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Abstract

Upwelling filaments are long (≈ 100’s km) narrow (O ≈ 10 km) structures in the coastal
ocean. They export nutrients and prevent the movement of larvae along the coast. Filaments
can be observed in satellite images and in numerical models, but their manual identification
and characterization is complex and time consuming. Here we present a Matlab code for a
manual method to assist experts in this task, and a code for an automatic filament detection
method (AFD) based on image processing and pattern recognition to identify and extract
features in output files from a numerical ocean model. AFD was tested with a simulation
of northern Chile. AFD had a similar performance in filament detection to that of human
experts. AFD provides substantial time savings when analyzing a large number of images
from a numerical ocean model. AFD is open source and freely available.

Keywords: Upwelling Filaments, Image Processing, Chile, Numerical Models, Coastal
Ocean

1. Introduction1

Ocean circulation patterns and their impact on marine ecosystems is a topic of interest2

to scientists (Bakun, 1996; Condie et al., 2005) that presents a technological challenge. This3

includes detecting features like eddies (Chaigneau et al., 2008), plumes (Chrysoulakis et al.,4

2005), and fronts and filaments (Cayula and Cornillon, 1992; Nieto et al., 2012) in results5

from remote sensors and numerical circulation models. These sources of information are6
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often studied with the aid of image detection algorithms (Wang et al., 2010) or geoprocessing7

tools (Roberts et al., 2010).8

Upwelling filaments are long (100-200 km) narrow (10-50 km) cold water structures9

that extend from the coast to the oceanic region. They have consistent characteristics10

of temperature and salinity, with a shallow vertical structure (100 m) (e.g. Sobarzo and11

Figueroa (2001)). They are strongly influenced by seasonal winds as a forcing factor, which12

associates the upwelling season with filament formation, with more and longer filaments13

during this period (Strub et al., 1991). Upwelling filaments are biologically important due14

to the volume of water with high concentrations of nutrients and chlorophyll-a (Chl-a)15

transported from the coastal zone to the open ocean (Jones et al., 1991; Álvarez-Salgado16

et al., 2001) due to their role in the advection of eggs and larvae of different marine species to17

the open ocean, preventing their transport along the coast (Rodŕıguez et al., 1999; Bécognée18

et al., 2009).19

Because of their strong sea surface temperature (SST) and Chl-a signatures, filaments20

can be easily identified in remote sensing images Fonseca and Farias (1987); Cáceres (1992);21

Thomas (1999); Grob et al. (2003), or by direct measurement of water velocity (Maŕın22

and Delgado, 2007) and/or temperature and salinity profiles (Sobarzo and Figueroa, 2001).23

Satellite-based remote sensors are used to study large areas, generally with daily coverage,24

but clouds can limit the obtainable information about the surface structure of filaments25

(Thomas, 1999). Remotely sensed SST and Chl-a images only provide information about the26

surface characteristics of filaments, while in situ observations provide better understanding27

of the vertical structure of currents and density gradients affecting filaments (Flament et al.,28

1985; Navarro-Pérez and Barton, 1998; Barton et al., 2001). Observational studies provide29

detailed information about horizontal and vertical filament structure, but depend on the30

timing, duration, and frequency of hydrographic cruises, so generally describe only one or31

two filaments at a time (Álvarez-Salgado et al., 2001; Barton et al., 2001; Sobarzo and32

Figueroa, 2001).33

There have been several studies of upwelling filaments in Chile (Sobarzo and Figueroa,34

2001; Maŕın and Delgado, 2007; Morales et al., 2007; Letelier et al., 2009). Sobarzo and35

Figueroa (2001) presented the results of a research cruise in 1997 during which the vertical36

structure of an upwelling filament was registered near Mejillones Peninsula (23 ◦S) and37

described as ≈100 m deep and 165 km long. Maŕın and Delgado (2007) used Lagrangian38

drifters to study surface circulation between 23-30 ◦S and identified filaments over 295 km39

in length. In a study of 1,867 SST images recorded between 1987 and 1992 of northern Chile40

(18.3-24 ◦S), Barbieri et al. (1995) described upwelling filaments up to 222 km in length,41

with an average of 111 km. Sixty-three filaments were observed in this area between 198842

and 1990, mostly between the months of November and April. Most originated from specific43

coastal locations. Cloud cover seriously limits the study of major structures associated with44

coastal upwelling, with 54% of the images from coastal areas (defined as 71◦ W to the coast)45

and 83% from intermediate (defined as 71◦ W - 72◦ W) and oceanic areas (defined as 72◦ W46

- 73◦ W) were being classified as poor/bad for this purpose (Barbieri et al. (1995), Table 1).47

Other studies have described the presence of filaments in numerical simulations of the48

Chilean coast (Escribano et al., 2004; Leth and Middleton, 2004). Parada et al. (2012) used49
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a climatological simulation of the region between 33 and 40 ◦S, with a spatial resolution50

of 5 km, combined with a module of numerical Lagrangian drifters. These studies describe51

a larger number of filaments in the austral summer, compared with austral winter, which52

is attributed to increased instability of coastal currents. In addition, the filaments were53

identified as presenting close and intense coastal currents that extended from the shore.54

The studies also concluded that these currents generally act as barriers to the latitudinal55

transport of passive particles like anchovies larvae. In some cases, the particles go back to56

the coast because of the 3D variability of the currents in the surface layers, including the57

change of orientation of the filaments.58

In this context, numerical ocean simulations are useful for quantitatively characterizing59

the spatial dimensions of filaments (length, width, and depth). The use of numerical simu-60

lations requires proper validation of the results and a study of the sensitivity of models to61

changes in wind forcing, coastline or bathymetry. Satellite-based products like the Group62

for High Resolution Sea Surface Temperature (GHRSST) (Martin et al., 2012) and the re-63

sults of numerical models (e.g. Oke et al. (2013)) are available to study the variability of64

upwelling filaments. However, manual analysis of large amounts of data is time-consuming65

and prone to error due to operators fatigue. There is also an inherent data interpretation66

error in which the expert changes the interpretation of what constitutes an upwelling fila-67

ment. For this reason, it is useful to have computational tools to support the detection and68

characterization of filaments to reduce analysis time and provide consistency in the analysis.69

This paper presents two computational tools developed in Matlab to identify and char-70

acterize upwelling filaments in output files from a numerical ocean model: a manual method71

and an automatic filament detection method (AFD). This work aims to complement the72

study of upwelling filaments using numerical schemes, automated identification (Eugenio73

and Marcello, 2009; Nieto et al., 2012; Cordeiro et al., 2015), and feature or particle track-74

ing (Maŕın et al., 2003; Lett et al., 2008; Sayol et al., 2014; Otero et al., 2015) in ocean75

models. As an example of the application of the automatic method we present a charac-76

terization of filaments obtained from a numerical simulation in northern Chile (15-35 ◦ S).77

The article is divided as follows: Section 2 describes the two methods of filament identifica-78

tion, manual and AFD. Section 3 presents the validation of AFD against a panel of experts.79

Section 4 describes the main results regarding the variability of upwelling filaments on the80

Chilean coast. Finally, Section 5 discusses the main implications of this work.81
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2. Methodology82

We developed two methods to identify filaments in output files from a numerical ocean83

model: one manual and the other automatic. The manual method consists of a graphic user84

interface (GUI) for manually labeling of filaments by clicking on a button to subsequently85

extract features automatically to a text file. The automatic method is based on image86

processing and pattern recognition techniques to automatically identify and characterize87

upwelling filaments. The user has to specify a series of criteria to define what constitutes88

an upwelling filament. Some of the factors to be considered in this decision are:89

1. Sea surface current gradient.90

2. Sea surface temperature gradient.91

3. Filament length.92

4. Persistence or duration of the filament.93

5. Filament originating near the coast.94

Since the numerical model used provided the results in the NetCDF format, we used95

Matlab’s toolbox MexCDF (http://mexcdf.sourceforge.net/), to read the input file. Adapt-96

ing this code to other programming languages like Octave should be fairly easy based on97

past experiences (Sepulveda et al., 2011), except for the GUI. This should be done with98

general purpose programming languages like Python.99

2.1. Manual Method100

The manual method is GUI that allows the user to label upwelling filaments manually101

by checking each image individually and clicking with the mouse at the start and end point102

of an upwelling filament. All the information relating to these clicks is stored in matrices103

that can then be processed efficiently. This method is adapted to read monthly outputs files104

in NetCDF from ROMS AGRIF, with a daily temporal resolution. One can select a specific105

area to analyze, or study the entire model domain. The program reads the SST and surface106

speed magnitude for random time records, so that the filaments observed by the user in one107

image does not influence the users decision about the existence of filaments in the following108

image.109

The GUI shows three images for every temporal record (Fig. 1): the horizontal temper-110

ature gradients considering 6 pixels, equivalent to 30 km, (Fig. 1a); the estimated surface111

temperature contours (Fig. 1b); and the contours of the magnitude of the surface current112

(Fig. 1c). Once an upwelling filament has been identified by the user by clicking on the start113

and end points, the algorithm calculates the start and end latitude and longitude, stores the114

year, month and day of the simulation, assigns an identification number to each filament115

number and calculates the length of each selection. The length is approximated using the116

Haversine formula (Robusto, 1957), which assumes a straight line between the start and end117

point considering the curvature of the Earth. To estimate the persistence of a filament, the118

coastal coordinates of its starting point (the closest pixel to the coast) are compared to those119

of the filaments selected the day before and the day after, within a spatial tolerance range120

(defined by the parameter rtol). If there is a coincidence, it is considered that the filament121
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Figure 1: Example of the information used by the manual and automatic detection methods. Panel a) shows
sea surface temperature (SST) gradients. Panel b) shows the SST field. Panel c) shows the magnitude of
the surface current.

is the same. Once these values have been calculated, the selected filaments can be filtered122

by other user defined criteria (e.g. Table 1). Upwelling filaments in numerical models have123

been identified manually before (e.g. Cordeiro et al. (2015); Troupin et al. (2012)).124

Magnitude of surface current
√
U2 + V 2 > 0.25cm/s

Minimum filament length 100 km
Minimum filament life (persistence) 3 days

Place of origin First 50 km from the coast
rtol 1 pixel

Table 1: Criteria used to identify upwelling filaments. U and V are the east-west and north-south components
of current velocity.

2.2. Automatic Method125

The automatic filament detection method (AFD) is a processing algorithm to detect126

and characterize upwelling filaments in output files from a numerical ocean model. This127

algorithm applies techniques of digital image processing to highlight the object of study128

(filaments) and to calculate its main features: coordinate of origin, persistence, length, and129

direction. The algorithm is applied in this study to the results of a numerical simulation130

done with the ROMS AGRIF ocean model which are stored in NetCDF. First, the input131
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Figure 2: Example of automatic filament detection code working for an particular instant. Panel a) shows
the magnitude of the surface velocity field in gray Panel b) shows the binary image (white/black) of the
calculated morphological skeleton. Panel c) shows the segmentation of the skeleton, where we can observe
the structures that were selected as filaments.

file is read and latitude, longitude, time, SST, and magnitude of the current, as well as132

the land/ocean mask are extracted. The later field is used to calculate the distance to the133

coast for each grid point. The code can be used to detect a filament using as a criteria134

SST gradient or a threshold value of surface velocity magnitude. The two methods will be135

combined in future versions of the code. In this study, the automatic method is applied to136

images of surface velocity magnitude, a dynamical indicator of the presence of an upwelling137

filament. Based on the classification proposed by Mery and Soto (2008), we summarize the138

organization of our algorithm in the following three steps.139

1. Image Acquisition: A gray scale image is generated for the daily fields of surface140

current velocity, geographical coordinates, mask water/land and time. The algorithm141

applies the binary mask water/land use to ensure that only ocean data is represented.142

Grid points with current velocity magnitude values below the threshold are identified,143
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as defined in Table 1, transforming the grey scale image (Fig. 2a) into a binary image144

were each pixel has a 1 value if the threshold criteria is met, or a 0 value if it is not145

met. (image not shown).146

2. Pre-processing: The binary image is modified to highlight filaments using elements147

of mathematical morphology. These morphological operations (Gonzalez et al., 2010)148

are used to retrieve the shape of the filaments. First a morphological opening is applied149

using a structuring element in the form of a 3x3 matrix that moves across the image150

to erode and then dilate the objects that compose it. A morphological skeleton is then151

generated by removing pixels at the boundaries of objects while avoiding breakage152

(Fig. 2b). A set of lines are obtained representing the full thinning of the region by153

maintaining the essential filament shape. The branches of the skeleton cut by only one154

pixel are joined by a ”bridge” operation, that is, 1-0-1 pixel sequences are converted155

into 1-1-1 sequences. Finally, the option clean removes the pixels that have a single156

value of 1 and are surrounded by pixels of 0 value.157

3. Segmentation and Feature Extraction: The skeletons resulting from the process158

above are analyzed individually. The result is a binary image where a pixel equal159

to 1 indicates membership in the region of interest and 0 indicates non-membership.160

Table 1 describes the criteria by which the algorithm evaluates the pixels belonging161

to the regions. If all the criteria are met, the algorithm classifies it as an upwelling162

filament (Fig. 2c) and obtains the main features from the objects: time, latitude and163

longitude of the origin of each filament, beginning and end time of the filament and its164

length. We use a matrix of distance to the coast to select the origin of each filament,165

which is taken as the pixel that is closest to the coastline. The length of a filament is166

calculated as the sum of all the pixels multiplied by the value of the spatial resolution167

of the model, this approach includes the length of all the branches of a filament in168

its total length. Once feature extraction was completed, we analyzed persistence over169

time in the same way as with the manual method: when two filaments have the same170

origin, defined as the closest pixel to the coast, within a spatial tolerance defined171

by rtol, they are considered as the same filament, regardless if the shape or size has172

changed.173

A flow diagram of the automatic detection is shown in Fig. 3. To use it, the user has174

to configure the ftd param.m file and call the ftd automatic.m function to process the file175

defined in ftd param.m without further intervention. A call to ftd assisted.m launches the176

GUI for the manual method.177

2.3. Ocean Model Configuration178

The numerical ocean model ROMS AGRIF, (Shchepetkin and McWilliams, 2005; Penven179

et al., 2005) was used to simulate the climatological ocean circulation in northern Chile,180

between 15-35 S and 69-80 W, with a horizontal spatial resolution of 1/20th of a degree (≈5181

km), resulting in a matrix of 436x198 pixels. Several packages have been developed for this182

particular ocean model such as ROMSTOOLS, which is focused on pre- and post-processing183

of the model simulations (Penven et al., 2008), and LiveROMS, which facilitates installation,184
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Figure 3: Flow diagram for the automatic detection code for each time step.

compilation and use (Sepulveda et al., 2011). The model was imposed on the surface with185

wind data, heat fluxes, and fresh water from COADS05 (Da Silva et al., 1994). Bathymetry186

was obtained from the ETOPO2 data base (Smith and Sandwell, 1997). The boundary187

and initial conditions were derived from the WOA2001 database (Conkright et al., 2001).188

In the vertical, we implemented 32 sigma layers, which are terrain-following divisions of189

the ocean depths, which were distributed so that there was a higher concentration of sigma190

layer near the top to properly resolve circulation. A sponge layer, a 50-km-wide region along191

the open boundaries, with artificially increased viscosity, was used to avoid the reflection192

of energy (waves) leaving the domain. We ran the simulation for 10 climatological years,193

saving the results in daily time steps. The last 4 years (7-10) of the simulation were analyzed,194

representing a total of 1440 images.195

3. Automatic Method Validation196

An important challenge in the classification of filaments is interpreting model results.197

This was evident when we asked experts with experience in ocean sciences to identify up-198

welling filaments. Some experts look at temperature gradients, others focus on the dynamic199

characteristic of surface currents in upwelling filaments, while still others consider both200

aspects important.201

This generates different interpretations among experts on what constitutes an upwelling202

filament. For this study, we asked over 20 experts with experience in ocean sciences to203

identify upwelling filaments. A sample image similar to Figure 1 was sent to them. We204
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received replies from 8 experts, including an author of this article, and we sent 10 randomly205

selected images from the results provided by the numerical model (Table 2). The experts206

were asked to draw or circle the upwelling filaments in the images.207

Image 1 Month 4, Day 4 Image 6 Month 7, Day 20
Image 2 Month 9, Day 6 Image 7 Month 2, Day 20
Image 3 Month 11, Day 19 Image 8 Month 5, Day 11
Image 4 Month 2, Day 8 Image 9 Month 9, Day 20
Image 5 Month 11, Day 10 Image 10 Month 10, Day 8

Table 2: Month and Day of the images studied by the experts.

We also applied the automatic detection algorithm to the same images evaluated by208

experts. The automatic method detected 117 filaments in the 10 images. The 8 experts209

detected between 32 (Expert 1) and 173 filaments (Expert 7) in the 10 images, with a210

median of 120 (Fig. 4). Most experts also identified short filaments since it was difficult to211

evaluate a filament’s length due to the absence of a length scale in the images we provided.212

To have comparable results when the automatic method was applied, the filament’s length213

was not considered as a filtering criteria. Thus, these results include filaments less than214

100 km long. Hereafter we compare our results with those of the group of 5 experts that215

were more consistently in agreement with each other, thus excluding 3 experts (1, 6 and 7).216

A median of 116 filaments, with a standard deviation of 6.6, was obtained from the group217

of 5 experts, who identified between 8 and 17 filaments in each image, with a mode of 11218

filaments being identified (not shown). Images 2 and 9 had the fewest filaments (average of219

10.1 and 10.3 filaments among experts, respectively) and both were from the austral winter.220

Images 4 and 7 had the most filaments (both with an average of 13.8 filaments among221

experts). These images were from the austral summer. Some 90% of the analyzed images222

(10 images, 5 experts) had 11 to 13 filaments, with an average of ≈12 (12 ± 1 filaments223

with 90% certainty).224

Following Chaigneau et al. (2008), we used three indicators to evaluate the results of the225

AFD method and those of the five selected experts. In the following, the AFD method is226

analyzed together with the experts, as if the method were another expert. The interpreta-227

tions of every expert were defined as the truth, and the interpretations of the other experts228

were compared against this truth to calculate the following indicators: successful detection229

rate (SDR), undetected filaments (UDF) and excess number of detected filaments (ENDF).230

SDR = Nc/Nt ∗ 100 (1)

UDF = Nt−Nc (2)

ENDF = Ne−Nc (3)

Nt corresponds to the total number of filaments detected in the true solution, Ne is231

the number of filaments detected by another expert, and Nc is the number of filaments in232

common between the truth and the experts. Nc was calculated by visually inspecting the233
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Figure 4: Histogram with the total number of upwelling filaments detected, manually by the experts, in 10
randomly selected images. AFD column shows the results for the automatic filament detection method.

filaments selected as true and the filaments selected by the other experts. Nc increased when234

the same object was selected in both images.235

The results of SDR, UDF and ENDF obtained for the group of 5 experts and the AFD236

are presented as boxplots (Fig. 5) that were calculated considering 5 values. Although237

there are slight differences in the SDR of the 5 experts, these are not significant (Fig. 5a).238

SDR rates from experts 2, 3, 4, 5, 8 and AFD have a median value of 82.5%, 85%, 88%,239

90%, 91% and 77%, respectively. Experts 5 and 8 obtained the highest median values of240

successful detection (Fig. 5a), indicating that the filaments detected by these experts were241

also observed by the other experts (including the AFD).242

The AFD method is consistent with the experts, the difference being 1 or 2 undetected or243

over-detected filaments, which is equivalent to a 10-20% of the average number of filaments244

presented in the images. These results are confirmed by the median values for UDF and245

ENDF rates, which vary between 1 and 3 filaments (Fig. 5b, Fig. 5c). A study of SDR values246

for individual images used in the validation process (data not shown) reveals that Image 2247

(Month 9, Day 6) presented more difficulties for the automatic method, since the median248
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value of its SDR was 63%. In contrast, results from Image 1 (Month 4, Day 4), presents249

more consistent results, with a median of 91%. Image 2 also presented major difficulties for250

the experts, where their SDR median was 79.5%.251

The SDRs are low for Image 2 (Month 9, Day 6), but not for Image 9 (Month 9, Day 20).252

Conversely, the SDRs for Image 1 (Month 4, Day 4) are high, while they are not for Image 10253

(Month 4, Day 8) (data not shown). This indicates that the difficulties in filament detection254

are not associated with the climatological month being studied. In a study using an eddy255

detection algorithm, Chaigneau et al. (2008) obtained a SDR of 92.7% and an excess of256

detection 18.7% for their proposed method, A widely used automatic method based on the257

Okubo-Weiss criteria applied to the same dataset obtained a SDR of 86.8% and an excess258

of detection of 63.3% (Chaigneau et al. (2008), Fig. 2). Other studies in automatic eddy259

detection (Nencioli et al. (2010), Table 1) present SDRs ranging from 85% to 100% when260

analyzing 10 images, and excess detection ranges between 0%-10%.261

4. Temporal and spatial variability of upwelling filaments262

Given the consistency between the AFD method and the 5 selected experts, we used this263

automatic approach to study 1,440 images from the climatological simulation of the Chilean264

coast described in Section 2.3. The criteria to define a filament are presented in Table 1. The265

AFD method required one minute per month to extract the characteristics of the filaments266

(30 images, daily output) on a machine with Ubuntu 10.04 64-bit OS (R) Intel (R) Pentium267

Dual CPU E2180 2.00 GHz and 4 GB of RAM, while it took an expert an average of an268

hour to do the same analysis, including writing down all the information. This could be269

reduced to 15 minutes per month by an expert if the GUI was used for manual selection.270

First we describe here the characteristics of an arbitrarily selected a filament observed271

on November 8 (climatological month). The filament selected had a lifespan of 11 days. It272

was located between 71-76 W and 32-34 S. Observing the SST (Fig. 6a), we can see that the273

filament extended from the coast (≈ 72 W) seaward past 74 W, with temperatures ≈ 2 ◦C274

colder than in surrounding waters. Surface currents along the filament are markedly larger275

than in the surrounding waters. These higher velocities and the offshore orientation of the276

filament suggests the offshore transport of nutrients and larvae by filaments (Fig. 6b). A277

vertical section along the filament (figure not shown) indicates that it has an impact down278

to a depth of 100 m, as seen in observational studies (Sobarzo and Figueroa, 2001).279

The AFD analysis of the model results shows that filaments are generated across the280

coast of Chile, with at least one filament per degree of latitude. For our analyses we gridded281

the results by one degree of latitude. The areas with the largest number of filaments are282

17 ◦S (45 filaments), 29 ◦S, and 30 ◦S (43 filaments each), with over 10 filaments per year283

(Fig. 7a). Barbieri et al. (1995) (Table 8) observed 69 filaments during a 3-year period284

(1988-1990) for the coastal region between 18.3-24 ◦S. For this same region 106 filaments285

were observed in a 4-year period, approximately 17% more per year. This difference could286

be due to a combination of three factors: a) the effect of cloud cover, which in the study of287

Barbieri et al. (1995) is mentioned as 33% for coastal regions; b) detection issues with the288

ADF method; or c) incorrect representation of upwelling filaments in the numerical model.289
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Figure 5: Variability of the identification indexes. The columns show the results when the interpretation
of an expert was considered as the true value. The upper panel shows the Success Detection Rate (SDF),
middle panel the number of Undetected Filaments (UDF) and the lower panel the Excess Number of Detected
Filaments (ENDF). Each boxplot represents 50 evaluations of an experts criteria.
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Figure 6: Example of an upwelling filament that was detected by the automatic method. Panel a) shows
the sea surface temperature. Panel b) shows the magnitude of the surface current.
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Figure 7: Spatial distribution of upwelling filaments, in bins of 1◦ of latitude detected using the automated
method considering 4 years of a climatological simulation. Panel a) shows the total number of filaments,
Panel b) shows a box plot of the length of the filaments (km). Panel c) shows a box plot of the persistence
of the filaments (days).

A realistic hindcast of ocean circulation for this period could be used to further elucidate290

the origin of such differences. In terms of filament length, in this study, 77.1% (384) of the291

filaments were less than 250 km long and 34.7% (173) were less than 150 km long.292

The median length of the filaments was 178 km, longer than the average of 111 km293

observed by Barbieri et al. (1995) in northern Chile. An overestimation of a filament’s length294

is expected as it includes the length of all its branches. We observed longer filaments at 17295

◦S and 30 ◦S, with median lengths of 217 and 229 km, respectively (Fig. 7b). The longest296

recorded filament measured 1065 km, which was located at 30 S. The median persistence of297

a filament was 4 days (Fig. 7c), while 86% had lifespans of 10 days or less, comparable to the298

6 days Barbieri et al. (1995) described for a filament in February 1989. The longest-lasting299

filament continued over 32 days, and was located at 29 S. Figure 8a shows information on the300

temporal variability of the filaments. We note that the number of filaments has a marked301

annual cycle, with peaks in spring-summer and autumn-winter lows. From December to302
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Figure 8: Temporal variability of the filaments detected using the automated method considering 4 years of
a climatological simulation in all study area. Panel a) shows the number of filaments per month. Panel b)
shows a box plot of the length of the filaments (km). Panel c) shows a box plot of the persistence at each
month (days).

April of the four year of the study, there were more than 45 filaments every month, with303

a maximum of 69 in April, while between May and November, there were fewer than 35304

filaments per month, with the fewest (19) in July. This annual cycle was expected by the305

association of filaments with coastal upwelling. In comparison, Barbieri et al. (1995) reports306

that upwelling filaments were numerous between November and April. Figures 8b and 8c307

show the temporal variability in length and persistence, respectively. In months with fewer308

filaments, there were some filaments with lengths and persistence above the average values.309

A non-parametric Kruskal-Wallis test was applied to compare the median values of length310

and persistence and indicated that persistence was comparable for all months (p = 0.004),311

while there was variability in median length (p = 0.16).312
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4.1. Sensitivity Study313

We conducted a sensitivity study based on changes in surface velocity magnitude and314

the SST gradient (Table 3). The AFD method was applied in the study area to analyze315

four years of daily results (1440 images). In this case, a detected structure was considered316

a filament if it was longer than 100 km, the distance to the coast was less than 15 pixels317

(75 km), and if it persisted more than 3 days. The total number of detected filaments (N),318

the length (mean value and standard deviation), and persistence, in days (mean value and319

standard deviation) were calculated for changes in the threshold for the velocity magnitude320

[m/s] and for the SST gradient/30 km [ ◦C] (Table 3). In comparison, Barbieri et al. (1995)321

reported SST gradients from images with a range of 1.6-9.6 ◦C/30 km, with the higher values322

obtained in summer and the lower ones in winter. A value of 2.25 ◦C/30 km (reported as323

0.075 ◦C/km) was used by Cordeiro et al. (2015) to manually identify upwelling filaments324

from a numerical simulation of the Iberian Peninsula. These results show that the detection325

algorithm is highly sensitive to the choice of threshold values and that results should be326

validated before further analysis. In this study, the velocity magnitude was selected as the327

key parameter to determine whether a structure of interest was present, and the reference328

value was chosen after a bibliographic research of the area. As noted in Table 3, if we had329

used the SST gradient as a detection criteria, while length and persistence are similar, the330

total number of filaments would have been underestimated by almost half. Auxiliary plotting331

functions are included with this code in order to superimpose the detected structures over332

the SST, SST gradient, and velocity magnitude contour maps from the model results. These333

plots can be used to visually inspect a large number of images and quickly establish if the334

threshold parameters selected are capturing the structures of interest.335

Parameter Value N Length [km] Persistence [days]
Velocity magnitude 0,25 74 213± 115 4.4 ± 2.8
Velocity magnitude 0,30 59 184± 76 4.4 ± 2.1
Velocity magnitude 0,50 1 231 3.0
SST gradient/30km 2,00 44 170± 67 4.6 ± 2.6
SST gradient/30km 2,50 17 169± 73 4.2 ± 1.8
SST gradient/30km 3,00 5 128± 11 3.2 ± 0.4

Table 3: Sensitivity study of filaments detected in the study area over 4 years (1,440 images). Results for
total number (N), length (mean value and standard deviation), and persistence, in days (mean value and
standard deviation) are presented for changes in the threshold value of the velocity magnitude [m/s] and
the SST gradient/30 km [◦ C]

The automatic code is sensitive also to the rtol parameter. As mentioned in the Method-336

ology section, to estimate the persistence of a filament, the coordinates of its starting point337

(the closest pixel to the coast) are compared to those of the filaments selected the day be-338

fore and the day after, within a spatial tolerance range (defined by the parameter rtol). If339

there is a coincidence, it is considered that it is the same filament. By increasing rtol to 2340

pixels, the total number of filaments increases by 110% in the months from May to October341

and by 49% in the remaining months (contrary to what one would expect from upwelling342
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dynamics). By considering a value of 0 for rtol, a ≈ 90% decrease in the total number of343

filaments for all months was observed. As in the study of eddies in numerical models, the344

detection and the identification of two features as the same object are two different tasks,345

and improvements are needed in both areas.346

It is recommended to select several random images from model results and compare what347

is obtained using the manual method. The initial set of parameters can be selected from the348

available literature in the area of interest and then compared with the results obtained by349

manual identification. Statistical indicators previously discussed can be used for guidance350

in the selection of new parameters. Once a satisfactory level of identification is achieved,351

use the automatic code to process several years of model results.352

5. Conclusions353

Filaments are oceanic structures along the coast in upwelling systems and play an im-354

portant role in the export of nutrients to the open ocean and in the dispersion of larvae.355

Here we implemented a manual and an automatic detection algorithm of upwelling filaments356

in a numerical ocean model. The manual algorithm is a GUI that supports data extraction357

by an expert. It calculates properties like origin, linear length, and persistence. The auto-358

matic algorithm detects and characterizes upwelling filaments. Both methods were adapted359

to read results from the numerical ocean model known as ROMS AGRIF, but are easily360

adaptable to other ocean models. The automatic method is based on pattern recognition361

techniques in images and presents significant savings in processing time over the manual de-362

tection using the GUI. The user can define different criteria of what constitutes an upwelling363

filament. The results obtained by the automatic method were compared with the analysis364

by 5 human experts. In the study of 10 images, the automatic method presented a median365

success detection rate of 77% compared to the filaments identified by the experts. The366

method over-detected a median of 3 filaments (≈30%), while the experts over-detected 1-2367

filaments. Detection algorithms applied to oceanic eddies have yielded comparable overde-368

tection results (Chaigneau et al., 2008; Nencioli et al., 2010). While these results show the369

AFD method can obtain reasonable results, the method is highly sensitive to the threshold370

and selection parameter used (Table tab:sens), thus the results should be validated visually371

using the GUI. A plotting function to overlap the selected structures was developed and is372

available.373

Analyzing a climatological simulation of the ocean in northern Chile, we found that the374

region between 29-30 ◦S had the largest number of detected filaments. Most filaments were375

less than 250 km long and lasted 4 to 6 days. The filaments presented an annual cycle, with376

peaks in the austral spring-summer and a lower presence in the austral autumn-winter. Our377

results indicate that the proposed method can be used to automatically detect upwelling378

filaments, and could be another tool in the complex task of evaluating the performance of379

ocean models.380
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AFD Automatic Filament Detection
SST Sea Surface Temperature

Chl-a Chlorophyll–a
GUI Graphical User Interface

ROMS AGRIF A numerical ocean circulation model
NetCDF Network Common Data Format

SDR Successful Detection Rate
UDF Undetected Filaments

ENDF Excess Number of Detected Filaments

Table .4: Abbreviations used in this manuscript
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