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Inspection of Complex Objects
Using Multiple X-ray Views

Domingo Mery, Member, IEEE

Abstract—This paper presents a new methodology for identi-
fying parts of interest inside of a complex object using multiple
X-ray views. The proposed method consists of five steps: A) image
acquisition, that acquires an image sequence where the parts of
the object are captured from different viewpoints; B) geometric
model estimation, that establishes a multiple view geometric
model used to find the correct correspondence among different
views; C) single view detection, that segment potential regions of
interest in each view; D) multiple view detection, that matches
and tracks potential regions based on similarity and geometrical
multiple view constraints; and E) analysis, that analyzes the
tracked regions using multiple view information, filtering out
false alarms without eliminating existing parts of interest. In
order to evaluate the effectiveness of the proposed method, the
algorithm was tested on 32 cases (five applications using different
segmentation approaches) yielding promising results: precision
and recall were 95.7% and 93.9%, respectively. Additionally,
the multiple view information obtained from the tracked parts
was effectively used for recognition purposes. In our recognition
experiments, we obtained an accuracy of 96.5%. Validation
experiments show that our approach achieves better performance
than other representative methods in the literature.

Index Terms—X-ray testing, computer vision, tracking, auto-
mated visual inspection, baggage screening.

I. INTRODUCTION

X-ray imaging is used for both medical imaging and
non-destructive testing (NDT) of materials and objects. The
purpose of the latter application, called X-ray testing, is to
analyze internal parts that are undetectable to the naked eye.
X-ray radiation is passed through a test object and a detector
senses variations in the intensity of the radiation exiting the
object. The individual parts within an object can be recognized
because they modify the expected radiation received by the
sensor according to the differential absorption law [1].

There are numerous areas in which X-ray testing can be
applied. In many of them, however, automated X-ray testing
remains an open question and still suffers from: i) loss
of generality, which means that approaches developed for
one application may not transferred to another; ii) deficient
detection accuracy, which means that there is a fundamental
tradeoff between false alarms and miss detections; iii) limited
robustness given that requirements for the use of a method are
often met for simple structures only; and iv) low adaptiveness
due to the fact that it may be very difficult to accommodate
an automated system to design modifications or different
specimens.

This paper proposes a multiple view methodology for auto-
mated X-ray testing that can contribute to reducing the four
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problems mentioned above. This methodology is useful for
examining complex objects in a more general, accurate, robust
and adaptive way given that this method analyzes an X-ray
image sequence of a target object from several viewpoints
automatically and adaptively. We observe that multiple view
analysis has not yet been exploited in areas in which vision
systems have typically been focused on single view analysis.
This is the case of baggage screening, where certain items
are very difficult to inspect from a single viewpoint because
they could be placed in densely packed bags, occluded by
other objects or rotated. For example, in Fig. 1d, it is clear
that the part 1 (a pencil sharpener) could not be identified
using a single (intricate) projection, however, it could be
possible to recognize it if multiple projections of the part are
available, as shown in Fig. 1e. Thus, multiple view analysis
is used by our approach because it can be a powerful tool for
examining complex objects in cases in which uncertainty can
lead to misinterpretation. Its advantages are not limited to 3D
interpretation, as two or more views of the same object taken
from different points can be used to confirm and improve the
diagnostic obtained by analyzing a single image.

The main goals of our proposed multiple view methodology
for detecting parts of interest in complex objects are:

A) To acquire an image sequence where the parts of the
object are captured from different viewpoints (Fig. 1a).

B) To establish a multiple view geometric model used to find
the correct correspondence among different views (lines
in Fig. 1b).

C) To segment potential regions (parts) of interest in each
view using an application-dependent method that an-
alyzes 2D features in each single view, ensuring the
detection of the parts of interest (not necessarily in all
views) and allowing for false alarms (points in Fig. 1c).

D) To match and track potential regions based on similarity
and geometrical multiple view constraints, eliminating
those that cannot be tracked (lines in Fig. 1c).

E) To analyze the tracked regions using multiple view in-
formation, filtering out false alarms without eliminating
existing parts of interest (see Fig. 1e where our approach
is able to detect different parts recognizing for example
a clip in 2 ).

The main contribution of our work is a generic multiple
X-ray view methodology that can be used to inspect complex
objects in which the detection cannot be performed using a
single view. The approach is robust for poor monocular seg-
mentation and some degree of occlusion. In order to illustrate
the effectiveness of the proposed method, the algorithm was
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Fig. 1: Detection of objects in a pencil case using the proposed method: a) Unsorted sequence with six X-ray images. The
images are sorted according to their similarity (see arrows). b) Sorted sequence, keypoints (points) and structure from motion
(lines across the sequence). c) Detection in the sequence and tracked regions. d) Detection of parts of interest in the last image
in the sequence (three of them are used in this example to illustrate the next sub-figures). e) Tracked example regions in each
view of the sequence (1: pencil sharpener, 2: clip and 3: zipper slider body and pull-tab).

tested on several sequences yielding promising results on both
detection and recognition problems.

This paper presents a literature review (Section II), the
proposed approach (Section III), the experiments and results
(Section IV), and concluding remarks (Section V). An early
version of this paper was presented in [2]. In this paper, several
new experiments are included and a recognition algorithm is
presented and tested based on [3].

II. STATE OF THE ART

In order to present the state of the art of this field, this
section presents a summary of the level of knowledge achieved
by the scientific community in this area.

A. X-ray testing

The field of X-ray testing has five relevant areas of ap-
plication1: a) Baggage screening: After 9/11, X-ray testing
became an important tool for quickly identifying items that
may pose a threat to security [4]. In countries where part
of the economy is based on agricultural exports, baggage
screening is also used to detect products of plant or animal
origin in order to prevent the introduction of new diseases,
pests or plagues. b) Foods: X-ray testing has been used in food
safety procedures to detect foreign objects in packaged foods,
fish bones and insect infestation. It is also used in quality
inspections of fruit and grain [5]. c) Cargo: Cargo inspection
has become increasingly important due to the growth of
international trade. X-ray testing has been used to evaluate the
contents of cargo, trucks, containers, and passenger vehicles in
order to find smuggled goods [6]. d) Castings: X-ray testing
is also used to verify the safety of certain automotive parts by

1The reader is referred to [1] for a review of this topic.

inspecting each part of the product. Non-homogeneous regions
like bubble-shaped voids or fractures can be formed in the
production process and may affect the stability of components
that are considered important for overall roadworthiness [7].
e) Weldings: X-ray-based inspection is required for objects
subjected to a welding process in order to identify defects
(porosity, inclusion, cracks and lack of fusion or penetration).
X-ray testing is widely used for this purpose in the petroleum,
chemical, nuclear, naval, aeronautics and civil construction
industries [8]. We observe that X-ray testing has applications
such as casting inspection where automated systems are very
effective, and baggage screening, where human inspection is
still used. Semi-automatic inspection procedures are used in
areas such as welding and cargo. In certain applications (e.g.
baggage screening), the use of multiple-view information can
significantly improve success in recognizing items that are
difficult to identify using a single viewpoint.

B. 3D object recognition

3D object recognition from 2D images is a very complex
task given the infinite number of viewpoints, different lighting
conditions, and objects that are deformable, occluded or em-
bedded amidst clutter. In certain cases, automated recognition
is possible through the use of approaches focused on obtaining
highly discriminative and local invariant features related to
lighting conditions and local geometric constraints (see for
example [9] for a good review and evaluation of descriptors
including the well-known SIFT [10] and SURF [11] features).
A test object can be recognized by matching its invariant
features to the features of a model. Over the past decade, many
approaches have been proposed in order to solve the problem
of 3D object recognition. Some use 3D data (points, meshes
or CAD models) for 3D object category classification. In such
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cases, the reconstructed 3D object serves as a query and is
matched against the shape of a collection of 3D objects (see,
for example, a review in [12]). These methods, however, are
not used in practice to recognize real world objects in cluttered
scenes because they cannot recognize the object’s underlying
structure. Other approaches focus on learning new features
from a set of representative images (see, for example, visual
vocabularies [13], implicit shape models [14], mid-level fea-
tures [15], sparse representations [16], and hierarchical kernel
descriptors [17]). These methods may fail when the learned
features cannot provide a good representation of viewpoints
that have not been considered in the representative images.
Finally, some approaches include multiple view models (see,
for example, an interconnection of single-view codebooks
across multiple views [18], a learned dense multiple view
representation by pose estimation and synthesis [19], a model
learned iteratively from an initial set of matches [20], a
model learned by collecting viewpoint invariant parts [21], 3D
representations using synthetic 3D models [22], and a tracking-
by-detection approach [23]). These methods may fail, however,
when objects have a large intraclass variation. We observe
that 3D object recognition is a challenging problem in the
area of computer vision, and many studies have addressed this
issue. Recognition performance can be improved by extracting
relevant parts of the test object using different viewpoints, in
order to build a multiple-view model.

C. Multiple view imaging

Many important contributions in computer vision using
multiple-view analysis have been made over the past few
years, e.g., object class detection (see Section II-B), motion
segmentation [24], object segmentation [25], visual motion
registration [26], 3D reconstruction [27], people tracking [28],
breast cancer detection [29], inspection using active vision
[30], inspection using dual energy X-ray [31], and quality
control [32]. We observe that the use of multiple-view in-
formation yields a significant improvement in performance in
these fields.

We thus conclude that multiple view analysis is a powerful tool
that can be used in X-ray testing, especially in the inspection of
complex objects in cases where certain items are very difficult
to recognize using only a single viewpoint (e.g. when they
are occluded, covered by other items or positioned in difficult
poses).

III. PROPOSED APPROACH

Our proposed approach can be summarized as follows: A) a
sequence of X-ray images of the object under test is acquired
from different points of view; B) a model used to establish
geometric correspondences between the views is estimated;
C) potential parts in each single view of the sequence are
segmented and described; D) using the geometric model and
extracted descriptors, segmented parts are tracked across the
views; and E) tracked parts are finally analyzed. In following
sections, the steps will be explained in further details.

A. Image acquisition

A set of X-ray images of the object is acquired from m
different points of view: J = {Ji}mi=1. The number of views
and the viewpoint angles are analyzed in Section IV, however,
in order to illustrate the explanation, a sequence of six views
will be used (Fig. 1a). In this example, the rotation with respect
to horizontal axis is 500, 100, 400, 200, 300, 00 for each view.

If the images are not sorted, they can be arranged as a
new sequence in order to obtain similar consecutive images
that simplifies data association problem across the views. For
this end, a visual vocabulary tree based on SIFT keypoints
[10] of J is constructed for fast image indexing. The new
image sequence, I = {Ii}mi=1, where Ii ∈ J, Ii 6= Ij , ∀i 6=
j, is established by maximizing the total similarity defined
as
∑m−1

i=1 sim(Ii, Ii+1), where the similarity function ‘sim’ is
computed from a normalized scalar product obtained from the
visual words of the images [13] (see an example in Fig. 1b,
where the keypoints of each image are shown as points).

B. Geometric model estimation

Our strategy deals with detections in multiple views. In this
problem of data association, the aim is to find the correct
correspondence among different views. For this reason, we
use multiple view geometric constraints to reduce the number
of matching candidates between monocular detections. In
our approach, the geometric constraints are established from
bifocal (epipolar) and trifocal geometry [33]. Thus, for a point
xi in view Ii, the corresponding point xj in a second view
Ij must lie on its epipolar line estimated by using the bifocal
tensors (or fundamental matrix) Fij of views i and j. On the
other hand, for a point xi in view Ii and its corresponding
point xj in view Ij , the corresponding point xk in a third
view Ik is a point estimated by using the trifocal tensors
Tijk of views i, j and k. Multifocal tensors can be estimated
from projection matrices P = {Pi}mi=1, where Pi is used to
calculate the projection of a (3D) point X of the test object
into a (2D) point xi of image Ii. The projection is computed
as λxi = PiX using homogeneous coordinates, where λ is
a scale factor. The fundamental matrix Fij is calculated from
Pi and Pj , and the trifocal tensors Tijk from Pi, Pj and Pk

(see details in [33]).
The estimation of P can be performed by minimizing the

error between real and modeled projection 3D → 2D. Two
well known approaches can be used: i) calibration, in which
known 3D points from a calibration object is used [33], [34] or
ii) bundle adjustment, in which both 3D points and projection
matrices are calculated from views of the test object itself
using stable tracked keypoints across multiple views [2], [35].

C. Single view detection

Potential regions of interest are segmented in each single
image of sequence I. This is an ad–hoc procedure that varies
depending on the application used.

Four segmentation approaches were tested in our experi-
ments: i) Maximally Stable Extremal Regions (MSER) detects
thresholded regions of the image which remain relatively
constant by varying the threshold in a range [36]. ii) Spots
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detector (SPOTS) segments regions by thresholding the differ-
ence between original and median filtered image [37]. iii) SIFT
matching detects regions of the image which SIFT descriptors
are similar to SIFT descriptors of reference objects [10].
iv) Crossing line profile (CLP) detects closed and connected
regions from edge image that meet contrast criteria [38].

Each segmented region, denoted as r, has a 2D centroid xr

and it is described using a SIFT descriptor as yr ∈ Rd. The
scale of the extracted descriptor, i.e., the width in pixels of
the spatial histogram of 4× 4 bins, is set to

√
Ar, where Ar

is the corresponding area of the region r.

D. Multiple view detection

In previous step, n1 potential regions were segmented and
described in the entire image sequence I. Each segmented
region is labeled with a unique number r ∈ T1 = {1, ..., n1}.
In view i, there are mi segmented regions that are arranged in
a subset ti = {ri,1, ri,2, ..., ri,mi

}, i.e., T1 = t1 ∪ t2 ∪ ...tm.
The matching and tracking algorithms combine all regions

to generate consistent tracks of the objects parts of interest
across the image sequence. The algorithm has the following
four steps:
• Matching in two views: All regions in view i that have
corresponding regions in the next p views are searched, i.e.,
regions r1 ∈ ti that have corresponding regions r2 ∈ tj for
i = 1, ...,m − 1 and j = i + 1, ...,min(i + p,m). In our
experiments, we use p = 3 to reduce the computational cost.
The matched regions (r1, r2) are those that meet similarity
and location constraints. The similarity constraint means that
corresponding descriptors yr1 and yr2 must be similar enough
such that:

||yr1 − yr2 || < ε1. (1)

The location constraint means that the corresponding locations
of the regions must meet the epipolar constraint. In this case,
the Sampson distance between xr1 and xr2 is used, i.e., the
first-order geometric error of the epipolar constraint must be
small enough such that:

|xT
r2Fijxr1 |

(
1√

a21 + a22
+

1√
b21 + b22

)
< ε2, (2)

with Fijxr1 = [a1 a2 a3]
T and FT

ijxr2 = [b1 b2 b3]
T. In

this case, Fij is the fundamental matrix between views i
and j calculated from projection matrices Pi and Pj [33].
In addition, the location constraint used is as follows:

||xr1 − xr2 || < ρ(j − i), (3)

because the translation of corresponding points in these se-
quences is smaller than ρ pixels in consecutive frames.
Finally, a new matrix T2 sized n2 × 2 is obtained with all
matched duplets (r1, r2), one per row. If a region is found to
have no matches, it is eliminated. Multiple matching, i.e., a
region that is matched with more than one region, is allowed.
Using this method, problems like non-segmented regions or
occluded regions in the sequence can be solved by tracking if
a region is not segmented in consecutive views.

• Matching in 3 views: Based on the matched regions stored
in matrix T2, we look for triplets (r1, r2, r3), with r1 ∈ ti,
r2 ∈ tj , r3 ∈ tk for views i, j and k. We know that a row a in
matrix T2 has a matched duplet [T2(a, 1) T2(a, 2)] = [r1 r2].
We then look for rows b in T2 in which the first element is
equal to r2, i.e., [T2(b, 1) T2(b, 2)] = [r2 r3]. Thus, a matched
triplet (r1, r2, r3) is found if the regions r1, r2 and r3 meet
the trifocal limitation:

||x̂r3 − xr3 || < ε3, (4)

This means that xr3 must be similar enough to the re-projected
point x̂r3 computed from the points in views i and j (xr1 and
xr2 ), and the trifocal tensors Ti,j,k of views i, j, k calculated
from projection matrices Pi, Pj and Pk [33]. A new matrix
T3 sized n3 × 3 is built with all matched triplets (r1, r2, r3),
one per row. Regions in which the three views do not match
are eliminated.
• Matching in more views: For v = 4, ..., q ≤ m views, we can
built the matrix recursively Tv , sized nv×v, with all possible
v-tuplets (r1, r2, ..., rv) that fulfill [Tv−1(a, 1) ... Tv−1(a, v−
1)] = [r1 r2 ... rv−1] and [Tv−1(b, 1) ... Tv−1(b, v − 1)] =
[r2 ... rl−1 rv], for j, k = 1, ..., nv−1. No more geometric
constraints are required because it is redundant. The final result
is stored in matrix Tq . For example, for q = 4 we store in
matrix T4 the matched quadruplets (r1, r2, r3, r4) with r1 ∈
ti, r2 ∈ tj , r3 ∈ tk, r4 ∈ tl for views i, j, k and l.
The matching condition for building matrix Ti, i = 3, ..., q, is
efficiently evaluated (avoiding an exhaustive search) by using
a k-d tree structure [39] to search the nearest neighbors for
zero Euclidean distance between the first and last i−2 columns
in Ti−1.
• Merging tracks: Matrix Tq defines tracks of regions in q
views. It can be observed that some of these tracks correspond
to the same region. For this reason, it is possible to merge
tracks that have q − 1 common elements. In addition, if a
new track has more than one region per view, we can select
the region that shows the minimal reprojection error after
computing the corresponding 3D location. In this case, a 3D
reconstruction of X̂ is estimated from tracked points [33].
Finally, matrix Tm is obtained with all merged tracks in the
m views. See more details and examples in [2].

E. Analysis

The 3D reconstructed point X̂ from each set of tracked
points of Tm can be reprojected in views where the segmen-
tation may have failed to obtain the complete track in all views.
The reprojected points of X̂ should correspond to the centroids
of the non-segmented regions. It is then possible to calculate
the size of the projected region as an average of the sizes
of the identified regions in the track. In each view, a small
window centered in the computed centroids is defined. These
corresponding small windows, referred to as tracked part, will
be denoted as W = {W1, ...,Wm}, as shown in Fig. 1e.
Subsequently, each tracked part can be analyzed. Analysis of
the tracked parts involves extracting features and classifying
them using a supervised approach. At this stage we have the
opportunity to extract features in all windows of W, including
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those for which segmentation fails (or would have to be more
lenient). In the analysis, a differentiation between detection
and recognition is made.

1) Detection: In detection, there are only two classes:
parts (for the parts of interest) and no-parts (for the other
parts or background). Detection can be used when an ad-
hoc monocular segmentation approach is designed to find
the specific parts of interest, e.g., a razor blade detector, as
explained in Section III-C. Thus, a tracked part W can be
used to confirm and improve the diagnostic as compared to a
segmentation based on a single image.

A simple approach is to extract a contrast feature from
the average image of the tracked windows: 1

m

∑
i Wi. Given

that regions must appear as contrasted zones relating to their
environment, verification is carried out as to whether or not
the contrast of each averaged window is greater than εC .
Obviously, more sophisticated features and classifiers can be
used in cases in which detection is more complex.

2) Recognition: In recognition there are parts and no-parts
also, however, the parts are divided into different classes. In
this case, the parts could be segmented using a general purpose
approach such as MSER (see Section III-C). For instance, in a
pencil case the tracked parts can be clips, springs, razor blades,
etc., and it is necessary to distinguish one from the other. In
order to recognize parts, a multiple view strategy can be used
[3]. The strategy consists of two stages: learning and testing.

In learning stage, we learn a classifier h to recognize patches
or keypoints of the parts that we are attempting to detect. It is
assumed that there are C+1 classes (labeled as ‘0’ for no-parts
class, and ‘1’, ‘2’, . . . ‘C’ for C different parts of interest).
Images are taken of representative objects of each class from
different points of view. In order to model the details of the
objects from different poses, several keypoints per image are
detected, and for each keypoint a descriptor y is extracted
using, for example, LBP, SIFT and SURF, among others [9].
In this supervised approach, each descriptor y is manually
labeled according to its corresponding class c ∈ {0, 1, . . . C}.
Given the training data (yt, ct), for t = 1, . . . , N , where N is
the total number of descriptors extracted in all training images,
a classifier h is designed which maps yt to their classification
label ct, thus, h(yt) should be ct.

In the testing stage, we have to assign to which class does
the tracked part W belong to. From each window Wi, ni
patches zij and are extracted and described yij = f(zij),
for i = 1, . . .m, and j = 1, . . . ni. Each descriptor is
classified as cij = h(yij) according to the classifier designed
in the learning stage. In order to classify a tracked part, ĉ =
mode({cij}), an ensemble strategy is used by computing the
majority vote of the classes assigned to each patch of all
windows. This strategy can overcome not only the problem of
false single detections when the classification of the minority
fails, but also when a part is partially occluded. For instance, a
tracked part of a clip could show a window Wi where the clip
and a spring are over imposed (see second row of clips in Fig.
4). Certainly, there will be patches in this window assigned to
both classes; however, we expect that the majority of patches
(of all windows) will be assigned to the class ‘clip’ if there
are a small number of patches classified as ‘spring’.

IV. EXPERIMENTAL RESULTS

In this Section we present the experiments and results
obtained using the proposed method and some details about the
implementation. The images tested in our experiments come
from public GDXray database [1].

A. Evaluation of the proposed method

This section shows: 1) several experiments in which our
approach can be used; 2) an analysis of the detection perfor-
mance in function of the number of views of the sequence
and the viewpoint angles; and 3) experiments on automated
recognition. The geometric model was estimated using bundle
adjustment [2].

1) Experiments on applications: We experimented on X-
ray images from five different applications: a) detection of
parts in general, b) detection of pen tips, c) detection of
pins, d) detection of razor blades, and e) detection of dis-
continuities in aluminum wheels. The first four applications
deal with detection of parts located inside pencil cases or
bags. In this sense, the proposed approach could be used
in baggage screening. The last application corresponds to a
non-destructive testing that can be used in automated quality
control tasks. In the applications, we used for the segmenta-
tion a) MSER, b) SPOTS, c) SPOTS, d) SIFT and e) CLP
respectively as explained in Section III-C. The images used
for our experiments present various characteristics, and the
applications also vary. However, they do share one problem:
performing the segmentation in a single image can lead to
misclassification. A sequence is illustrated in Fig. 1 (other
examples can be found in the early version of this paper [2]).

Table I shows statistics on 32 sequences of digital X-ray
images (4 to 8 images per sequence, 185 images in total). In
this table, ground truth (GT) is the number of existing parts
and nd is the number of parts detected using multiple view
analysis including false positives (FP) and true positives (TP),
i.e, nd = FP+TP. Ideally, FP = 0 and nd = TP = GT. In
these experiments, precision, computed as TP/nd, is 95.7%,
and recall, computed as TP/GT, is 93.9%. If we compare single
versus multiple view detection, the number of regions detected
per image (n′1) is drastically reduced by tracking and analysis
steps to nd (in total from 501 to 210, i.e., 41.9%).

It is also interesting to observe the results for the detection
of aluminum wheel discontinuities (application ‘e’), where
a similar level of performance is observed in [40]. In our
approach, however, we avoid the calibration step [34].

2) Analysis of number of views and viewpoint angles: In
order to evaluate how the number of views and the different
viewpoint angles can affect the performance of our algorithm,
the following experiment was carried out: X-ray images were
captured from a test object –a pen case with 14 parts– from
90 different viewpoints by rotating its X and Y axes in incre-
ments of 100 (α = 00, 100, . . . , 800 and β = 00, 100, . . . , 900)
as illustrated in Fig. 2. Note that images for α > 700 or
β > 700 are quite intricate. Each viewpoint can be represented
as a point in the (α, β) space. We define S as the set of
all 90 points, and a sequence of m views as a subset of m
different points (αi, βi) ∈ S for i = 1, . . .m. The algorithm
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TABLE I: Detection using 2D analysis in 32 sequences (∗)

Application # size m n′
1 nd TP GT

a) Parts in 1 158 6 24 16 16 16
general 2 158 6 19 12 12 14

3 158 6 18 11 11 14
4 158 6 25 20 20 20

Fig. 1→ 5 158 6 19 12 13 14
6 322 6 23 15 14 14
7 322 6 17 10 10 13
8 322 6 25 17 17 17

b) Pen tips 1 158 4 15 7 5 5
2 158 5 10 5 4 5
3 233 6 17 10 9 9
4 158 6 14 8 5 5
5 158 6 9 5 4 5

c) Pins 1 89 5 16 2 2 2
2 89 6 17 2 2 2

d) Razor 1 81 6 2 2 2 2
blades 2 158 5 2 1 1 1

3 158 6 2 1 1 1
4 261 6 5 1 1 1
5 322 6 6 1 1 1

e) Discon– 1 110 4 5 2 2 3
tinuities 2 439 4 24 1 1 1

3 110 6 39 27 27 27
4 158 6 10 5 4 4
5 439 6 17 2 2 2
6 439 6 15 2 2 2
7 439 6 23 1 1 1
8 439 6 21 3 3 3
9 439 6 15 3 3 4

10 439 6 16 2 2 2
11 439 6 15 2 2 2
12 439 8 16 2 2 2

Total – – 185 501 210 201 214
Precision 95.7%
Recall 93.9%

(*) ‘size’: size of each image of the sequence in thousand of pixels. ‘m’: number of
images in the sequence. ‘n′

1’: number of segmented regions per image. ‘nd’: number
of detected regions in the sequence. ‘TP’: true positives. ‘GT’: ground truth.

was tested in several sequences of m views chosen from the 90
available X-ray images. The number of true and false positives
were calculated for each sequence along with the performance
statistics (precision and recall). Six different scenarios for
choosing the m views were analyzed. In all scenarios, the first
viewpoint –which corresponds to point (α1, β1)– was chosen
randomly from S, and the next m−1 viewpoints (αi, βi) were
selected randomly (without repetition) from the following sets
for i = 2, . . .m: A) αi = α1, βi ∈ B1; B) αi ∈ A1, βi = β1;
C) αi ∈ A1, βi ∈ B1; D) αi ∈ (A1 ∪ A2), βi ∈ (B1 ∪ B2);
E) αi ∈ A2, and βi ∈ B2; and F) (αi, βi) ∈ S where
A1 = {αj ±10}i−1j=1, A2 = {αj ±20}i−1j=1, B1 = {βj ±10}i−1j=1

and B2 = {βj ± 20}i−1j=1. See examples in Fig. 2c.
After the sequence is sorted, we observe that the view-

point angles between consecutive views in the sequences
are small in cases A, B and C (up to 100 on each axis);
medium in cases D and E (up to 200 on each axis); and
large in case F (up to 800 on each axis). Since in our
approach the geometric model and tracking are estimated
by matching SIFT keypoints from different views, it was
expected that our methodology would not allow for large

Fig. 2: Multiple views taken of an object test (a pen case) from
90 different viewpoints. The object was rotated around the X
and Y axes in increments of 100. Each view is represented as
a point in the (α,β) space. The colors in c) represent examples
of different 6-views sequences.

viewpoint angles. For this reason, our approach performed
well in case F only when the randomly chosen images did
not have a large viewpoint angle between consecutive views.
For m = 6, we generated 150 sequences for each case (A, B,
. . . F). The averages obtained (precision, recall) in percentages
were as follows: (89.5, 59.0)A, (94.1, 70.9)B , (88.5, 53.4)C ,
(77.4, 38.3)D, (61.8, 27.9)E , and (53.6, 12.1)F . We observe
that performance is better in case B than A because for
constant β there are 1-2 (from 9) intricate images, whereas
for constant α there are 1-3 (from 10) intricate images.
In our experiments, the proposed method yields satisfactory
performance only for small viewpoint angles in consecutive
views (about 100). As a result, the rest of the experiments
were only performed for scenarios A, B and C.

Similarly, we tested our algorithm for sequences of m =
3, 4, 6, 8 and 9 images (in most of the cases for m ≥ 10, it
was not possible to estimate the geometric model because it
was difficult to meet the criterion set by the bundle adjustment
algorithm used in our method, which requires stable keypoints
across all views of the sequence). For each case A, B and C,
150 sequences were generated, the algorithm was tested and
the performance statistics were calculated and averaged. The
performance is illustrated in Fig. 3. The figure also shows the
performance for monocular test, i.e., m = 1. The true positive
rate against the false positive rate was fitted to a ROC curve
modeled as y = 1− exp(−γx), and the area under the curve
Az was calculated (it was 0.88 for m = 1 and around 0.96
for m = 3, 4, 6, 8 and 9). We observe that the multiple view
approach is better than the monocular approach because the
ability to filter out false alarms is higher (maintaining the true
positive rate almost constant). Multiple view performance is
very similar for different numbers of views. However, in these
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Fig. 3: Performance representation for sequences of m = 1,
3, 4, 6, 8 and 9 views. Each rectangle represents the defined
(α,β) space as shown in Fig. 2c. The color of a point (α,β)
corresponds to the average performance obtained when the X-
ray image taken at rotations α and β belongs to the sequence
of m views. The average of the values of each rectangle are
presented in the middle.

experiments, m = 6 yielded the best results.
It is clear that there is a trade-off between number of views

and performance: tracking in many views makes difficult the
estimation of the geometric model and it could lead to the
elimination of those real regions that were segmented in few
views, and tracking in fewer views increases the likelihood of
false alarms. See Section IV-B for a comparison with other
tracking algorithms.

3) Experiments on recognition: In our recognition exper-
iments, the task was to distinguish between four different
classes of objects that are present in the pencil case images
of Fig. 2: ‘clips’, ‘springs’, ‘razor blades’ and ‘others’. We
followed the recognition approach explained in Section III-E2.
In the learning phase, we used only 16 training images of each
class. Due to the small intraclass variation of our classes, this
number of training images was deemed sufficient. The training
objects were posed in different orientations. SIFT descriptors
were extracted as explained in [10], and a k-Nearest Neighbor
(KNN) classifier with k = 3 neighbors was designed using the
SIFT descriptors of the four classes. Other descriptors (like
LBP [41] and HOG [42]) and other classifiers (like SVM)
were also tested, although the best performance was achieved
with the aforementioned configuration.

Testing experiments were carried out in scenarios A, B and
C for sequences of 4, 6 and 8 views (as explained in the
previous section). For each case, we tested on 200 tracked parts
obtained by our tracking algorithm. In these experiments, there
were 58 clips, 58 springs, 26 razor blades and 58 other objects.
Some tracked parts used in our experiments on six views are
shown in Fig. 4. A summary of the results is presented in
Table II. We observed that the recognition of the tracked parts
could be performed successfully by matching their invariant
features with the features of the model. Additionally, Table II
shows the accuracy of the classification of the single views
(see row ‘Single’) in which the decision was taken using only
one window of the tracked part. It is evident that the accuracy
increases when using multiple views strategy (for example,
see the increase from 83.1% to 92.0% in 8 views). It should

Fig. 4: Results on recognition of four classes, where the total
accuracy was 93% (see Table II). The algorithm fails (see rows
with ‘X’) in very intricate sequences or when the similarity to
an incorrect class is high. Moreover, the algorithm classifies
correctly (see rows with ‘ok’) even in sequences with occluded
parts (see second rows of ‘clips’ and ‘springs’).

be noted that the highest recognition accuracy was obtained
for sequences of 4 views. The reason is that the occlusion in
this case is negligible (an object that in some views could be
occluded, would be difficult to be tracked with only 4 views).
For this reason, for 6 and 8 views, the images of the tracked
parts seem to be more intricate and occluded (see Fig. 4),
and the accuracy is slightly lower. See Section IV-B3 for a
comparison with other recognition algorithms.

B. Comparison with other methods

In order to compare the proposed method with other known
approaches, in this Section we present comparison with other
single view methods, other tracking algorithm and object
recognition approaches. Finally, this section gives some com-
parison with human inspection.

1) Comparison with single view methods: We compared
multiple view versus single view using well known segmenta-
tion approaches (Fig. 5). We found that single view approaches
can detect the relevant regions of the object but that they are
not able to isolate them well, i.e., they cannot handle occlusion
and superimposition of inner parts in a satisfactory manner.



8

Fig. 5: Single view methods: a) original image with 14 parts of
interest; b) detection using proposed method in a sequence of
6 views, all parts are detected with one false alarm; c) MSER
[36], only 11 objects are detected; d) spot detector [37], it is
very difficult to separate each part; e) CLP [38], there are many
false alarms; f) HOG with SVM [42]; g) Otsu of HOG+LBP
with SVM [41]; and h) sparse dictionary [16]. In the last three
only large zones of interest are detected.

TABLE II: Accuracy and computational time in recognition.

Object → Clip Spring Blade Others Total Time
m Method [%] [%] [%] [%] [%] [s]
4 SIFT [10] 56.9 60.3 61.5 62.1 60.0 11.5

S & Z [13] 44.8 74.1 73.1 70.7 64.5 0.08
SURF [11] 84.5 29.3 80.8 67.2 63.0 0.31
Sparse [16] 87.9 72.4 73.1 82.8 80.0 0.12
Single 93.5 83.6 86.5 95.3 90.3 0.32
Proposed 94.8 96.6 96.2 98.3 96.5 0.33

6 SIFT [10] 50.0 50.0 73.1 69.0 58.5 17.8
S & Z [13] 51.7 69.0 96.2 50.0 62.0 0.12
SURF [11] 91.4 43.1 80.8 55.2 65.5 0.47
Sparse [16] 98.3 65.5 80.8 69.0 78.0 0.20
Single 91.6 73.3 87.5 92.6 86.0 0.58
Proposed 93.1 86.2 100.0 96.6 93.0 0.59

8 SIFT [10] 44.8 56.9 69.2 67.2 58.0 23.4
S & Z [13] 58.6 77.6 92.3 62.1 69.5 0.16
SURF [11] 93.1 55.2 96.2 46.6 69.0 0.59
Sparse [16] 94.8 69.0 76.9 77.6 80.0 0.26
Single 80.9 76.0 85.1 91.6 83.1 0.85
Proposed 86.2 93.1 96.2 94.8 92.0 0.86

The multiple view approach can separate the parts of interest
from each other because some views of the sequence do not
suffer from these problems.

2) Comparison with other tracking algorithms: Tracking is
one of the most relevant parts of our algorithm (see Section
III-D). In our approach, potential objects are detected in a sin-
gle view and afterwards they are tracked across multiple views.
In order to compare our tracking algorithm with other known
tracking algorithms, we tested only the tracking part, i.e., we
used the same single view detector –in order to segment the
potential regions of interest– and we evaluated how well these
regions can be tracked using different tracking algorithms. For
this purpose, we selected randomly 20 sequences of six views
from scenarios A, B and C; we sorted the sequences using
algorithm explained in Section III-A; and we used MSER
single detector to segment the potential objects (see Section

TABLE III: Tracking performance.

Method [%] time [ms]
Lucas–Kanade [43] 67.4 50
Region Covariance [44] 88.6 1250
TLD [45] 62.7 0.3
Proposed 93.2 190

III-C). In this experiment, the total single detections in the first
view of the 20 sequences were 260. For each single detection,
we counted the number of views in which it was correctly
tracked. The algorithms used in this comparison were: 1)
Lucas–Kanade [43]: It uses a fast registration technique based
on a Newton-Raphson iteration. 2) Region Covariance [44]: It
uses the covariance of certain pixel features extracted from the
object to be tracked. 3) Tracking-Learning-Detection (TLD)
[45]: It consists of a tracker that follows the object from
frame to frame using a detector that can correct the tracker
if necessary. The results are summarized in Table III. The
performance, computed as the average percentage of views of
the sequence in which single detections were correctly tracked,
is increased by our algorithm because it considers geometric
constraints by matching single detections. In addition, the
table shows the average computational time by tracking one
single detection across the whole sequence. The computational
times are difficult to be compared because algorithm TLD is
implemented in C++ (and the rest in Matlab), however, they
give a good reference2.

3) Comparison with other recognition approaches: In this
comparison we used the same training and testing sets ex-
plained in Section IV-A3. The task was to recognize four
different classes of objects in 4, 6 and 8 views. For each
case, 200 tracked parts were tested. The approaches used in
this experiment were: 1) SIFT [10]: It matches individual
features of the testing images to a database of features of
the training images using the nearest-neighbor algorithm. A
Hough transform is used to identify clusters that belongs to
the same class. 2) Sivic & Zisserman (S & Z) [13]: It uses an
efficient visual search algorithm based on a “term frequency–
inverse document frequency” (tf–idf) weighted visual words
frequencies. In our case, the visual vocabulary was built using
SIFT descriptors of all training images. 3) SURF [11]: It finds
correspondences between training and testing images based
on scale and rotation invariant keypoints and descriptors. 4)
Sparse [16]: It builds a sparse dictionary from SIFT descrip-
tors of training images for each class, SIFT descriptors are
extracted from testing images and classified according to the
smallest reconstruction error. The final recognition in these
experiments was decided by majority vote. The parameters
were set so as to obtain the best performance. The results are
summarized in Table II. In addition, the table gives the average

2 For Lucas–Kanade and Region Covariance we use our own Matlab imple-
mentation according the details given in the references. In Region Covariance
we used as features the position, the gray values, the gradients in each
direction and its magnitude. For TLD we used the implementation available
on the webpage given by the authors: https://github.com/zk00006/OpenTLD

https://github.com/zk00006/OpenTLD
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computational time required to recognize one tracked part3.
We observe that our algorithm considerably outperforms the
other approaches because its ensemble strategy, as explained
in Section III-E2, can overcome not only the problem of false
single detections when the classification of the minority fails,
but also when a part is partially occluded.

4) Experiments with human inspection: In this Section,
different experiments on human detection are reported. The
experiments were conducted by computer vision students,
faculty members and staff of the Department of Computer
Science of the Universidad Católica de Chile. The total number
of participants was twenty. We carried out two experiments on
detection tasks, and three experiments on recognition tasks.
We measured precision (PR), recall (RE) or accuracy (AC)
-in percentage- and inspection time (t) in seconds. The mea-
surements are given as (X/Y ), where X corresponds to the
average obtained by the participants and Y by our algorithm.

In detection experiments, the participants were told to count
how many objects were present in two sequences with different
degrees of complexity. We used scenario C with m = 6
including image (α = 00, β = 00) for ‘easy’ case and (α =
700, β = 700) for ‘difficult’ case (see Fig. 2). In ‘easy’ case,
PR = (100/90), RE = (92/95), t = (36/2.6). The performance
of our algorithm was similar and the computational time was
only 2.6s. In ‘difficult’ case, PR = (95/100), RE = (64/14),
t = (42/2.6). Our algorithm achieved a high precision with a
very low recall and computational time.

In the first recognition experiment, the participants were told
to recognize how many clips, springs, razor blades and other
objects were present in an ‘normal’ sequence of six images
(including (α = 300, β = 300)). In average the accuracy was
AC = (91/88) with t = (46/8.4). Our method was slightly
lower, however, faster than human inspection. In the second
recognition experiment, the participants were told to recognize
how many clips there were in a ‘easy’ sequence with and
without a computer aid (a bounding box around each clip of
the sequence computed by our algorithm). With and without
computer aid the recognition was perfect, however, the inspec-
tion time with aid was in average the 67.4% of the inspection
time without aid. In the third recognition experiment, the
goal was to compare the performance of our system with the
performance of the participants in a recognition of a tracked
part. To this end, we use the same sequences of tracked parts
explained in Section IV-A3. The participants were shown 200
sequences of six views. They were told to indicate which class
of object was present. The accuracy was AC = (96/93) with t
= (2.5/0.6) per tracked part. The performance achieved by our
algorithm was slightly lower, however, the recognition time
was considerable reduced.

This preliminary experiments has certainly some limitations:
there were a small number of participants, who did a few ex-

3 For SIFT approach we used the object matching implementation by
Li yang Ku available on File Exchange of Matlab Central http://www.
mathworks.com/matlabcentral/fileexchange/34626-object-matching and SIFT
descriptors extracted using VLfeat Toolbox [46]. For Sivic & Zisserman
approach we used our Matlab implementation according the details given
in the references. For SURF we used the Matlab implementation available in
Computer Vision Toolbox version 5.1. For sparse representations we used the
KSVD implementation given by the authors [47].

periments and the inspection task was being done for the first
time. These limitations makes it impossible to draw definitive
conclusions, however, five observations can be mention: i) In
images where the difficulty is low or medium, the performance
of our approach in comparison with the performance of the
human inspectors seems to be similar or slightly lower. ii) In
intricate images, the performance of human inspectors seems
to be significantly higher. This observation corresponds to
other computer vision problems (e.g., pedestrian detection in
crowd scenes). iii) The inspection time of our approach is
considerably lower than the human inspection time. iv) The
manual visual inspection is a tedious task, the participants have
gotten fatigued after inspecting a few parts, and the obtained
performance had a large variance. v) It seems to be possible
to design an automated aid of human inspection task using the
proposed algorithm.

C. Implementation of our algorithm

We used the implementation of SIFT, MSER, visual vocab-
ulary and k-d tree from VLFeat [46]. The rest of algorithms
were implemented in MATLAB. In the ‘Detection’ step, we
used the contrast on the average window greater than 5%. For
SIFT matching, the value ε1 was set to 1000. The values ε2
= 15 pixels and ε3 = 25 pixels, were set by considering the
epipolar distance and trifocal distance between correspondence
points using our estimated geometric model; and the value ρ
= 60 pixels was set by considering the maximal translation of
corresponding points in consecutive views. The computational
time depends on the application. In Fig. 1, as reference, the re-
sults of 2D detection were obtained in 2.6s and the recognition
in 0.6s per object on a iMac OS X 10.8.5, processor 2.9GHz
Intel Core i7, 8GB 1600 MHz DDR3 memory. The code of the
MATLAB implementation is available on our webpage [48].

V. CONCLUSIONS

In this paper, we presented a new generic methodology that
can be used to detect and recognize parts of interest in complex
objects automatically and adaptively. The proposed approach
filters out false positives resulting from segmentation steps per-
formed on single views of an object by corroborating informa-
tion across multiple views. The proposed methodology can be
used to detect regions in images where the segmentation fails.
The algorithm was tested on 32 cases (five applications using
different segmentation approaches) yielding promising results:
precision and recall are 95.7% and 93.9%, respectively. Best
performance was achieved for small viewpoint angles between
consecutive images (up to 100) and for sequences of six views.
Additionally, the multiple view information obtained from the
tracked parts can be effectively used for recognition purposes.
In our recognition experiments, we obtained an accuracy of
96.5%. Preliminary experiments have shown that our approach
achieves better performance than other representative methods
in the literature, and the inspection time is reduced without
reducing the performance significantly when comparing with
human inspection. We believe that our method can be used to
aid an user in an inspection task.

http://www.mathworks.com/matlabcentral/fileexchange/34626-object-matching
http://www.mathworks.com/matlabcentral/fileexchange/34626-object-matching
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