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ABSTRACT
Advances in the latest years on neural generative models such as
GANs and VAEs have unveiled a great potential for creative ap-
plications in the area of artificial intelligence. The most known
applications have occurred in areas such as image synthesis for
face generation as well as in natural language generation. In terms
of tools for music composition, several systems have been released
in the latest years, but there is still space for improving the possi-
bilities of music co-creation with neural generative tools. In this
context, we introduce Latent Chords, a system based on a Varia-
tional Autoencoder architecture which learns a latent space by
reconstructing piano chords. We provide details of the neural archi-
tecture, the training process and we also show how Latent Chords
can be used for a controllable exploration chord audios as well as
to generate new chords by manipulating the latent representation.
We make our training dataset, code and sound examples open and
available at https://github.com/CreativAI-UC/TimbreNet

CCS CONCEPTS
•Applied computing→ Sound andmusic computing; •Com-
puting methodologies→ Neural networks.
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1 INTRODUCTION
The promise of Deep Learning (DL) is to discover rich and hierarchi-
cal models that represent probability data distributions encountered
in artificial intelligence applications, such as natural images or au-
dio [6]. This potential of DL, when carefully analyzed, makes music
and ideal application domain, being in essence very rich, structured
and also hierarchical information encoded in either a score format
or as audio waveforms.
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It is no surprise then that the spectacular growth of DL has also
greatly impacted the world of the arts. Classical tasks that can be
addressed through DL are tasks that have to do with classification
and estimation of numerical quantities. But perhaps one of the
most interesting aspects that these networks can do now is the
generation of content. In particular, there are network architectures
that are capable of generating images, text or artistic content such as
paintings or music [2]. Different authors have designed and studied
networks capable of classifying music, recommending new music,
learning the style of a visual work, among other things. Perhaps
one of the most relevant and recognized efforts at present is the
Magenta project 1, carried out by Google Brain, one of the branches
of the company in charge of using AI in its processes. According to
their website, the goal of Magenta is to explore the role of machine
learning as a tool in the creative process.

DL models have been proven useful even in very difficult com-
putational tasks, such as to solve reconstructions, deconvolutions
and inverse problems with increasing accuracy over time [6, 12].
However, this great capacity of neural networks for classification
and regression is not what interests us the most. It has been shown
that deep learning models can now generate very realistic visual
or audible content, fooling even the most expert humans. In partic-
ular, variational auto-encoders (VAEs) and generative adversarial
networks (GANs) have produced shocking results in the last couple
of years, as we discuss now.

One of the most important motivations for using DL to generate
musical content is its generality. As [2] emphasize: “ As opposed
to handcrafted models, such as grammar-based or rule-based music
generation systems, a machine learning-based generation system can
be agnostic, as it learns a model from an arbitrary corpus of music.
As a result, the same system may be used for various musical genres.
Therefore, as more large scale musical datasets are made available, a
machine learning-based generation system will be able to automati-
cally learn a musical style from a corpus and to generate new musical
content ”. In summary, as opposed to structured representations
like rules and grammars, DL excels at processing raw unstructured
data, from which its hierarchy of layers will extract higher level
representations adapted to the task. We believe that this capacities
make DL a very interesting technique to be explored for the gen-
eration of novel musical content. Among all the potential tasks in
music generation and composition which can be supported by DL
models, in this work we focus on chord synthesis. In particular we
leverage Variational Autoencoders in order to learn a compressed
latent space which allows controlled exploration of piano chords
as well as generation of new chords unobserved in the training
dataset.

1https://magenta.tensorflow.org/
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The contributions of this work are the following. First, we con-
structed a dataset of 450 chords recorded on the piano at different
levels of dynamics and octaves. Second, we designed a VAE which
is very similar in architecture as the one described in GanSynth [5],
the difference being that they use a GAN while we implemented
a VAE. Third, we train our model in such a way to obtain a two
dimensional latent space that could adequately represent all the in-
formation contained in the dataset. Fourth, we explored this latent
space in order to study how the different families of chords were
represented and how both dynamic and octave content operate on
this space. And last, we explored the generation of both new chords
and harmonic trajectories by sampling points in this latent space.

2 RELATEDWORK
Generative models have been extensively used for musical analy-
sis and retrieval. The amounts of reported research is immense. A
Google Scholar search on the terms “Generative adversarial net-
work music” renders more than 4000 results. The same search with
the terms “Variational autoencoder music” gives about 1200 results.
An exhaustive literature review would not fit on the available space
for this proposal. We now discuss a few of the most relevant work
with generative models from music from the last couple of years to
get an idea of the variety of applications that this techniques offer.

In terms of content generation, there are many recent works
that are very interesting. One of them is DeepBach [7], a neural
network that is capable of harmonizing Bach-style chorals in a very
convincing way. MidiNet [19] is a convolutional adversary gener-
ation network that generates melodies in symbolic format (MIDI)
by generating counterexamples from white noise. MuseGAN [4] is
network based on an adversary generation of symbolic music and
accompaniment, specifically targeted for the rock genre. Wavenet
[12] is a network that renders audio waves directly, without going
through any kind of musical representation. Wavenet has been
tested in human voice and speech. NSynth [5] is a kind of timbre in-
terpolation system that can create new types of very convincing and
expressive sounds, by morphing between different sound sources.
In [17], the authors introduced a DL technique to autonomously
generate novel melodies that are variations of an arbitrary base
melody. They designed a neural network model that ensures, with
high probability, that the melodic and rhythmic structure of the
new melody would be consistent with a given set of sample songs.
One important aspect of this work is that they propose to use Perlin
noise instead of the widely use white noise in VAEs. [18] proposed
a DL architecture that they call Variational Recurrent Autoencoder
(VRASH), supported by history, that uses previous outputs as ad-
ditional inputs. The authors claim that this model ”listens” to the
notes that it has composed already and uses them as additional
”historic” input. In [14] the authors applied VAE techniques to the
generation of musical sequences at various measure scales. In a fur-
ther development of this work, the authors created MusicVAE [15],
a network with a self-coding structure that is capable of generating
latent spaces through which it is possible to generate audio and
music content through interpolations in these latent spaces.

Generative models have also been used for music transcription
problems. In [16], the authors designed generative long short-term
memory (LTSM) networks for music transcription modelling and

Figure 1: Arquitecture of ourVAEmodel for chord synthesis.

composition. Their aim is to develop transcription models of music
that can be of help in musical composition situations. For the spe-
cific case of chords, there is a quite large number of research devoted
to chord recognition (some notable examples are [3, 9, 11, 20]), but
much less work has been devoted to chord generation. Our work is
based on GanSynth [5], a GAN model that can generate an entire
audio clip from a single latent vector, allowing for a smooth control
of features such as pitch and timbre. Our model, as we specify below,
works in a similar fashion but is was customized for the specific
case of chord sequences.

3 NETWORK ARCHITECTURE
The network is presented in Figure 1. Our design goal is not only
content generation and latent space exploration, but also to dispose
of a tool useful for musical composition. A VAE based model has
the advantage over a GAN model of having an encoder network
that can accept inputs from the user and a decoder network that
can generate new outputs. We based the encoder architecture from
the discriminator of GanSynth [5] and the decoder architecture
from the generator of GanSynth.

The encoder takes a (128,1024,2) MFCC (Mel Frequency Cepstral
Coefficients) image and passes it through one conv 2D layer with
32 filters generating a (128,1024,32) output that then passes through
a series of 2 conv2D layers with the same size padding and a Leaky
ReLU non-linear activation function followed by 2x2 downsampling
layers. This process keeps halving the images’ size and duplicating
the number of channels until a (2,16,256) layer is obtained. Then, a
fully connected layer outputs a (4,1) vector that contains the two
means and the two standard deviations for later sampling.

The sampling process takes a (2,1) mean vector and a (2,2) stan-
dard deviation diagonal matrix and using those parameters we
sample a (2,1) latent vector z from a normal distribution.

The decoding process takes the (2,1) z latent vector and passes it
throw a fully connected layer that generates a (2,16,256) output that
then is followed by a series of 2 transposed convD layers followed
by an 2x2 upsampling layer that keeps doubling the size of the
image and halving the number of channels until a (128,1024,32)
output is obtained. This output passes through a last convolutional
layer that outputs the (128,1024,2) MFCC spectral representation
of the generated audio. Inverse MFCC and STFT are then used to
reconstruct a 4 second audio signal.

2
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Figure 2: MFCC representation of a forte chord
.

Figure 3: MFCC representation of the forte chord generated
by the network

.
4 DATASET
Our dataset consists on 450 recordings of 15 piano chords played at
different keys, dynamics and octaves, performed by the main author.
Each recording has a duration of 4 seconds, and were recorded with
a sampling rate of 16 kHz in Ableton Live in wav format. Piano
keys were pressed for three seconds and released at the last second.
The format of the dataset is the same as used in [5].

Tbe chords that we included in the dataset were: C2, Dm2, Em2,
F2, G2, Am2, Bdim2, C3, Dm3, Em3, F3, G3, Am3, Bdim3 and C4. We
used three levels of dynamics: f (forte), mf (mesoforte), p (piano). For
each combination, we produced 10 different recordings, producing
a total of 450 data examples. This dataset can be downloaded from
the github repository of the project2.

4.1 Input: MFCC representation
Instead of using the raw audio samples as input to the network,
we decided to use an MFCC representation, which has proven
to be very useful for convolutional networks designed for audio
content generation [5]. In consequence, input of the network is a
spectral representation of a 4-second window of an audio signal,
by means of the MFCC transform. The calculation of MFCC is done
by computing a short-time Fourier Transform (STFT) of each audio
window, using a 512 stride and a 2048 window size, obtaining an
image of size (128,1024,2). Magnitude and unwrapped phase are
coded in different channels of the image.

Figure 2 displays theMFCC transform of a 4-second audio record-
ing of a piano chord performed forte. Magnitude is shown on top
while unwrapped phase is displayed at the bottom. The network
outputs a MFCC audio representation as well. Figure 3 displays the
MFCC representation of a 4-second audio recording of a the same
forte chord of figure 2 but in this case, the chord was generated
by the network by sampling the same position in the latent space
where the original chord lays.

4.2 Model training
We used tensorflow 2.0 to implement our model. For training, we
split our dataset leaving 400 examples for train/validation, and

2https://github.com/CreativAI-UC/TimbreNet/tree/master/datasets/
pianoChordDataset

Figure 4: Two dimensional latent space representation of the
dataset. Chords are arranged in a spiral pattern, where each
is next to ones that contain most pitches in common. Also
chords are arranged from forte to a piano dynamic.

50 examples for testing. We used Adam optimizer with default
parameters and learning rate of 3 × 10−5. We chose a batch size of
5, and the training was performed for 500 epochs, the full training
was done in about 6 hours using one GPU, a nvidia GTX 1080Ti.
We used the standard cost function in VAE networks that has one
term corresponding to the reconstruction loss and a second term
corresponding to the KL divergence loss, but in practice the model
is trained to maximize the ELBO (Evidence Lower BOund) [10, 13].
We tested different β weights for the KL term to find out how it
does affect the clustering of the latent space [8]. The best results
were obtained with β = 1.

5 USE CASES
Latent space exploration. Figure 4 displays a two dimensional
latent space generated by the network. Chords are arranged in
a spiral pattern following dynamics and octave position. Louder
chords are positioned in the outer tail of the spiral while softer
sound are in close proximity to the center. Chords are also arranged
by octaves, lower octaves are towards the outer tail while softer
octaves tend to be closer to the center. In this two dimensional
space, the x coordinate seems to be related mainly to chroma, i.e.
different chords, while they coordinate is dominated by octave from
lower to higher and dynamic from louder to softer. A remarkable
property of this latent space is that different chords are arranged
by thirds, following the pattern C, E, G, B, D, F, A. This means that
neighboring chords share the largest number of common pitches.
In general, this latent space is able to separate type of chords very
well.

Chord generation. One of the nice properties of latent spaces
is the ability to generate new chords by selecting positions in the
plane that have not been previously trained by the network. In
figure 5 we show the MFCC coefficients of a completely new chord
generated by the network.

3
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Figure 5: MFCC of a new chord generated by the network
.

Chord sequencer. Another creative feature of our network is
the exploration of the latent space with predefined trajectories,
which allows for the generation of sequence of chords, resulting in
a certain harmonic space. These trajectories not only encompass
different chord chromas, but different dynamics and octaves as well.
In figure 6, one possible trajectory is shown. In this case, we can
navigate from piano to forte, and from the thirds octave to the first,
and at the same time we can produce different chords, following a
desired pattern.

6 CONCLUSIONS AND FUTUREWORK
We have constructed a VAE that generates chords and chord se-
quences performed at different level of dynamics and in different
octaves. We were able to represent the dataset in a very compacted
two-dimensional latent space were chords are clearly clustered
based in chroma, and were the axes correlate by octave and dy-
namic level. Contrary to many previous works reported in the
literature, we use audio recordings of piano chords with musically
meaningful variations such as dynamic level and octave positioning.
We presented two use cases and we provide some interesting ideas
for interactive music tools for music co-creation.

We would like to extend our work to a larger dataset, includ-
ing new chords chromas, more levels of dynamics, more octave
variation and include different articulations. We would also like to
explore the design of another neural network devoted to explore
the latent space in musically meaningful ways. This would allow
us to generate a richer variety of chord music and to customize
trajectories according to the desires and goals of each composer.
We will also attempt to build an interactive tool such as Moodplay
[1] to allow user exploratory search on a latent music space, but
with added generative functionality.
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