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Abstract 
Substantial research has been performed on automated detection and classification of 
welding defects in continuous welds using X-ray imaging. Typically, the detection 
follows a pattern recognition schema (segmentation, feature extraction and 
classification). In computer vision community, however, many object detection and 
classification problems, like face and human detection, have been recently solved -
without segmentation- using sliding-windows and novel features like local binary 
patterns extracted from saliency maps. For this reason, we propose in this paper the 
use of sliding-windows with the mentioned features to perform automatically the 
automated detection of welding defects. In the experiments, we analyzed 5000 
detection windows (24x24 pixels) and 572 intensity features from 10 representative 
X-ray images. Cross validation yielded a detection performance of 94% using a 
support vector machine classifier with only 14 selected features. The method was 
implemented and tested on real X-ray images showing high effectiveness. We believe 
that the proposed approach opens new possibilities in the field of automated detection 
of welding defects. 
 
1. INTRODUCTION 
In the last three decades, substantial research has been performed on automated 
detection and classification of welding defects in continuous welds using X-ray 
imaging (Silva and Mery, 2007a; Silva and Mery 2007b). Typically, the approaches 
follow a classical pattern recognition schema: i) image acquisition -an X-ray digital 
image is taken and stored in the computer, ii) pre-processing -the digital image is 
improved in order to enhance the details, iii) segmentation -potential welding defects 
are found and isolated, iv) feature extraction/selection -significant features of the 
potential welding defects and their surroundings are quantified, and v) classification -
the extracted features are interpreted automatically using a priori knowledge of the 
welding defects in order to separate potential welding defects into detected welding 
defects or false alarms.  
 
In computer vision community, however, many object detection and classification 
problems have been recently solved -without segmentation- using sliding-windows.  
Sliding-window approaches have established themselves as state-of-the-art in 
computer vision problems where an object must be separated from the background  
(see for example successful applications in face detection (Viola and Jones, 2004) and 
human detection (Dalal and Triggs, 2005).  In sliding-window methodology, a 
detection window (see black square in Fig. 1) is sledded over an input image in both 
horizontal and vertical directions, and for each localization of the detection window, a 



classifier decides to which class belongs the corresponding portion of the image 
according to its features. In this step, novel features developed in the last years like 
local binary patterns (texture information extracted from occurrence histogram (Ojala 
et al., 2002)) and saliency maps (an image transformation based on a biologically 
inspired attention system (Montabone and Soto, 2010)) can be used to describe the 
detection windows in a better way. 
 
 
 

 
Fig. 1: Sliding-window approach: A detection window (see black square) is sledded over the X-ray 
image starting at place ‘a’ and ending at ‘c’. For each position, e.g. at ‘b’, features are extracted only 
from the detection window defined by the square, and a classifier determines the class of this portion of 
the image. 
 
 
To the best of our knowledge, there is no approach to detect welding defects that use 
this novel computer vision methodology (see a literature review until 2007 in (Silva 
and Mery, 2007a; Silva and Mery 2007b) and more recent articles in (Shi et al, 2007; 
Liao, 2008; Liao, 2009)). For this reason, we developed and tested an X-ray computer 
vision approach to detect welding defects based on this methodology. We differentiate 
between the detection of defects and the classification of defects (Liao, 2003). In the 
detection problem, the classes that exist are only two: ‘defects’ and ‘no-defects’, 
whereas the recognition of the type of the defects (e.g., porosity, slag, crack, lack of 
penetration, etc.) is known as classification of flaws types. This paper describes our 
approach on detection only and the corresponding validation experiments. The 
classification of defects using a similar methodology will be tested in the next future. 
 
The rest of the paper is organized as follows: In Section 2, the proposed X-ray 
computer vision approach is explained. In Section 3, the results obtained in several 
experiments on X-ray images are shown. Finally, in Section 4 some concluding 
remarks are given.  
 
 
 
2. COMPUTER VISION 
The key idea of our work is to use a computer vision methodology, as shown in Fig. 1 
and Fig. 2, to  automatically detect welding defects. In following, feature extraction, 
feature selection, detection and validation will be explained in further detail. 
 



 
Figure 2: Feature extraction: from each detection window I several features are extracted (see black 
path). Additionally, the same features are extracted from a saliency map J of the detection window (see 
gray path). 
 
 
2.1 FEATURE EXTRACTION 
Features provides information about the intensity of a detection window. In our 
approach, p features per intensity channel were extracted. The used intensity channels 
in our work are only two: the grayscale X-ray image I and a saliency map J computed 
from I, i.e., p x 2 features for two intensity channels. In order to reduce the 
computational time, we restricted the feature extraction for these only two channels, 
however, other channels, like Harris transform (Harris and Stephens, 1988) or other 
saliency maps, can be used (Montabone and Soto, 2010). 
 
The saliency map J is obtained using a center-surround saliency mechanism based on 
a biologically inspired attention system (Montabone and Soto, 2010). In order to 
achieve faster processing, this theory proposes that the human visual system uses only 
a portion of the image, called focus of attention, to deal with complex scenes. In our 
approach we use the off-center saliency map that measures the different of dark areas 
surrounded by a bright background, as shown in Fig. 2. 
 
In a training phase, using a priori knowledge of the welding defects, the detection 
windows  are manually labeled as one of two classes: defects and no-defect. The first 
class corresponds to real welding defects. Alternatively, the second class corresponds 
to false alarms. Intensity features of each channel are extracted for both classes. 
Features extracted from each area of an X-ray image region are divided into four 
groups as shown in Table 1. The following four groups of features were used for each 
intensity channel. 
 
1. Standard: Simple intensity information related to the mean, standard deviation of 
the intensity in the region, mean first derivative in the boundary, and second 
derivative in the region (Nixon and Aguado, 2008). 
 
2. Statistical textures: Texture information extracted from the distribution of the 
intensity values based on the Haralick approach (Haralick, 1979). They are computed 
utilizing co-occurrence matrices that represent second order texture information (the 
joint probability distribution of intensity pairs of neighboring pixels in the image), 
where mean and range of the following variables were measured: Angular Second 
Moment, Contrast, Correlation, Sum of squares, Inverse Difference Moment, Sum 
Average, Sum Entropy, Sum Variance, Entropy, Difference Variance, Difference 
Entropy, Information Measures of Correlation, and Maximal Correlation Coefficient. 
 



Table 1: Extracted Features 
 

Group Name and references 
1 Standard Mean Intensity, Standard deviation Intensity,  Mean Laplacian, 

Mean Gradient, etc. (Nixon and Aguado, 2008). 
2 Statistical Textures Tx(k,p) (mean/range) for k=1. Angular Second Moment 2. 

Contrast, Correlation, 4. Sum of squares, 5. Inverse Difference 
Moment, 6. Sum Average,  7. Sum Entropy, 8. Sum Variance, 9. 
Entropy,  10. Difference Variance, 11. Difference Entropy,  
12.,13. Information Measures of Correlation, 14. Maximal 
Correlation Coefficient, and $p$=1,...5 pixels (Haralick, 1979). 

3 Filter Banks DFT (1,2;1,2) and DCT (1,2;1,2) (Gonzalez and Woods, 2008). 
Gabor (1,...,8;1,...8), max(Gabor), min(Gabor),  Gabor-J  (Kumar 
and Pang, 2002). 

4 Local Binary Patterns LBP(1,…,59) (Ojala et al., 2002). 
 

 
3. Filter banks: Texture information extracted from image transformations like 
Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT) (Gonzalez and 
Woods, 2008), and Gabor features based on 2D Gabor functions, i.e., Gaussian-
shaped bandpass filters, with dyadic treatment of the radial spatial frequency range 
and multiple orientations, which represent an appropriate choice for tasks requiring 
simultaneous measurement in both space and frequency domains, usually 8 scale and 
8 orientations  (Kumar and Pang, 2002). 
 
4. Local binary patterns: Texture information extracted from occurrence histogram 
of local binary patterns (LBP) computed from the relationship between each pixel 
intensity value with its eight neighbors. The features are the frequencies of each one 
of the histogram's 59 bins.  LBP is very robust in terms of gray-scale and rotation 
variations (Ojala et al., 2002). 
 
In our experiments, p=286 features are extracted from each detection window and for 
each channel, i.e., n=286 x 2 =572 features in total.  
 
 
2.2 FEATURE SELECTION 
The extracted features must be selected in order to decide on the relevant features for 
the two defined classes. 
 
The n extracted features for sample i are arranged in an n-vector: fi = [fi1 ... fin ]  that 
corresponds to a point in the n-dimensional measurement feature space. The features 
are normalized yielding a N x n matrix W which elements are defined as: 
 

€ 

wij =
f ij − µ j

σ j

         (1) 

for i=1,...,N and j=1,...,n, where fij denotes the j-th feature of the i-th feature vector, N 
is the number of samples and µj and σj are the mean and standard deviation of the j-th 
feature. Thus, the normalized features have zero mean and a standard deviation equal 
to one. Those high correlated features  can be eliminated because they do not provide 
relevant information about the welding defects. 
 



In feature selection, a subset of m features (m<n) that leads to the smallest detection 
error is selected. The selected m  features are arranged in a new m-vector si = [si1 ... 
sim]T.  This can be understood as a matrix S with N x m elements obtained from m 
selected columns of the large set of normalized features W. 
 
The features can be selected using several state-of-art algorithms documented in 
literature like Forward Orthogonal Search (Wei and Billings, 2007), Least Square 
Estimation (Mao, 2005), Ranking by Class Separability Criteria (MathWorks, 2007) 
and Combination with Principal Components (Bishop, 2006) among others. However, 
in our experiments the best performance was achieved using the well-known 
Sequential Forward Selection (SFS) algorithm (Jain et al., 2000). This method selects 
the best single feature and then adds one feature at a time that, in combination with 
the selected features, maximizes detection performance. The iteration is halted once 
no considerable improvement in the performance is achieved by adding a new feature.  
By evaluating selection performance we ensure: i) a small intraclass variation and ii) a 
large interclass variation in the space of the selected features. For the first and second 
conditions the intraclass-covariance Cb and interclass-covariance Cw of the selected 
features S are used respectively. Selection performance can be evaluated using: 
 

€ 

J(S) = trace(Cw
−1Cb )        (2) 

 
where `trace' means the sum of the diagonal elements. The larger the objective 
function J, the higher the selection performance. 
 
The implementation of SFS is simple: one starts with an empty matrix So for the 
selected features and a list L = { 1, 2, 3, … n } containing the index of all available 
features. The following iteration is performed:  i) the feature j ∈ L is selected using 
exhaustive search so that equation (2) is maximized for S = [ So wj], where wj is the j-
th column of W; ii) j is eliminated from L, and iii) the selected features matrix So is 
replaced by S. This iteration is repeated m<n times or until no significant 
improvement in J is achieved. 
 
2.3 DETECTION 
A classifier decides whether the detection windows are defects or no-defects.  The 
detection in this case is a classification with only two classes. In order to find the best 
detection performance, the framework was tested on a bank of classifiers, such as 
support vector machines (SVM) (Shawe-Taylor and Cristianini, 2004), linear and 
quadratic discriminant analysis (LDA and QDA) (Webb, 2005),  k-nearest neighbor 
(KNN) (Duda and Hart, 2001), neural networks (Bishop, 2006), boosting (Viola and 
Jone, 2004) and minimal and Mahalanobis distances (Duda and Hart, 2001). The best 
performance was achieved using SVM. SVM transforms a two-class feature space,  
defined by feature vector s of dimension m, where the two classes overlap, into a new 
enlarged feature space, defined by transformation h(s), where the classification 
boundary is linear. Thus, a simple linear classifier can be designed in the transformed 
feature space in order to separate both classes. For the detection decision of a sample 
s’, however, only the kernel function K(s,s’)=< h(s), h(s’)> that computes inner 
products in the transformed space is required (see (Shawe-Taylor and Cristianini, 
2004) for details). In our case, the best classification was obtained using a Gaussian 
Radial Basis (RBF) function kernel defined by: 
 



€ 

K(s,s') = e s−s' 2         (3) 
 
where the linear boundary, i.e., the separating hyperplane in the transformed space, is 
computed using the Least-Squares approach (MathWorks, 2007). 
 
2.4 VALIDATION 
The performance of the detection was defined as the ratio of the detection windows 
that were correctly classified to the total number of detection windows. The 
performance was validated using cross-validation, a technique widely implemented in 
machine learning problems (Mithcell, 1997). In cross-validation, the samples are 
divided into F folds randomly. F-1 folds are used as training data and the remaining 
fold is used as testing data to evaluate the performance of the classifiers. We repeated 
this experiment F times rotating train and test data. The F individual performances 
from the folds are averaged to estimate the final performance of the classifiers.  
 
 
3. EXPERIMENTAL RESULTS 
We experimented with 10 representative X-ray images (see Fig. 3)1. The average size 
of the images were 1.35 mega-pixels. For each X-ray image, 250 detection windows 
with defects and 250 without defects were selected, yielding 2x250x10 = 5000 
detection windows.  Each detection window was labeled with ‘1’ for class defects and 
‘0’ for no-defects. We tested for different sizes (8x8, 16x16, 24x24 and 32x32 pixels), 
the best performance was achieved by using 24x24 pixels. For each detection window 
572 features were extracted according to Section 2.1. This means that 572 features 
were extracted from 5000 samples (2500 with defects and 2500 without defects). 
 
After the feature extraction, 75% of the samples from each class were randomly 
chosen to perform the feature selection. The best performance was achieved using 
Sequential Forward Selection. The SFS iteration was stopped by m=14, because for m 
>14 no significant improvement (<2%) in objective function J (see equation (2)) was 
obtained.  
 
The performance of the classification using SVM-RBF classifier and the first m 
selected features was validated using an average of ten cross-validation with F=10 
folds2 as explained in Section 2.4. The results are shown in Fig 4. For example using 
the first 8 selected features a detection performance of 90% was achieved. We 
observed that for m >14 no significant better performance could be obtained. Using 
the best 14 features, the performance was 93.74% with a 95% confidence interval 
between 92.97 and 94.51%. We observe the relevance of the saliency map features 
(10 of 14 features) and the local binary pattern features (9 of 14 features). 
 
 

                                                        
1 All feature extraction, feature selection, classification and validation approaches are implemented in 
Balu Matlab Toolbox - Group of Machine Intelligence, Department of Computer Science, Catholic 
University of Chile (download in http://dmery.ing.puc.cl). 
 
2 F can be another number, for instance 5-fold or 20-fold cross-validation estimate very similar 
performances. In our experiments, we use 10-fold cross-validation because it has become the standard 
method in practical terms (Witten and Frank, 2005). 



 

 
Fig. 3: X-ray images used in our experiments -courtesy of Federal Institute for Materials Research and 
Testing, Berlin (BAM). 
 
 
 
 

 
 
Fig. 4: Classification performance with SVM-RBF using the first m features (refer to Table 1 to see a 
description of the features). 
 
 



 

 
 
Fig. 5: Steps of the detection: a) original X-ray image, b) detected subwindows, c) grayvalue image that 

shows the number of detected subwindows per pixels (black=0, white=36), and d) final detection 
obtained by thresholding image c). 

 
 
In order to test this method on X-ray images, the method was implemented using a 
sliding window sized 24x24 pixels that was shifted by 4 pixels. Thus, in each position 
a subwindow of 24x24 pixels was defined and the corresponding features were 
extracted. The subwindow was marked if the trained classifier detected it as a 
‘defect’. Using a size of 24x24 pixel and a shift of 4 pixels an image pixel could be 
marked 0, 1, 2, 3, … or 36 times. Finally, if a pixel of the image was marked more 
than 24 times, then the pixel was considered as defect. The mentioned parameters 
were set using exhaustive search. The described steps are shown in Fig. 5 for one X-
ray image. The results on other X-ray images are shown in Fig. 6. We can see the 
effectiveness of the proposed method.  
 
4. CONCLUSIONS 
 
In this paper we presented a new approach to detecting weld defects without 
segmentation based on sliding-windows and novel features. The promising results 
outlined in our work show that we achieved a very high classification rate in the 
detection of welding defects using a large number of features combined with efficient 
feature selection and classification algorithms. The key idea of the proposed method 
was to select, from a large universe of features, namely 572 features, only those 
features that were relevant for the separation of the two classes. We tested our method 
on 10 representative X-ray images yielding a performance of 94% in accuracy using 
only 14 features and support vector machines. It is important to note that local binary 
pattern features extracted from the saliency map play an important role in the 
performance of the classifier. The method was implemented and tested on real X-ray 
images showing high effectiveness. 
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Fig. 6: Detection on X-ray images. 
 
 
 
 
REFERENCES 
Bishop, C.M. “Pattern Recognition and Machine Learning”. Springer, 2006. 

Dalal, N. and Triggs, B. “Histograms of oriented gradients for human detection”. In Proceedings 
of the Conference on Computer Vision and Pattern Recognition (CVPR2005), Vol. 1, p. 
886–893, 2005. 

Duda, R.O., Hart, P.E. and Stork, D.G. “Pattern Classification”. John Wiley & Sons, Inc., New 
York, 2 edition, 2001. 

Gonzalez, R.C. and Woods, R.E. “Digital Image Processing”. Pearson, Prentice Hall, third edition, 
2008. 

Haralick, R.M. “Statistical and structural approaches to texture”. Proc. IEEE, Vol. 67, No. 5, p. 
786–804, 1979. 

Harris, C. and Stephens, M.J. “A combined corner and edge detector”. In Proceedings of 4th 
Alvey Vision Conferences, p.147–152, 1988. 



Hastie, T., Tibshirani, R. and Friedman, J. “The Elements of Statistical Learning: Data Mining, 
Inference, and Prediction”. Springer, corrected edition, August 2003. 

Jain, A.K., Duin, R.P.W. and Mao, J. “Statistical pattern recognition: A review”. IEEE Trans. On 
Pattern Analysis and Machine Intelligence, Vol. 22, No. 1, p. 4–37, 2000. 

Kumar, A. and Pang, G.K.H. “Defect detection in textured materials using Gabor filters”. IEEE 
Trans. on Industry Applications, Vol. 38, No. 2, p. 425–440, 2002. 

Liao, T.W. “Classification of weld flaws with imbalanced class data”. Expert Systems with 
Applications, Vol. 35, No. 3, p. 1041–1052, 2008. 

Liao, T.W. “Classification of welding flaw types with fuzzy expert systems”. Fuzzy Sets and 
Systems, Vol. 108, p. 145–158, 2003. 

Liao, T.W. “Improving the accuracy of computer-aided radiographic weld inspection by feature 
selection”. NDT&E International, Vol. 42, p. 229–239, 2009. 

Mao, K.Z. “Identifying critical variables of principal components for unsupervised feature 
selection”. IEEE Trans. on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 35, 
No. 2, p. 339–344, 2005. 

MathWorks. “Matlab Toolbox of Bioinformatics: User’s Guide”. Mathworks Inc., 2007. 

Mitchell, T.M. “Machine Learning”. McGraw-Hill, Boston, 1997. 
Montabone, S.  and Soto, A. “Human detection using a mobile platform and novel features 

derived from a visual saliency mechanism”. Image and Vision Computing, Vol. 28, No. 3, 
p. 391–402, 2010. 

Nixon, M. and Aguado, A. “Feature Extraction and Image Processing”. Academic Press, second 
edition, 2008. 

Ojala, T, Pietikainen, M. and Maenpaa, T. “Multiresolution gray-scale and rotation invariant 
texture classification with local binary patterns”. IEEE Trans. on Pattern Analysis and 
Machine Intelligence, Vol. 24, No. 7, p. 971–987, 2002. 

Shawe-Taylor J., and Cristianini. N. “Kernel Methods for Pattern Analysis”. Cambridge 
University Press, 2004. 

Shi, D.-H., Gang, T., Yang, S.Y., and Yuan, Y. “Research on segmentation and distribution 
features of small defects in precision weldments with complex structure”. NDT & E 
International, Vol. 40, p. 397–404, 2007. 

Silva, R. and Mery, D. “State-of-the-art of weld seam inspection using X-ray testing: Part I -Image 
Processing”. Materials Evaluation, Vol. 65, No 6, p. 643–647, 2007. 

Silva, R. and Mery, D. “State-of-the-art of weld seam inspection using X-ray testing: Part II - 
Pattern Recognition”. Materials Evaluation, Vol. 65, No. 9, p. 833–838, 2007. 

Viola, P. and Jones, M. “Robust real-time object detection”. International Journal of Computer 
Vision, Vol. 57, No. 2, p. 137–154, 2004. 

Webb, A. “Statistical Pattern Recognition”. Wiley, England, 2005.  

Wei, H.-L. and Billings, S.A. “Feature subset selection and ranking for data dimensionality 
reduction”. IEEE Trans. On Pattern Analysis and Machine Intelligence, Vol. 29, No. 1, p. 
162–166, 2007. 

Witten, I.H. and Frank, E. “Data Mining: Practical Learning Tools and Techniques”, Elsevier, 
Morgan Kaufmann Publishers, second edition, 2005. 

 
 


