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Object Recognition in X-ray testing Using
Adaptive Sparse Representations

Domingo Mery, Erick Svec, Marco Arias

Abstract—In recent years, X-ray screening systems have been used to safeguard environments in which access
control is of paramount importance. Security checkpoints have been placed at the entrances to many public places to
detect prohibited items such as handguns and explosives. Human operators complete these tasks because automated
recognition in baggage inspection is far from perfect. Research and development on X-ray testing is, however, ongoing
into new approaches that can be used to aid human operators. This paper attempts to make a contribution to the field
of object recognition by proposing a new approach called Adaptive Sparse Representation (XASR+). It consists of two
stages: learning and testing. In the learning stage, for each object of training dataset, several patches are extracted from
its X-ray images in order to construct representative dictionaries. A stop-list is used to remove very common words of
the dictionaries. In the testing stage, test patches of the test image are extracted, and for each test patch a dictionary
is built concatenating the ‘best’ representative dictionary of each object. Using this adapted dictionary, each test patch
is classified following the Sparse Representation Classification (SRC) methodology. Finally, the test image is classified
by patch voting. Thus, our approach is able to deal with less constrained conditions including some contrast variability,
pose, intra-class variability, size of the image and focal distance. We tested the effectiveness of our method for the
detection of four different objects. In our experiments, the recognition rate was more than 97% in each class, and more
than 94% if the object is occluded less than 15%. Results show that XASR+ deals well with unconstrained conditions,
outperforming various representative methods in the literature.

Index Terms—X-ray testing, computer vision, sparse representations, image analysis.

F

1 INTRODUCTION

B AGGAGE inspection using X-ray screening is
a priority task that reduces the risk of crime,

terrorist attacks and propagation of pests and dis-
eases [28]. Security and safety screening with X-ray
scanners has become an important process in public
spaces and at border checkpoints [19]. However,
inspection is a complex task because threat items
are very difficult to detect when placed in closely
packed bags, occluded by other objects, or rotated,
thus presenting an unrecognizable view [2]. Manual
detection of threat items by human inspectors is
extremely demanding [22]. It is tedious because
very few bags actually contain threat items, and it
is stressful because the work of identifying a wide
range of objects, shapes and substances (metals,
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organic and inorganic substances) takes a great
deal of concentration. In addition, human inspec-
tors receive only minimal technological support.
Furthermore, during rush hours, they have only
a few seconds to decide whether or not a bag
contains a threat item [1]. Since each operator must
screen many bags, the likelihood of human error
becomes considerable over a long period of time
even with intensive training. The literature suggests
that detection performance is only about 80–90%
[14]. In baggage inspection, automated X-ray test-
ing remains an open question due to: i) loss of
generality, which means that approaches developed
for one task may not transfer well to another; ii)
deficient detection accuracy, which means that there
is a fundamental tradeoff between false alarms and
missed detections; iii) limited robustness given that
requirements for the use of a method are often met
for simple structures only; and iv) low adaptiveness
in that it may be very difficult to accommodate
an automated system to design modifications or
different specimens.
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There are some contributions in computer vision
for X-ray testing such as applications on inspection
of castings, welds, food, cargos and baggage screen-
ing [9]. For this research proposal, it is very inter-
esting to review the advances in baggage screen-
ing that have taken place over the course of this
decade. They can be summarized as follows: Some
approaches attempt to recognize objects using a
single view of mono-energy X-ray images (e.g., the
adapted implicit shape model based on visual code-
books [21]) and dual-energy X-ray images (e.g.,
Gabor texture features [26], bag of words based on
SURF features [25] and pseudo-color, texture, edge
and shape features [29]). More complex approaches
that deal with multiple X-ray images have been
developed as well. In the case of mono-energy
imaging, see for example the recognition of regular
objects using data association in [10] and active
vision [20] where a second-best view is estimated.
In the case of dual-energy imaging, see the use
of visual vocabularies and SVM classifiers in [6].
Progress also has been made in the area of computed
tomography. For example, in order to improve the
quality of CT images, metal artifact reduction and
de-noising [16] techniques were suggested. Many
methods based on 3D features for 3D object recog-
nition have been developed (see, for example, RIFT
and SIFT descriptors [4], 3D Visual Cortex Model-
ing 3D Zernike descriptors and histogram of shape
index [8]). There are contributions using known
recognition techniques (see, for example, bag of
words [5] and random forest [17]). As we can see,
the progress in automated baggage inspection is
modest and still very limited compared to what is
needed because X-ray screening systems are still
being manipulated by human inspectors. Automated
recognition in baggage inspection is far from being
perfected given that the appearance of the object of
interest can become extremely difficult due to prob-
lems of (self-)occlusion, noise, acquisition, clutter,
etc.

We believe that algorithms based on sparse repre-
sentations can be used for this general task because
in many computer vision applications, under the
assumption that natural images can be represented
using sparse decomposition, state-of-the-art results
have been significantly improved [24]. Thus, it is
possible to cast the problem of recognition into a
supervised recognition form with X-ray images and
class labels (e.g., objects to be recognized) using

learned features in a unsupervised way. In the sparse
representation approach, a dictionary is built from
the training X-ray images, and matching is done
by reconstructing the test image using a sparse
linear combination of the dictionary. Usually, the
test image is assigned to the class with the minimal
reconstruction error.

Reflecting on the problems confronting recog-
nition of objects, we believe that there are some
key ideas that should be present in new proposed
solutions. First, it is clear that certain parts of the
objects are not providing any information about the
class to be recognized (for example occluded parts).
For this reason, such parts should be detected and
should not be considered by the recognition algo-
rithm. Second, in recognizing any class, there are
parts of the object that are more relevant than other
parts (for example the sharp parts when recognizing
sharp objects like knives). For this reason, relevant
parts should be class-dependent, and could be found
using unsupervised learning. Third, in the real-world
environment, and given that X-ray images are not
perfectly aligned and the distance between detec-
tor and objects can vary from capture to capture,
analysis of fixed parts can lead to misclassification.
For this reason, feature extraction should not be in
fixed positions. Moreover, it would be possible to
use a selection criterion that enables selection of
the best regions. Fourth, an object that is present in
a test image can be subdivided into ‘sub-objects’,
for different parts (e.g., in case of a handgun there
are trigger, muzzle, grip, etc.). For this reason, when
searching for images of the same class it would be
helpful to search for image parts in all images of the
training images instead of similar training images.

Inspired by these key ideas, we propose a method
for recognition of objects using X-ray images1.
Three main contributions of our approach are: 1) A
new general algorithm that is able to recognize regu-
lar objects: it has been evaluated in the recognition
of four different objects. 2) A new representation
for the classes to be recognized using patches: this
is based on representative dictionaries learned for
each class of the training images, which correspond
to a rich collection of representations of selected
relevant parts that are particular to a specific class.
3) A new representation for the test X-ray image:

1. A similar approach was developed by us for a biometric problem
[12].
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this is based on i) a discriminative criterion that
selects the ‘best’ test patches from the test image
and ii) and an ‘adaptive’ sparse representation of
the selected patches computed from the ‘best’ rep-
resentative dictionary of each class. Using these new
representations, the proposed method (XASR+) can
achieve high recognition performance under many
complex conditions, as shown in our experiments.
A preliminary version of this paper was presented
in [11].

The rest of the paper is organized as follows.
In Section 2, the proposed method is explained in
further detail. In Section 3, the experiments and re-
sults are presented. Finally, in Section 4, concluding
remarks are given.

2 PROPOSED METHOD

The proposed XASR+ method consists of two
stages: learning and testing (see Fig. 1). In the
learning stage, for each object of the training, sev-
eral patches are extracted and described from their
images in order to built representative dictionaries.
In the testing stage, test patches of the test image are
extracted and described, and for each test patch a

Fig. 1: Overview of the proposed method. The figure illus-
trates the recognition of three different objects. The shown
classes are three: clips, razor blades and springs. There are
two stages: Learning and Testing. The stop-list is used to filter
out patches that are not discriminating for these classes. The
stopped patches are not considered in the dictionaries of each
class and in the testing stage.

dictionary is built concatenating the ‘best’ represen-
tative dictionary of each object. Using this adapted
dictionary, each test patch is classified in accor-
dance with the Sparse Representation Classification
(SRC) methodology [27]. Afterwards, the patches
are selected according to a discriminative criterion.
Finally, the test image is classified by voting for the
selected patches. Both stages will be explained in
this section in further detail.

2.1 Model learning
In the training stage, a set of n object images of k
objects is available, where Iij denotes X-ray image
j of object i (for i = 1 . . . k and j = 1 . . . n) as
illustrated in Fig. 2. In each image Iij , m patches P i

jp

of size w×w pixels (for p = 1 . . .m) are extracted.
They are centered in (xijp, y

i
jp). In this work, a patch

P is defined as vector:

p = [ z ; αr] ∈ Rd+1 (1)

where z = f(P) ∈ Rd is a descriptor of patch P
(i.e., a local descriptor of d elements extracted from
the patch) that has been normalized to unit length
(i.e., ||z|| = 1); r is the distance of the center of the
patch (xijp, y

i
jp) to the center of the image; and α is

a weighting factor between descriptor and location.
Description z must be rotation invariant because the
orientation of the object can be anyone.

Fig. 2: Extraction and description of m patches of training
image j of object i.
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Fig. 3: Representation of object i: a) Patches of all X-ray images of class i are extracted. b) Set Zi contains the representation
of each patch zijp ∈ R(d+1) (see black points). c) Set Yi contains the points of Zi that do not belong to the stop list. d) Set
of points Yi is clustered in Q parent clusters which points are arranged in array Yi

q with centroid ciq . e) Each parent cluster
Yi

q is clustered in R child clusters which centroids {ciqr}Rr=1 are arranged in array Āi
q . f) Visualization of the patches of the

dictionary. In this example Yi has 2.400 points, Q = 6 (parent clusters) and R = 10 (child clusters).

In order to eliminate non-discriminative patches,
a stop-list is computed from a visual vocabulary.
The visual vocabulary is built using all descrip-
tors Z = {zi

jp} ∈ Rd×knm, for i = 1 . . . k, for
j = 1 . . . n and for p = 1 . . .m. Array Z is clustered
using a k-means algorithm in Nv clusters. Thus,
a visual vocabulary containing Nv visual words is
obtained. In order to construct the stop-list, the term
frequency ‘tf ’ is computed: tf (d, v) is defined as
the number of occurrences of word v in document
d, for d = 1 . . . K, v = 1 . . . Nv. In our case,
a document corresponds to an X-ray image, and
K = kn is the number of classes in the training
dataset. Afterwards, the document frequency ‘df ’
is computed: df (v) =

∑
d{tf (d, v) > 0}, i.e., the

number of images in the training dataset that contain
a word v, for v = 1 . . . Nv. The stop-list is built
using words with highest and smallest df values:

On one hand, visual words with highest df values
are not discriminative because they occur in almost
all images. On the other hand, visual words with
smallest df are so unusual that they correspond in
most of the cases to noise. Usually, the top 5%
and bottom 10% are stopped [23]. Those patches
of Z that belong to the stopped clusters are not
considered in the following steps of our algorithm.
The filtered patches are represented by Y, and Yi

corresponds to the filtered patches of object i as
shown in Fig. 3b.

The description Yi of object i is clustered using
k-means algorithm in Q clusters that will be referred
to as parent clusters (Fig. 3c):

ci
q = kmeans(Yi, Q) (2)

for q = 1 . . . Q, where ci
q ∈ R(d+1) is the centroid

of parent cluster q of object i. We define Yi
q as the
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Fig. 5: Example of four dictionaries (Q = 32, R = 20): guns, shuriken, razor blades and clips. A zoom of each dictionary
is shown at the bottom.

Fig. 4: Representative dictionaries of object i for Q = 32
(only for q = 1 . . . 7 is shown) and R = 20. Left column shows
the centroids ciq of parent clusters. Right columns (orange
rectangle called Di) shows the centroids ciqr of child clusters.
Āi

q is row q of Di, i.e., the centroids of child clusters of parent
cluster q.

array with all samples yi
jp that belong to the parent

cluster with centroid ci
q. In order to select a reduced

number of samples, each parent cluster is clustered

again in R child clusters (Fig. 3d):

ci
qr = kmeans(Yi

q, R) (3)

for r = 1 . . . R, where ci
qr ∈ R(d+1) is the centroid

of child cluster r of parent cluster q of object i. All
centroids of child clusters of object i are arranged
in an array Di, and specifically for parent cluster q
are arranged in a matrix:

Āi
q = [ci

q1 . . . ci
qr . . . ci

qR]T ∈ R(d+1)×R (4)

Thus, this arrange contains R representative samples
of parent cluster q of object i as illustrated in Fig.
4. The set of all centroids of child clusters of object
i (Di), represents Q representative dictionaries with
R descriptions {ci

qr} for q = 1 . . . Q, r = 1 . . . R.

2.2 Testing
In the testing stage, the task is to determine the
identity of the test image It given the model learned
in the previous section. From the test image, s
selected test patches P t

p of size w × w pixels are
extracted and described using function f of equation
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Fig. 6: Adaptive dictionary A of patch y. In this example there are k = 4 objects in the training dataset. For this patch only
k′ = 3 objects are selected. Dictionary A is built from those objects by selecting all child clusters (of a parent cluster -see
blue rectangles-) which has a child cluster with the smallest distance to the patch (see green squares). In this example, object
2 does not have child clusters that are similar enough, i.e., h2(y, q̂2) > θ.

(1) as yt
p = f(P t

p) (for p = 1 . . . s). The selection
criterion of a test patch will be explained later in
this section.

For each selected test patch with description y =
yt
p, a distance to each parent cluster q of each object
i of the training dataset is measured:

hi(y, q) = distance(y, Āi
q). (5)

We tested with several distance metrics. The best
performance, however, was obtained by:

hi(y, q) = minr||y − ci
qr|| for r = 1 . . . R, (6)

which is the smallest Euclidean distance to centroids
of child clusters of parent cluster q as illustrated in
Fig. 6. For y and ci

qr normalized to unit `2 norm,
the following distance can be used based on (6):

hi(y, q) = minr(1− < y, ci
qr >) for r = 1 . . . R,

(7)
where the term < • > corresponds to the scalar
product that provides a similarity (cosine of angle)
between vectors y and ci

qr. The parent cluster that
has the minimal distance is searched:

q̂i = argmin
q

hi(y, q), (8)

which minimal distance is hi(y, q̂i).
For patch y, we select those training objects that

have a minimal distance less than a threshold θ in
order to ensure a similarity between the test patch
and representative object patches. If k′ objects fulfill
the condition hi(y, q̂i) < θ for i = 1 . . . k, with

k′ ≤ k, we can build a new index vi′ that indicates
the index of the i′-th selected object for i′ = 1 . . . k′.
For instance in a training dataset with k = 4 objects,
if k′ = 3 objects are selected (e.g., objects 1, 3 and
4), then the indices are v1 = 1, v2 = 3 and v3 = 4 as
illustrated in Fig. 6. The selected object i′ for patch
y has its dictionary Dvi′ , and the corresponding
parent cluster is ui′ = q̂vi′ , in which child clusters
are stored in row ui′ of Dvi′ , i.e., in Ai′ := Ā

vi′
ui′ .

Therefore, a dictionary for patch y is built using
the best representative patches as follows (see Fig.
6):

A(y) = [ A1 . . .Ai′ . . .Ak′ ] ∈ R(d+1)×Rk′ (9)

With this adaptive dictionary A, built for patch
y, we can use Sparse Representation Classification
(SRC) methodology [27]. That is, we look for a
sparse representation of y using the `1-minimization
approach:

x̂ = argmin||x||1 object to Ax = y (10)

The residuals are calculated for the reconstruction
for the selected objects i′ = 1 . . . k′:

ri′(y) = ||y −Aδi′(x̂)|| (11)

where δi′(x̂) is a vector of the same size of x̂
whose only nonzero entries are the entries in x̂
corresponding to class v(i′) = vi′ . Thus, the class
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of selected test patch y will be the class that has
the minimal residual, that is it will be

î(y) = v(î′) (12)

where î′ = argmini′ ri′(y).
Finally, the identity of the test object will be

the majority vote of the classes assigned to the s
selected test patches yt

p, for p = 1 . . . s:

identity(It) = mode(̂i(yt
1), . . . î(y

t
p), . . . î(y

t
s))

(13)
The selection of s patches of test image is as

follows:
i) From test image It, m patches are extracted and
described using (??): yt

j , for j = 1 . . .m, with m ≥
s.
ii) Each patch yt

j is represented by x̂t
j using the

mentioned adaptive sparse representation according
to (10).
iii) The sparsity concentration index (SCI) of each
patch is computed in order to evaluate how spread
are its sparse coefficients [27]. SCI is defined by

Sj := SCI(yt
j) =

k max(||δi′(x̂t
j)||1)/||x̂t

j||1 − 1

k − 1
(14)

If a patch is discriminative enough it is expected that
its SCI is large. Note that we use k instead of k′

because the concentration of the coefficients related
to k classes must be measured.
iv) Array {S}mj=1 is sorted in a descended way.
v) The first s patches in this sorted list in which
SCI values are greater than a τ threshold are then
selected. If only s′ patches are selected, with s′ < s,
then the majority vote decision in (13) will be taken
with the first s′ patches.

3 EXPERIMENTS

Our method was tested in the recognition of five
classes (k = 5) in baggage screening: 1) handguns,
2) shuriken (ninja stars), 3) clips, 4) razor blades and
5) background (see some samples in Fig. 7). In our
experiments, there are 100 X-ray images per class.
All images were resized to 128 × 128 pixels. We
defined the following experimental protocol based
on leave-one-object-out strategy: from each class,
we choose randomly 50 images for training and one
for testing. The test accuracy (ηi) for this test i is

defined as the ratio ci/k, where ci is the number of
correctly classified samples and k is the number of
samples. In order to obtain a better confidence level
in the estimation of the accuracy, the mentioned
test was repeated 100 times (for i = 1 . . . 100)
by randomly selecting new 51 images per class in
each test (50 for training and 1 for testing). Thus,
the reported accuracy (η̄ in Table 1) in all of our
experiments is the average calculated over the 100
tests, i.e., η̄ = 1

100

∑
i ηi. The code for the MATLAB

implementation is available on our webpage 2. The
X-ray images belong to GDXray database [13].

We tested the proposed methods using three dif-
ferent descriptors:

1) LBPri
8,1, i.e., Local Binary Pattern rotation-

invariant with 8 samples and radius 1 [18].
That yields a 36-bin descriptor (d = 36). The
patches were extracted randomly. The size of
the patch was 24 × 24 pixels (w = 24).

2) SIFT descriptor of d = 128 elements extracted
in the detected SIFT keypoints [7].

3) A concatenation of both descriptors obtaining
a descriptor of d = 128 + 36 = 164 elements,
where the LBP features are extracted from a
patch centered in the location of the SIFT key-
point with a size of 24 × 24 pixels (w = 24).

We call these methods XASR+1, XASR+2 and
XASR+3 respectively.

In order to evaluate the robustness against occlu-
sion, we corrupted the test images with a square of
random gray value of size a× a pixels located ran-
domly, for a = 15, 30, 50, 70 (see example in Table
1). The obtained result is given in first three rows
of Table 1 (see XASR+’s rows). We observe that
XASR+3 (that used both LBP and SIFT features)
had the best accuracy. It achieved more than 95% in
each class when there is no occlusion, and around
85% if the object is occluded less than 30%.

In order to evaluate the effectiveness of the
stop-list, we repeated the same experiment without
considering this step. The results are given in the
XASR’s rows of Table 1 (see XASR1, XASR2 and
XASR3 for LBP, SIFT and the concatenation LBP
and SIFT). We observe that the use of a stop-list
can increase the accuracy significantly.

In addition, we compared our method with four
known methods that can be used in object recogni-
tion: i) SIFT [7], ii) sparse representation classifica-

2. See http://dmery.ing.puc.cl/index.php/material/

http://dmery.ing.puc.cl/index.php/material/
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handguns shuriken razor blades clips background

Fig. 7: Example of three images per class used in our experiments. The five classes are: handguns, shuriken, razor blades,
clips and background.

tion (SRC) [27] with SIFT descriptors, iii) efficient
visual search based on an information retrieval
approach (Vgoogle) [23], and iv) bag of words [3]
using KNN (BoW-KNN) and random forest (BoW-
RF) [15] with SIFT descriptors. We coded these
methods according to the specifications given by the
authors in their papers. The parameters were set so
as to obtain the best performance. The results are
summarized in the corresponding rows of Table 1.
Results show that XASR+ deals well with uncon-
strained conditions in every experiment, achieving
a high recognition performance in many conditions
and obtaining similar or better performance in com-
parison with other representative methods in the
literature.

The time computing depends on the size of the
dictionary that is proportional to the number of
classes to be detected. In our experiments with 5
classes the computational time is about 0.2s per
testing image (testing stage) on a Mac Mini Server
OS X 10.10.1, processor 2.6 GHz Intel Core i7 with
4 cores and memory of 16GB RAM 1600 MHz
DDR3.

4 CONCLUSIONS

In this paper, we have presented XASR+, an algo-
rithm that is able to recognize objects automatically
in cases with less constrained conditions including
some contrast variability, pose, intra-class variabil-
ity, size of the image and focal distance. We tested
the effectiveness of our method for the detection
of four different objects: razor blades, shuriken
(ninja stars) handguns and clips. In our experiments,
the recognition rate was more than 95% in every
class. The robustness of our algorithm is due to
three reasons: i) the dictionaries learned for each
class in the learning stage corresponded to a rich
collection of representations of relevant parts which
were selected and clustered; ii) the testing stage
was based on adaptive sparse representations of
several patches using the dictionaries estimated in
the previous stage which provided the best match
with the patches, and iii) a visual vocabulary and
a stop-list used to reject non-discriminative patches
in both learning and testing stage.
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TABLE 1: Accuracy [%] of each method (η̄). An example of the occlusion in the class handgun is
illustrated at the top.

Occlusion → 0 15×15 30×30 50×50 70×70
(0%) (1.4%) (5.5%) (15.3%) (29.9%)

Method ↓
XASR+1 97.0 96.5 95.0 89.5 82.3
XASR+2 92.8 93.2 89.6 79.6 66.8
XASR+3 98.8 98.4 97.2 94.4 84.8
XASR1 92.0 92.0 85.5 31.5 20.5
XASR2 90.8 84.8 87.6 82.0 66.0
XASR3 98.0 97.2 95.2 92.8 78.8
SIFT 91.0 87.6 84.2 78.4 64.6
SRC 94.8 89.4 85.8 81.0 70.6
Vgoogle 87.2 83.6 82.8 70.4 54.6
BoW-KNN 88.6 84.4 82.6 73.8 55.0
BoW-RF 84.4 75.2 73.6 61.0 38.2
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[17] André Mouton and Toby P Breckon. Materials-based 3D
segmentation of unknown objects from dual-energy computed
tomography imagery in baggage security screening. Pattern
Recognition, 48(6):1961–1978, June 2015.

[18] Timo Ojala, Matti Pietikäinen, and Topi Mäenpää. Multiresolu-
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