Fig. 1 Graphical representation of our approach to the SLAM problem.

factorizations of this distribution, we derive three sampling algorithms based on impor-

tance sampling [2]. We test these algorithms using real data obtained from two indoor

office environments at Carnegie Mellon University and Pontificia Universidad Catolica

de Chile. In both cases, we obtain maps that closely match ground true information.

Figure 2 shows an example of the map obtained using raw odometry and laser data,

as well as, the maps obtained using the proposed approach.

After developing tools to build maps from the environment, in [24] we propose a

method to achieve real time global localization as well as position tracking. This method

takes advantage of structural regularities of indoor environments to speed-up the like-

lihood estimation step in a Monte Carlo localization scheme [16]. More precisely, the

proposed Monte Carlo localization strategy works over a map of line segments corre-

sponding to the main walls of the environment. The likelihood function that computes

each particle weight is based on a Modified Hausdorff Distance [18]. This provides a

score for the matching between line segments extracted from the map and current laser

readings. Additionally, the number of particles of the Monte Carlo localization method

is adapted, allowing the system to have a large number of particles during the global

localization phase, where the position of the robot is unknown, and a reduced set of

particles during the state tracking phase, where the position of the robot is limited to a

small area. We use data from a real office environment to compare the performances of

this method and a classic localization scheme based on a cell to cell comparison using

an occupancy grid representation [72]. Our results indicate that the proposed method

converges faster from global to state tracking localization. Furthermore, the proposed

method uses less particles that in average have higher likelihood values. A summary of

the comparison results is shown in Table 1.

In further research related to robot navigation, in [31] we analyze and compare

popular path planning methods for omni-directional robots in a dynamic environment

with the presence of multiple agents. Also, in [56] we analyze and compare different
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Fig. 2 a) Map obtained from raw odometry and laser data. b-c) Samples from the posterior
distribution.

Table 1 Comparison of the proposed robot localization method with respect to a point to
point traditional approach.

Number of Iterations Average
particles. to converge. likelihood

(same speed) (best sample).
Traditional MC localization 2700 14 0.91

Proposed method 5000 9 0.94

estimation and prediction techniques applied to the problem of tracking of multiple

robots.

2.2 Topological maps using visual perception

The previous methods are based on 2D metric representations of the environment. This

type of approaches has shown a high degree of success when operating in real time in

natural environments [72] [62], however, they suffer from some limitations. For example,

the usual structural symmetries of indoor building produce data association problems

that are hard to solve with the 2D view of a laser range finder. Furthermore, problems

such as modifications of the environment due to changes in the position of furniture,

uncertainties due to the state of doors, or partial occlusions due to people walking

around, also diminish the robustness of solutions based on 2D laser range finders. As

a complementary solution to SLAM methods based on metric maps, we also develop

topological representations of the environment using visual perception. In particular, in

[23] and [39], we present a method for unsupervised selection and posterior recognition
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Fig. 3 Schematic operation of our approach for unsupervised selection and recognition of
relevant visual landmarks. This approach integrates attention, segmentation, and landmark
characterization mechanisms, in addition to top-down feedback mechanisms.

of visual landmarks in images acquired by a mobile robot. Figure 3 shows an overall

view of this approach.

Our approach is based on a mixture of bottom-up visual features based on color,

intensity, and depth cues, with top-down feedback given by spatial relations and mem-

ories of the most successful predicting features of previously recognized landmarks. Our

overall goal is to select interesting, meaningful, and useful landmarks that can be used

by a mobile robot to achieve indoor autonomous navigation.

The bottom-up approach for the selection of candidate landmarks is based on the

integration of three main mechanisms: visual attention, area segmentation, and land-

mark characterization. Visual attention provides the ability to focus the processing

resources on the most salient parts of the input image. This eliminates the detection of

irrelevant landmarks and significantly reduces the computational cost. Area segmen-

tation provides the ability to delimit the spanning area of each potential landmark.

As there is no segmentation method that works properly in every situation, we adap-

tively integrate multiple segmentation algorithms in order to increase the robustness

of the approach. The idea is to learn, for each landmark, the segmentation that pro-

vides the best recognition. Finally, landmark characterization provides a fingerprint for

each landmark given by a set of specific features. These features allow the system to

recognize and distinguish each landmark in subsequent images.

We complement the bottom-up landmark selection approach introducing two modal-

ities of top-down feedback. First, to increase efficiency, we use an estimation of the robot

position to reduce the searching scope for a potential match with a previously selected

landmark. The estimation of the robot position is based on a Sequential Monte Carlo

Localization method [64] using a metric map representation augmented with topo-

logical information. Second, to increase robustness, we keep a record of the previous

successful recognitions of each landmark. We use this information to bias the influence

that each bottom-up segmentation plays in the recognition. We achieve this goal by

adaptively updating a set of weights that control the relevance of each segmentation

in the recognition of each landmark.

Figure 4 shows images that highlight the typical landmarks detected in the se-

quences. Rectangles with identification labels are superimposed around new landmarks
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Fig. 4 a-b) Images from the testing sets. Examples of typical landmarks detected by the
system are highlighted. c) Two selected landmarks are added (ADD) to a database. d) The
two selected landmarks are recognized (REC) in a posterior frame taken from a different point
of view.

(ADD) and recognized landmarks (REC). As an example, Figure 4c) shows two land-

marks that are aggregated to the database, while Figure 4d) shows the recognition of

these landmarks in a posterior frame captured from a different position.

We perform a more intensive evaluation using 10 video sequences captured by a

stereo vision system in an indoor office environment (see Figure 4a). In this case,

the images are automatically obtained by a mobile robot navigating inside an office

building. Each sequence corresponds to the trip of the robot crossing the long corridor

displayed in the map of Figure 2. The images of this dataset do not feature relevant

illumination changes but they include moving objects. Given that our final goal is to

achieve autonomous robot navigation, recall is measured as the number of times that

a selected landmark is correctly recognized in posterior times that the robot visits a

given place of the environment. To run this experiment, we use the 10 sequences of the

office dataset. We obtain an average recall performance of 5.8.

2.3 Active localization using visual perception

Most state-of-the-art techniques for visual perception are mainly based on passively

extracting knowledge from sets of images. In contrast, a mobile robot can actively

explore the visual world looking for relevant views and features that can facilitate

the recognition of relevant objects, scenes, or situations. This type of active visual

perception scheme is highly pervasive in the biological world where, from human to

bees, perceptual actions drive visual inference [11][6].

In [12], we use concepts from information theory and planning under uncertainty

to develop a sound strategy to actively control the robot sensors. As a testbed, we

use a differential drive wheeled robot provided with an odometer on each wheel and

a color camera. This camera has a limited field of view and is mounted on a pan-tilt

mechanism. By using the odometer, the robot is able to track its motions. By using the
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video camera and suitable computer vision algorithms, the robot is able to distinguish

a set of visual landmarks that represent the map of the environment. We assume that

the map of the environment is known in advance.

The basic idea of our localization approach resides on actively using the pan-tilt

mechanism to direct the visual sensor to areas of the environment where the robot

expects to obtain the most useful information to achieve an accurate localization. We

accomplish this goal by adding a new step between the prediction and observation

steps of the Monte Carlo localization. In this new step, the robot uses the prediction of

its current position and the map of the environment to assign a score to each possible

perceptual action. This score considers the expected utility and the cost of executing

each action.

We test the approach using a Pioneer-3 AT robot, equipped with a Directed Per-

ception PTU-C46 pan-tilt unit and a Point Grey Dragonfly2 camera. We facilitate the

landmark detection task by using a set of artificial visual landmarks. These landmarks

consist of cylinders covered by two small patches of distinctive and easily detectable

colors. Figure 5 shows pictures displaying the robot, the testing environment, and some

of the artificial visual landmarks used in our tests. We test two strategies: i) A fixed

camera always oriented according to the robot direction of motion, and ii) The pro-

posed strategy to select perceptual actions. Figure 5-c shows the results of one of our

tests. In the figure the robot moves from left to right. We observe that the active per-

ceptual scheme achieves a better position estimation. This is explained by the fact that

the robot is able to sense landmarks that are not available to the fixed camera case.

Towards the end of the robot trajectory, the landmark sensing algorithm misses the

two last landmarks closer to the robot path, and as a result, both approaches decrease

the accuracy of the estimation. Figure 5-d shows that the active sensing scheme also

provides an estimation with less variance than the fixed camera case.

3 Semantic Scene Understanding

Clearly, a robot with autonomous navigation capabilites is a valuable technology, how-

ever, to perform useful tasks in an indoor environments, such as fetching objects or

delivering messages, one also needs to provide the robot with a higher semantic under-

standing of the environment. As an example, a robot operating in an indoor environ-

ment must recognize when a busy space does not correspond to an obstacle that needs

to be avoided, but it corresponds to a door or an elevator, which in turn might have

a handle or a push button that can be manipulated to successfully complete a task.

Current efforts under these lines are still limited to highly specific situations, therefore,

there is a need for more general solutions.

Our research agenda in the area of high level semantic understanding has been

closely related to recent advances in the area of computer vision [74] [42] [25] [26]. These

advances have been based on the successful application of machine learning techniques

to the computer vision area. Following this trend, we have developed new techniques for

people detection and tracking using a mobile platform [48][13][38], people recognition

[45] and, recently, scene recognition by a mobile robot [22][21]. Next we provide further

details of our application on scene recognition.
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Fig. 5 a-b) Robot, testing environment, and some of the artificial visual landmarks. c) Esti-
mation of robot position. d) Variance of estimation of robot position.

3.1 Indoor scene recognition

Current approaches for scene recognition present a significant drop in performance for

the case of indoor scenes [61]. This can be explained by the high appearance variabil-

ity of indoor environments. To face this limitation, in [22] we propose a method that

includes high-level semantic information in the recognition process. Specifically, we

propose to use common indoor objects as a key intermediate semantic representation.

We frame our method as a generative probabilistic hierarchical model, where we use

object category classifiers to associate low-level visual features to objects, and contex-

tual relations to associate objects to scenes. As an important advantage, the inherent

semantic interpretation of common objects facilitates the acquisition of training data

from public websites [36] and also provides a straighforward interpretation of results,

for example, by identifying failure cases where some relevant objects are not detected.

This constrasts to current state-of-the-art methods based on generative unsupervised

latent models, such as PLSA and DLA [25][7], where the intermediate representation

does not provide a direct interpretation.

We base our category-level object detectors on Adaboost classifiers operating on

visual features based on integral histograms using grayscale [17], fine grained saliency

[48], Gabor [73], Local Binary Patterns (LBPs) [55], and HOG visual channels [15]. Ad-

ditionally, we enhance our pure visual based classifiers using geometrical information

obtained from a 3D range sensor on-board our robot. This facilitates the implemen-

tation of a focus of attention mechanism that allows us to reduce the computational

load.
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A comparison to several state-of-the-art methods using images acquired by mobile

robots in two different office environments indicates that our approach achieves a sig-

nificant increase in recognition performance. Specifically, when training the different

models with similar amounts of generic data taken from the web and testing afterwards

each model using images where relevant objects are present, our results indicate that

the proposed method achieves an average recognition rate of 90%, while the accuracy

of alternative methods ranges around 65%. In a second experiment, when we train

the alternative models with images coming from the same office environment used for

testing, we observe more competitive results. In this case, the best performing alter-

native model reaches an average accuracy of 82% that is closer but still lower than

the 90% average accuracy of the proposed method trained with generic data. These

results demonstrate suitable generalization capabilities of the proposed method and

also support previous claims indicating that current state-of-the-art methods for scene

recognition present low generalization capabilities for the case of indoor scenes [61].

Figure 6-a shows examples of scene recognition using the proposed method. In this

case, the method is able to recognize a conference room through the correct detection

of a projection screen and a wall clock. Figure 6-b shows a map of part of one of our

office environments where we test the approach. This figure displays the trajectory

followed by the robot during one of its runs and the labels assigned by the robot

to the visited places (ground truth /estimation). The only situation when one place

is not labeled correctly occurs during the second time the robot crosses the central

hall, as no objects are detected in that part of the sequence. We believe that a more

extensive implementation, based on a larger set of object detectors, can help to solve

these situations.

Fig. 6 a) Correct detection of a conference room. b) Map of an office environment indicating
the robot trayectory and the label assigned to the different scenes (ground truth /estimation).

One inconvenient with the previous approach is that it needs to run all the object

classifiers available at each inference step. This is highly inefficient because it is usually

enough to detect a subset of the available objects to recognize a scene with enough

confidence. To solve this limitation, in [21] we use concepts from information theory to

propose an adaptive scheme to plan a suitable strategy for object search. The key idea

is to execute only the most informative object classifiers. Under the proposed scheme,

we use the current scene estimate to sequentially execute the classifier that maximizes

the expected information gain. We select classifiers until it is possible to identify the

current scene with enough confidence.

Figure 7 shows executions of our method in an office environment using a total

of 7 object detectors. Figure 7-a shows a case without using adaptive object search,
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(a) Without adaptive object search (b) With adaptive object search

Fig. 7 Executions of the performance of our scene recognition approach in an office environ-
ment.

while Figure 7-b shows a case where we include adaptive object search. In the adaptive

case, we add classifiers until the value of the respective information gain is not signifi-

cant. We can see that, in both cases, detections are almost identical, and results differ

slightly due to a sampling effect. The main difference between both executions is that

in the first case all the availabe object detectors are executed, while in the second case

the method runs only 5 object detectors: Screen, Urinal, Railing, Soap Dispenser, and

Monitor. The reason of this behavior is that at the beginning of the inference process,

when no objects are detected, the adaptive object search scheme chooses to run clas-

sifiers associated with objects that are highly discriminative with respect to a specific

scene type, such as a Screen or an Urinal, because the eventual detection of those ob-

jects maximizes information gain. This is an expected result because we initially use a

flat prior for the scene distribution and therefore the detection of informative objects

produce peaked posteriors. By avoiding to run two object classifiers, the computational

time for the object recognition task is speeded-up by a factor of ≈ 1.41. While this

gain in performance might be considered marginal, the advantage of using an adaptive

object search grows with the number of object classifiers available, where in a large

scale case an efficient object search can avoid the execution of hundreds of object de-

tectors. Also, it is important to notice that using adaptive object search also produces

an overhead but, according to our experiments, this overhead is not significant.

4 Social Robots

A particular feature of a robot that operates in a human inhabited environment, such

as an office building or a hospital, is that it needs to interact with people on a daily

basis. In this case, it is highly useful, and in some cases a requirement, to provide the

robot with suitable social behaviors. For example, in the case of boarding an elevator

the robot must wait its turn.

Robots, such as Pearl [59] and Valerie [29], are examples of a new generation of

social robots able to interact with people and to play the role of mediators to specific

knowledge sources. Pearl is intended to assist elderly individuals with mild cognitive

and physical impairments, as well as support nurses in their daily activities. Valerie

operates as a robot receptionist for Newell-Simon Hall at Carnegie Mellon University,

helping people by providing information about university members, campus directions,
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or retrieving data from the web. Although these robots perform specific tasks, they are

designed to operate in highly general environments.

In particular, an intensive research activity on social robots has focused on museum

robots that guide their human counterparts through the museum, explaining them the

relevant aspects of the different expositions and halls. This is the case of robots such as

Rhino [9], Minerva [70], Sage [53], and Joe Historybot [54]. As an example, Rhino was

the first museum tour-guide robot, installed in mid-1997 at a museum in Germany.

Rhino was responsible for greeting visitors and guiding them through a fixed set of

museum attractions. As another example, Sage, later renamed as Chips, was a robot

that operated in the Dinosaur Hall at Carnegie Museum of Natural History, USA,

providing tours and presenting audiovisual information regarding bone collections. See

[27] and [8] for reviews about social robots.

In the context of social robots, the detection of humans plays a key role. In [38]

and [48] we target this problem using vision and range sensors mounted on a mobile

platform. In [38], we present a method for human detection fusing information from

differente visual cues. In [48], we extend the approach to the case of detecting people

under several poses and partial views of the body. The main novelty of this approach

is the feature extraction step, where we propose novel features derived from a visual

saliency mechanism. In contrast to previous works, we do not use a pyramidal decom-

position to run the saliency algorithm, but we implement the algorithm at the original

image resolution using the so-called integral image. Examples of the different poses

detected by this system can be seen in Figure 8.

Besides human detection, we also work on human tracking [13][65] and recognition

[45][44]. For example, recently in [45] we propose a novel approach to face recognition

using a generalization of the popular visual features known as Local Binary Patterns

(LBPs) [55]. While many variations of LBP exist, so far none of them can automatically

adapt to the training data [1] [67] [41] [77]. Our algorithm is based on the observation

that the operation of a LBP over a given neighborhood is equivalent to the application

of a fixed binary decision tree. Therefore, we use standard decision tree induction

algorithms, in place of a fixed tree, to learn discriminative LBP-like descriptors from

training data. As a major advantage, by using training data to learn the structure of

the tree, we can effectively build an adaptive tree, whose main branches are specially

tuned to encode discriminative patterns for the relevant target class. In particular,

in the case of face recognition, our comparative results indicate that our approach

outperforms several state-of-the-art solutions when it is tested on the FERET [58] and

the CAS-PEAL-R1 [28] benchmark datasets [45][46].

In terms of robots interacting with people, in [47] we present an application of mo-

bile robots in education. So far, most of the approaches that use robotics technologies

in education aim to teach subjects closely related to the Robotics field [57][35][34].

Examples of these subjects are robot programming, robot construction, artificial in-

telligence, algorithm development, and mechatronics [75][76][4][34]. In our application,

we use a robot to help students in the creation of abstract models of relevant concepts

and properties of the real world by physically illustrating them. For example, a mo-

bile robot can use its rotational capabilities to illustrate angular relations, or it can

use its acceleration and velocity capabilities to illustrate relevant kinematic principles.

Furthermore, by acting as a situated mediator of the educational activity, and using a

collaborative and constructivist learning approach, the robot can guide the educational

activity, playing a key role to increase the motivation and social bonds among the stu-
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(a) Full Body, Frontal (b) Full Body, Back (c) Full Body, Profile

(d) Upper Body, Frontal (e) Upper Body, Back (f) Upper Body, Profile

Fig. 8 Figure a-f present results of our human detection system able to detect people under
different poses. The system uses a new fast feature descriptor based on visual saliency and the
integral image.

dents. As far as we know, this is the first time that robotics technologies are used in

such educational settings, opening a new paradigm to apply robots in education.

Figure 9 shows the general setting of our educational framework. As shown, we

extend the local capabilities of our mobile robot by providing it with remote wireless

interfaces. These remote interfaces correspond to handheld devices distributed to each

of the students. Using these devices, the robot can either, individually interact with

each student by sending an exclusive message to the corresponding handheld device,

or it can communicate with the group as a whole, by sending a shared message to

all the students. In [47] we describe details of the implementation of this educational

framework on two real cases used to teach concepts related to geometry and physics.

In a parallel research track, we recently developed a social robot that has the ability

to express emotions. The interface of this robot is the result of a collaboration with

people from the School of Art. The body of the robot corresponds to a sculpture (1.6

mts. tall) that exhibits an eye in its upper part. It has an eye-ball with a pan-tilt

system, a video camera, and a 3D range sensor. By moving its eyelid and activating

different sets of lights, the robot can express emotions, such as happiness, tiredness,
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Fig. 9 General setting of the proposed educational framework. a) The robot is augmented
with remote interfaces. b) The robot can communicate independently with each student by
handheld devices. c) The robot can communicate visually with the group of students.

and so on. Figure 10-a shows the complete body of the robot, while Figure 10-b shows

its main emotional interface. Our goal is to use this robot to autonomously guide the

visit of groups of high school students who often visit our Department of Computer

Science to learn about our facilities and main research activities. We believe that this

is a challenging problem that will provide us with a suitable scenario to integrate and

test several of the technologies developed in our group.

Fig. 10 a) Our social robot where its body correspond to a sculpture. b) The robot eye is its
main emotional interface .

5 Conclusions

In this paper we present some of the main research activities that we have been de-

veloping since 2002 at our research group on Robotics and Machine Intelligence. Our

research focus has been on the cognitive side of Robotics, mainly using machine learning

and Bayesian statistical techniques. As a major achievement we have a working robot

able to navigate in indoor buildings using visual and range sensors. Furthermore, our

robot is able to perform high level perceptual behaviors such as scene recognition, and

human detection, tracking, and recognition.

In terms of human and funding resources, during the last years there has been an

increasing interest in Chile and our university about robotics technologies. To illustrate

this we can consider that at PUC in the year 2002 the only course related to Machine

Intelligence was the traditional AI deductive class. Today, our research group counts

with more than 25 people among full-time professors, visiting researchers, and graduate

students, and more than 15 courses in the area. Furthermore, during 2010 the first 3
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graduate students obtained a doctoral degree as part of the group. We believe that the

development of a critical mass of researchers and the need for a major association are

some of the priorities for the development of Robotics in Latin America. In this sense,

currently our group has collaborations with robotics groups at the Instituto Nacional

de Astrof́ısica, Óptica y Electrónica (INAOE) in Mexico, and the Robust Robotics

Group at Massachusetts Institute of Technology (MIT) in USA.

As future work, we believe that currently high level scene understanding is one of

the major challenges to deploy robust robots in natural indoor environments. Motivated

by current successful combination of computer vision and machine learning techniques,

we believe that the learning scheme is the right path to cope with the high ambiguity

and complexity of the visual world. Furthermore, we foresee that the embodied and

decision making nature of a mobile robot can be of great help by facilitating the de-

velopment of active vision schemes, currently not deeply explored by main approaches

to recognize relevant parts of the visual world. In particular, we believe that a syner-

gistic ensemble of robust feature and region detectors from computer vision combined

with suitable machine learning based classifiers and feature selectors, all guided by ac-

tive vision modules, is a fruitful approach to improve the current semantic perceptual

capabilities of mobile robots.
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