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ABSTRACT
Decentralized partially observable Markov decision processes
(Dec-POMDPs) constitute an expressive framework for mul-
tiagent planning under uncertainty, but solving them is prov-
ably intractable. We demonstrate how their scalability can
be improved by exploiting locality of interaction between
agents in a factored representation. Factored Dec-POMDP
representations have been proposed before, but only for Dec-
POMDPs whose transition and observation models are fully
independent. Such strong assumptions simplify the plan-
ning problem, but result in models with limited applicabil-
ity. By contrast, we consider general factored Dec-POMDPs
for which we analyze the model dependencies over space
(locality of interaction) and time (horizon of the problem).
We also present a formulation of decomposable value func-
tions. Together, our results allow us to exploit the problem
structure as well as heuristics in a single framework that is
based on collaborative graphical Bayesian games (CGBGs).
A preliminary experiment shows a speedup of two orders of
magnitude.

Categories and Subject Descriptors
I.2.11 [Arti�cial Intelligence ]: Distributed Arti�cial In-
telligence| Multiagent systems

General Terms
Algorithms, Performance, Theory, Experimentation

Keywords
Planning under uncertainty, cooperative multiagent systems,
decentralized POMDP.

1. INTRODUCTION
Planning under uncertainty is a central topic within arti�-

cial intelligence. Especially during the last two decades mod-
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els such as Markov decision processes (MDPs), for single-
agent planning in a stochastic environment, and partially
observable MDPs (POMDPs), for single-agent planning in
an environment that is both stochastic and partially ob-
servable, have become popular. The decentralized POMDP
(Dec-POMDP) is a natural extension to multiple agents that
each have their individual observations, but have to optimize
the same reward function.

Unfortunately, optimally solving Dec-POMDPs is NEXP-
complete [2], and the same holds for �nding an � -approxi-
mate solution [14]. As a result, research has focused on spe-
cial cases to overcome this complexity barrier. For instance
models with more assumptions on observability and/or com-
munication have been considered [6, 9]. These approaches
try to exploit independence between agents, but they either
require the agents to observe the state of the system (as
in a multiagent MDP), or to observe a subset of state vari-
ables (as in a factored Dec-MDP) and communicate at every
stage. A recent approach [15] tries to minimize the amount
of communication.

For the particular case of transition and observation in-
dependent Dec-POMDPs [1], exploitation of independence
between agents has been suggested by Nair et al. [11] and ex-
tended by Varakantham et al. [19]. However, the assumption
of transition and observation independence (TOI) severely
limits the applicability of these models. In particular, TOI
implies that the agents have disjoint sets of individual states
and observations, and that one agent cannot inuence the
state transition nor the observation of another agent. In
practice this means that many interesting tasks, such as two
robots carrying a chair, cannot be modeled.

In this paper, we present a more general analysis of local-
ity of interaction in factored Dec-POMDPs. In particular
we show that the last stage in the process contains the high-
est degree of independence but, when moving back in time
(towards the initial stage t = 0), the scope of dependence
grows. Nevertheless, we show that most of the independence
is located|and can be exploited|where it is most needed,
since the overwhelming majority of the computational e�ort
of solving a Dec-POMDP is spent in the last stage [18].

We use this result to extend our previous work, in which
we solved Dec-POMDPs by representing them as a series
of Bayesian games (BGs), one for each stage [13, 12]. In



this setting, the increase in computational cost at the later
stages results from the size of the BGs and grows doubly
exponentially with t. Using locality of interaction, we intro-
duce collaborative graphical BGs (CGBGs), which are less
computationally expensive to solve in later stages where in-
dependence is high. We propose an extension of GMAA� ,
a generalized policy search algorithm, which uses CGBGs
to exploit locality of interaction in the last stage of a Dec-
POMDP. A preliminary experiment shows a speedup of two
orders of magnitude.

2. BACKGROUND
Here we introduce the regular (non-factored) Dec-POMDP,

then we describe the extensions for the factored version.

2.1 Dec-POMDPs
Formally, a Dec-POMDP with n agents is de�ned as a

tuple


A g;S; A ; T; R; O; O; b0 ; h

�
, where

� A g = f 1; : : : ; ng is the set of agents.

� S is a �nite set of states.

� A = � i A i is the set of joint actions , where A i is the
set of actions available to agent i . Every time step, the
agents take one joint action a = ha1 ; :::; an i , but agents
do not observe each other's actions. We also write aI

for the joint action of a subset of agents I � A g.

� The transition probabilities P(s0js; a) are speci�ed by
the transition function T .

� O = � i Oi is the set of joint observations. Every stage
one joint observation o = ho1 ; :::; on i is received. Each
agent i only observes its own component oi .

� O is the observation function, which speci�es the prob-
ability of joint observations: P (oja; s0).

� R is the immediate reward function, which maps states
and joint actions to reals: R(s; a).

� b0 2 P (S) is the initial state distribution at time t =
0, where P(S) denotes the in�nite set of probability
distributions over the �nite set S.

� h is the horizon of the problem.

At each stage t = 0 : : : h � 1 the agents take an action and
receive an observation. Their goal is to maximize the ex-
pected cumulative reward or return . The planning task
entails �nding a joint policy � = h� 1 : : : � n i , which speci-
�es an individual policy � i for each agent i . Such an in-
dividual policy in general speci�es an individual action for
each action-observation history ~� t

i = ( a0
i ; o1

i ; : : : ; at � 1
i ; ot

i ),
e.g., � i (~� t

i ) = at
i . The set of ~� t

i is denoted ~� t
i . However,

when only allowing deterministic or pure policies, a � i maps
each observation history (o1

i : : : ot
i ) = ~ot

i 2 ~O t
i to an action,

e.g. � i (~ot
i ) = at

i . For a more detailed introduction to Dec-
POMDPs see [12].

2.2 Factored Dec-POMDPs
A factored Dec-POMDP has a state spaceS = X1 � : : : �

X jX j that is spanned by X =
�

X1 ; : : : ; X jX j

	
a set of state

variables, or factors. A state corresponds to an assignment

of values for all factors s =


x1 ; : : : ; x jX j

�
. In a factored Dec-

POMDP, the transition and observation model can be com-
pactly represented by exploiting conditional independence
between variables. In particular, the transition and observa-
tion model can be represented by a dynamic Bayesian net-
work (DBN) [3]. In such a DBN arrows represent causal
inuence, and each node with incoming edges has a condi-
tional probability table (CPT) associated with it. Although
the size of these CPTs is exponential in the number of par-
ents, the parents are typically a subset of all state factors
and actions, leading to exponentially smaller tables than a
at model.

Similarly, the reward function often can be compactly
represented by exploiting additive separability, which means
that it is possible to decompose the reward function into the
sum of `smaller' local reward functions: R = R1 + � � � + R � .
Here `smaller' means that the functions are de�ned over a
smaller number of state and action variables, i.e., the scope
of these functions is smaller. We can represent the smaller
functions in the DBN [3]. The reward nodes have conditional
reward tables (CRTs) associated with them that represent
the smaller reward functions. The local reward functions
should not be confused with individual reward functions in
a system with self-interested agents, such as partially ob-
servable stochastic games [7] and (graphical) BGs [16, 17].
In such models agents compete to maximize their individual
reward functions, while we consider agents that collaborate
to maximize the sum of local payo� functions.

Decision trees [3, 4] or algebraic decision diagrams [8]
can be used to further reduce the size of representation (of
both CPTs and CRTs) by exploiting context speci�c inde-
pendence. E.g., the value of factor x2 is of no inuence when
factor x1 has a particular value. We will not consider these
further enhancements in this paper.

2.3 Factored Fire�ghting problem
To illustrate the model we will introduce the factored �re-

�ghting (FFF) problem as a running example. It models a
team of n �re�ghters that have to extinguish �res in a row
of nH = n + 1 houses. We will assume n = 3 ; nH = 4 as
illustrated in Figure 1 (Left). Each house H is characterized
by a �re level f l H , an integer parameter in [0; n f ). A state
in FFF is an assignment of �re levels s = hf l 1 ; f l 2 ; f l 3 ; f l 4 i :
At every time step, each agent i can choose to �ght �res at
house i or i + 1. Figure 1 (Middle) shows the DBN for the
problem. If a house H is burning ( f l H > 0) and no �re-
�ghting agent is present, its �re level will increase by one
point with probability 0 :8 if any of its neighboring houses
are burning, and with probability 0 :4 if none of its neighbors
are on �re. A house that is not burning can only catch �re
with probability 0 :8 if one of its neighbors is on �re. When
two agents are in the same house, they will extinguish any
present �re completely, setting the house's �re level to 0.
A single agent present at a house will lower the �re level
by one point with probability 1 if no neighbors are burning,
and with probability 0 :6 otherwise. Each agent can only
observe whether there are ames, oi = F , or not, oi = N ,
at its location. Flames are observed with probability 0 :2 if
f l H = 0, with probability 0 :5 if f l H = 1, and with probabil-
ity 0 :8 otherwise. Initially, the �re level f l H of each house
is drawn from a uniform distribution. The agents receive
a reward of � f l H for each houseH . In particular, the re-
wards are speci�ed by the �re levels at the next time step
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Figure 1: Left: An illustration of the FFF problem. Middle: A D BN modeling the transition, observation
and reward function for the FFF problem. Right: The dynamics of the FFF problem over multiple stages.
The scope of Q1 , illustrated by shading, increases when going back in time.

81� H � 4 r H (f l 0
H ) = � f l 0

H .
We can reduce these rewards to ones of the typeRH (s; a)

by considering the expectation over f l 0
H . For instance, for

house 1

R1(f l f 1;2g ; a1) =
X

f l 0
1

P(f l 0
1 jf l f 1;2g ; a1)r 1(f l 0

1);

where f l f 1;2g denotes hf l 1 ; f l 2 i . This formulation is possi-
ble because, as Figure 1 shows,f l 1 ; f l 2 and a1 are the only
variables that inuence the probability of f l 0

1 . Similarly, the
other local reward functions are given by R2(f l f 1;2;3g ; af 1;2g ),
R3(f l f 2;3;4g ; af 2;3g ) and R4(f l f 3;4g ; a3).

3. FACTORED Q-VALUE FUNCTIONS
We propose to exploit independence between agents. In

this section, we �rst analyze this independence by consider-
ing Q-value functions that express the expected return. In
particular, rather than using a single Q-value function that
is de�ned over joint actions of all agents, we show that the
value can be decomposed into� local Q-value functions (cor-
responding to the � local reward functions) involving only a
subset of agents (although this subset may grow with each
stage further from the last stage t = h � 1). Such a decom-
posed Q-value function is called factored. In section 4 we
will exploit such independence using a variation of BGs.

3.1 Scope and scope backup
As an example of a factored Q-value function, we con-

sider the last stage of FFF. Clearly, Qh � 1 is de�ned to be
equal to the immediate reward function, and thus can be
decomposed in 4 local Q-value functionsQ = Q1 + � � � + Q4 .
Where each Qk is de�ned over the same subset of variables
as Rk . This subset of variables is called the scope of Qk . In
order to exploit independence between agents, we discrimi-
nate between the variables that pertain to state factors and
those that pertain to agents (i.e., actions and observations).
Exploitation of independence between state factors will be
mentioned, but is left for future work.

De�nition 3.1 (Scope) Let H � f 1; : : : ; jX jg be a subset
of state factor indices, and let I � f 1; : : : ; ng be a subset
of agent indices, and let us write XH = � h 2H Xh , A I =
� i 2I A i , ~�

t
I = � i 2I ~� t

i . Then a function q : XH � ~�
t
I �

A I ! R has state factor scope X(q) = H and agent scope
A(q) = I .

2

31

Q1

Q2

Q3

Q4
2

31

Q1 Q2 Q3 Q4

Figure 2: Interaction graphs for t = h � 2 (left) and
t = h � 1 (right) of the FFF problem.

This de�nition has the most general form of value func-
tion we will use, involving state-factors, action-observation
histories and actions. It also applies when not all of these
elements are used. For example, the functionR1(f l f 1;2g ; a1)
has scopeX(R1) = f 1; 2g and A(R1) = f 1g.

Now we can formalize the e-th component of the Q-value
function for joint policy � of the last stage h � 1.

Qe
� (x h � 1

XR
e

; ~�
h � 1
AR

e
; ah � 1

AR
e

) � Re(x h � 1
XR

e
; ah � 1

AR
e

); e = 1 : : : �; (1)

where XR
e = X(Re) and AR

e = A(Re). E.g., in the FFF
problem Q1

� (f l f 1;2g ; ~� h � 1
1 ; a1) � R1(f l f 1;2g ; a1). The scope

of Q1
� is shown in the right diagram of Figure 1 at h � 1.

This Q-value function can be used to de�ne an interac-
tion hyper-graph G = hAg;Ei. In this graph, the nodes
correspond with agents and the � hyper-edgese 2 E (edges
that can involve more than two nodes) correspond to the �
local Q-value functions Qe;h � 1 for stage h � 1.1 In partic-
ular, an edge e connects A(Qe;h � 1), the agents involved in
Qe;h � 1 . For example, the interaction hyper-graph for the
last two stages of the FFF problem is shown in Figure 2.
It is the independence represented by sparsity of such in-
teraction graphs that we will exploit in section 4 to reduce
computation costs.

Given Qe;h � 1 , we consider the Q-value function at h �
2, which will clearly depend on P(x h � 1

XR
e

; oh � 1
AR

e
j� ) where (�)

represents any factors of inuence at stage h � 2. These
factors of inuence are de�ned by the scope backup.

De�nition 3.2 (Scope backup) Given a set K of par-
ticular state factors and observations of particular agents
K �

�
X 0

1 ; : : : ; X 0
jX j ; O1 ; : : : ; On

	
, the scope backup oper-

ator �( K ) returns the subset of variables of the previous
stage

�
X1 ; : : : ; X jX j ; A 1 : : : ; A n

	
(i.e., from the left side of

1We omit the stage index to Q-functions if it is implicit in
their arguments, as in (1).



the DBN) that are ancestors of variables in K . We discrim-
inate the state-factor component and the agent component
of the scope backup:

� X(K ) = f j j 9Y 2K s.t. X j = ancestor( Y )g ;

� A(K ) = f j j 9Y 2K s.t. A j = ancestor( Y )g :

For example, in FFF the probability of f l h � 1
f 1;2g ; oh � 1

1 de-

pends only on f l h � 2
f 1;2;3g and actions ah � 2

f 1;2g as shown at h � 2
in Figure 1 (right). When the policy is �xed, the probability
of actions ah � 2

f 1;2g is determined by oh � 2
f 1;2g . In turn, to deter-

mine P(f l h � 2
f 1;2;3g ; oh � 2

f 1;2g j� ) we need to consider all variables
of inuence at stage h � 3. As indicated in Figure 1, this set
encompasses all state factors and agents.

3.2 Decomposition of Value Functions
In order to more formally de�ne factored value functions,

we need to specify the probability of states and joint action-
observation histories. In order to do so, we will consider
joint policies that are partially speci�ed with respect to
time. In particular, the past joint policy speci�es a policy
for each agent up to stage t, i.e., ' t = ( � 0 : : : � t � 1) , where
� t 0

= h� t 0

1 ; : : : ; � t 0

n i is a joint decision rule for stage t0. An
individual decision rule for stage t0 maps individual length- t0

observation histories to actions � t 0

i : ~O t 0

i ! A i . Now we can
recursively de�ne the following joint distribution

P(st ; ~� t jb0 ; ' t ) = P(ot jat � 1 ; st )
X

s t � 1 2S

P(st jst � 1 ; at � 1)

P' t (at � 1 j~� t � 1)P (st � 1 ; ~� t � 1 jb0 ; ' t ): (2)

When we are interested in a subset of state factors and
agents we can marginalize as follows:2

P(x t
f ; ~�

t
g jb0 ; ' t ) =

X

x t
�f

X

~� t
�g

P(x t
f ; x t

�f ; ~�
t
g ; ~�

t
�g jb0 ; ' t ) (3)

We will write V t (� ) for the expected return of � over stages
t : : : (h � 1). The value function V h � 1(� ) for the last stage
t = h � 1 can now be decomposed as

V h � 1(� ) =
X

e2E

V e;h � 1(� ) =
X

e2E

X

x h � 1
XR

e

X

~� h � 1
AR

e

P(x h � 1
XR

e
; ~�

h � 1
AR

e
jb0 ; � )Qe

� (x h � 1
XR

e
; ~�

h � 1
AR

e
; � AR

e
(~�

h � 1
AR

e
)) : (4)

Such a decomposition is possible for every staget.

Proposition 3.1 Given a decomposed immediate reward
function, V t (� ) of a �nite-horizon Dec-POMDP is decom-
posable for any t.

Proof The proof is analogous to the one given in [11] and
is omitted here. �
2When there is independence between the histories in the
joint probability distribution this may be exploited. How-
ever, such independence quickly vanishes due to the inu-
ence of the transition and observation model. The result is
a space of joint probability distributions that is exponential
in the number of state factors, which typically renders the
problem intractable, although approximations with bounded
error are possible [5]. We focus on settings where exact eval-
uations of (2) are feasible.

Let us write Xe; Ae for the state factor and agent scope of
the Q-value function under concern. That is, Xe � X(Qe;t )
and Ae � A(Qe;t ). We use similar shorthand X0

e; A0
e for the

next-stage Q-values. Now, the value of a joint policy � for
a particular stage is given by

V t (� ) =
X

e2E

X

x t
Xe

X

~� t
Ae

P(x t
Xe ; ~�

t
Ae jb0 ; � )

Qe
� (x t

Xe ; ~�
t
Ae ; � Ae (~�

t
Ae )) =

X

e2E

V e;t (� ): (5)

where, using shorthand notation � X = � X(x t +1
X0

e
[ ot +1

A0
e

) and

� A = � A(x t +1
Xe

[ ot +1
Ae

),

Qe
� (x t

Xe ; ~�
t
Ae ; aAe ) = Re(x t

XR
e

; aAR
e

) +
X

x t +1
X0

e

X

o t +1
A0

e

P(x t +1
X0

e
; ot +1

A0
e

jx t
� X ; a� A )Qe

� (x t +1
X0

e
; ~�

t +1
A0

e
; � A0

e
(~�

t +1
A0

e
)) (6)

Note that the scope of Qe;t
� is given by

Xe � XR
e [ � X ; (7)

Ae � AR
e [ � A [ A0

e: (8)

It is necessary that A0
e � Ae, otherwise ~�

t +1
A0

e
can be unde-

�ned. For instance, for stage h � 2, the scope of the value
function corresponding to reward function 1 is given by

X(Q1;h � 2
� ) = X(R1) [ � X(f f l 1 ; f l 2 ; o1g)

= f f l 1 ; f l 2g [ f f l 1 ; f l 2 ; f l 3g = f f l 1 ; f l 2 ; f l 3g

A(Q1;h � 2
� ) = A(R1) [ � A(f f l 1 ; f l 2 ; o1g) [ A(Q1;h � 1

� )

= f 1g [ f 1; 2g [ f 1g = f 1; 2g

We can identify the scopes for the other 3 (e = 2 : : : 4)
value functions Qe;h � 2

� in a similar way. The agent scopes
de�ne a new interaction graph for stage h � 2 of the FFF
problem, as illustrated in Figure 2. The �gure clearly shows
that Q2 and Q3 both involve all agents, which means that
at this stage there is no reduction possible. However, our
representation will allow us to exploit independence for the
last stage, which is the bottleneck of computation. Also, to
avoid duplicate work for stage h � 2 it is possible to merge
the Q-functions by adding them.

3.3 Locality of Interaction
When assuming transition and observation independence,

the probability in (6) reduces easily: each variable x t +1
i (rep-

resenting a local state for agent i ) is only dependent on x t
i

(its value at the previous state), and each oi is only depen-
dent on x t +1

i .3 This means that the scope does not expand
and, as a result, Nair et al. [11] have a stationary interaction
graph. Let N i denote the neighbors of agent i , including i
itself, in this graph. They de�ne the local neighborhood util-
ity of an agent i as the expected return for all the edges that
contain agent i :

V (� N i ) =
X

s

b0(s)
X

e s.t. i 2 e

Qe;0
� (x 0

Xe ; ~� ; ; � Ae (~� ; )) : (9)

3 In fact the probabilities can also depend on an `external'
uninuenceable state, but this is of no consequence.



Consequently they show that when an agent j =2 N i changes
its policy, V t (� N i ) is not a�ected, a property they refer to
as locality of interaction .

In our more general case, such a notion of locality of in-
teraction over full policies is not properly de�ned, simply
because the interaction graph and hence agent i 's neigh-
borhood can be di�erent at every stage. However, at a
particular stage t, given a past joint policy ' t that has
been followed, a future policy  t that will be followed and
� = ( ' t ; � t ;  t ), we can de�ne

V t (� t
N i ) =

X

e s.t. i 2 A( Q e;t )

X

x t
Xe

X

~� t
Ae

P(x t
Xe ; ~�

t
Ae jb0 ; ' t )Qe

� Ae
(x t

Xe ; ~�
t
Ae ; � t

Ae (~�
t
Ae )) : (10)

Consequently, locality of interaction holds within each stage.
The de�nition of Ae (8) implies that the agent scope is non-
decreasing when going back in time4 , which means that the
scope of dependency is typically larger in earlier stages (as
also described in [10]) and the interaction graphs for those
earlier stages are denser, as shown in Figure 2.

However, even when there is no independence in transi-
tions and observations (i.e., the scope includes all factors
and agents with just one backup), the decomposed value
function for the last stage still has limited scope, allowing
for a signi�cant speedup of the last stage, and thus for the
entire computation.

4. FACTORED DEC-POMDPS VIA GRAPH-
ICAL BAYESIAN GAMES

A non-factored Dec-POMDP can be represented by a se-
ries of Bayesian games, one for each time step [13]. Con-
sequently, a policy can be found by solving the BGs for
stage 0; 1; : : : ; h � 1 consecutively, a procedure we refer to
as forward-sweep policy computation. However, the cost of
solving these BGs grows doubly-exponentially with the hori-
zon. The number of joint policies for a BG for the last stage,
and thus the cost of optimally solving such a BG, is

O
�

jA � jn ( jO � j h � 1 )
�

; (11)

where A � and O� denote the largest individual action and
observation sets. In this section we provide tools to exploit
the independence between agents as represented by the in-
teraction graphs, reducing the agent component n in (11).
First, we show that a factored Dec-POMDP with additively
separable rewards can be modeled using a series of collabo-
rative graphical BGs. Then we show how such CGBGs can
be solved e�ciently.

4.1 Collaborative Graphical Bayesian Games
Here we de�ne the collaborative graphical BG as a graph-

ical BG [16, 17], in which the agents try to optimize the sum
of local rewards, rather than an individual payo� function.

De�nition 4.1 A collaborative graphical BG (CGBG), is a
tuple hAg;hA1 ; : : : ; A n i ; � ; P (� ); hu1 ; :::; u � ii , with:

4 In contrast, the state scope is not necessarily non-
decreasing. It is, however, when the probability of all fac-
tors x0

i is dependent on their x i value in the previous stage,
a property that often holds in the real world.

Q e=1 ;t =1 (~� 1
1 ; a 1

1 )

~� 1
1

(H 1 ; F ) H 1 � 0:25
H 2 � 1:10

(H 1 ; N ) H 1 � 0:14
H 2 � 0:79

Q e=2 ;t =1 (~�
1
f 1 ; 2g ; a1

f 1 ; 2g )
~� 1

2 (H 2 ; F ) (H 2 ; N )
~� 1

1 H 2 H 3 H 2 H 3

(H 1 ; F ) H 1 � 0:55 � 1:60 � 0:50 � 1:50
H 2 0 � 0:55 0 � 0:50

(H 1 ; N ) H 1 � 0:16 � 1:10 � 0:14 � 1:00
H 2 0 � 0:16 0 � 0:14

Q e=4 ;t =1 (~� 1
3 ; a 1

3 )

~� 1
3

(H 4 ; F ) H 3 � 1:50
H 4 � 0:51

(H 4 ; N ) H 3 � 1:10
H 4 � 0:15

Q e=3 ;t =1 (~�
1
f 2 ; 3g ; a1

f 2 ; 3g )
~� 1

2 (H 2 ; F ) (H 2 ; N )
~� 1

3 H 2 H 3 H 2 H 3

(H 4 ; F ) H 3 � 1:10 0 � 0:71 0
H 4 � 1:90 � 1:10 � 1:70 � 0:71

(H 4 ; N ) H 3 � 1:00 0 � 0:58 0
H 4 � 1:90 � 1:00 � 1:60 � 0:58

Figure 3: The CGBG for stage t = 1 of the hori-
zon h = 2 FFF problem for past joint policy ' 1 =
hH 1 ; H 2 ; H 4 i . The shading indicates an arbitrary pol-
icy for agent 2.

� A g = f 1; : : : ; ng is the set of agents.

� A i is the set of actions of agent i . A = � n
i =1 A i is the

set of joint actions.

� � = � i � i is the set of joint types over which a prob-
ability function P(� ) is given (and is common knowl-
edge).

� uk are the local payo� functions.

A CGBG is collaborative, which means that all agents try to
maximize the same payo�. It is also graphical, which means
that the payo� can be decomposed into a sum of local payo�
functions uk , each of which can depend on only a subset of
agents, just like in factored Dec-POMDPs. Formally, a local
payo� function is speci�ed as a mapping from the types and
actions of a subset of agents to reals: uk : � I � aI ! R,
where I = A(uk ) is the subset of agent indices that partici-
pate in payo� function k.

As for factored Dec-POMDPs, it is possible to construct
a hyper-graph G = hAg;Ei from the set of payo� functions
such that the agent scope of each local payo� function corre-
sponds to a hyper-edgee 2 E. We will write ue as the local
payo� function corresponding to edge e and Au

e = A(ue).
Finally, the goal is to maximize the expected sum of re-

wards:

� � = arg max
�

X

� 2 �

P(� )
X

e2E

ue(� Au
e

; � Au
e

(� Au
e

)) ; (12)

where � Au
e

(� Au
e

)) = h� i (� i )i i 2 Au
e

is the joint action of that
subset resulting from application of the individual BG-poli-
cies� i . It can be shown that � � constitutes a Pareto-optimal
Bayes-Nash equilibrium [12, 20].

4.2 A stage as a Collaborative Graphical BG
Here we explain how a CGBG can model a stage of a

factored Dec-POMDP. For each stage t, we want to �nd a
joint decision rule which is speci�ed by � t � � t; � the solution
of the CGBG for that stage. Also, the private information
each agenti holds is its action-observation history ~� t

i , which
therefore naturally corresponds to agent i 's type: � i � ~� t

i .
The past joint policy ' t is available when planning, therefore



the probability of joint types is speci�ed by P(~� t jb0 ; ' t ) =
P

s t P(st ; ~� t jb0 ; ' t ) which is given by (2).
What is left to be determined is the set of payo� functions.

For now, we will assume that there is a factored Q-value
function Qt (~� t ; a) for the Dec-POMDP that can be used as
the payo� function. We will describe such factored Q-value
functions in section 4.4.

In Figure 3, a CGBG for stage t = 1 of the horizon h = 2
FFF problem is shown. The past joint policy ' 1 is a joint
decision rule for the �rst stage, which is equivalent to joint
action hH 1 ; H 2 ; H 4 i .

4.3 Solving the CGBGs
Given a past joint policy ' t , the solution of a CGBG is

� t; � = arg max
� t

X

e2E

X

~� t
Ae

P(~�
t
Ae j ' t ; b0)Qe;t (~�

t
Ae ; � t

Ae (~�
t
Ae ))

= arg max
� t

X

e2E

V e;t
' t (� t

Ae ) (13)

where Ae = A(Qe;t ) and where the probability can be com-
puted as a marginal of (2). In contrast to solving a regular
BG, the maximization of (13) does not require enumeration
of all joint BG policies. For example, in Figure 3, agent
1 and 3 can separately compute their best response to the
shaded policy of agent 2.

More formally, we can optimally solve the CGBG using
non-serial dynamic programming (NDP), also known as vari-
able elimination (VE) [6, 20]. We will illustrate this tech-
nique for the CGBG of Figure 3. Let us write V e for V e;t =1

' 1

with ' 1 = hH 1 ; H 2 ; H 4 i , the maximization we are then per-
forming is

max
�

�
V 1(� 1) + V 2(� f 1;2g ) + V 3(� f 2;3g ) + V 4(� 3)

�
; (14)

where � f 1;2g = h� 1 ; � 2 i . Now, by isolating the functions in
which agent 1 participates

max
� f 2 ; 3g

�
V 3(� f 2;3g ) + V 4(� 3) + max

� 1

h
V 1(� 1) + V 2(� f 1;2g )

i �
;

it is possible to split the problem in two smaller ones. NDP
continues by isolating a next agent, etc. The time needed by
NDP is exponential in the induced width of the interaction
graph [6, 20]. Let us denote this width w, then we have that
the complexity of solving the last stage CGBG is

O
�

n � jA � jw ( jO � j h � 1 )
�

; (15)

yielding an exponential speedup over (11) as long asn � w.
Conceptually, the V e;t

' t functions from (14) de�ne a graph-
ical normal-form game, which is then solved by NDP. This
normal-form game does not need to be constructed explic-
itly, however. Alternatively, it is possible to reduce to a
standard GBG by considering the local neighborhood utility,
de�ned in a similar fashion as (9), as the individual pay-
o� function for agent i . Therefore all methods that will
�nd a Bayes-Nash equilibrium for GBGs, e.g. [16, 17], can
be used to �nd a local optimum. A di�erent option is to
solve the CGBGs using max-plus [9, 20], which only is op-
timal for tree-shaped graphs, but in practice works well on
graphs with cycles. Also, it may be possible to employ up-
per bounds over BG-policies that are partially speci�ed with
respect to individual BG-policies as in SPIDER [19].

4.4 Factored Q-value Functions
Here we will consider the payo� functions for the CGBG

for each stage, which constitute factored Q-value function
for the factored Dec-POMDP. In particular, we will con-
sider a normative description of the optimal Q-value func-
tion, which demonstrates that such a series of CGBGs ex-
actly models a Dec-POMDP.

In Section 3.2, we derived an expression for the expected
value of a given policy. This description also holds for an
optimal joint policy. Let us assume we are given an optimal
joint policy � � . Then substitution in (5) and (6) yields a
normative description of the optimal value function. Here we
transform the resulting Q-value function Qe

� � (x t
Xe ; ~�

t
Ae ; aAe )

to the form Qe
� � (~�

t
Ae ; aAe ):

It is possible to split P (x t
Xe ; ~�

t
Ae jb0 ; � ) in a marginal and

a conditional. Also � � =
�
' t; � ; � t; � ;  t � with ' t; � ;  t the

optimal past and future joint policy. This allows us to write:

V t (� � ) =
X

e2E

X

~� t
Ae

P(~�
t
Ae jb0 ; ' t; � )Qe

� � (~�
t
Ae ; � t; �

Ae
(~�

t
Ae )) (16)

with

Qe
� � (~�

t
Ae ; aAe ) =

X

x t
Xe

P(x t
Xe j~�

t
Ae ; b0 ; � � )Re(x t

XR
e

; aAR
e

)+

X

o t +1
A0

e

P(ot +1
A0

e
j~�

t
Ae ; b0 ; �; aAe )Qe

� � (~�
t +1
A0

e
; � t +1

A0
e

(~�
t +1
A0

e
)) : (17)

the Q-value function of optimal policy � � :

Theorem 4.1 When using (17) as the payo� functions for
the series of CGBGs representing a Dec-POMDP, forward-
sweep policy computation yields an optimal policy.

Proof Following the reasoning from [12], we only have to
show that, given that the optimal past policy ' t; � is fol-
lowed, using (17) as the payo� function of a CGBG yields
� t; � . When using this factored Q-value function, the solu-
tion of that CGBG|given by (13)|maximizes the quantity
from (16). Now, because the optimal policy per de�nition
maximizes the expected value, � t; � per de�nition maximizes
(16) and as a result we have that � t; � found by (13) is opti-
mal. �

The implication of this theorem is that modeling a fac-
tored Dec-POMDP using CGBGs is exact. Unfortunately,
as in the non-factored case, computation of the optimal Q-
value function is impractical and seems to require the opti-
mal policy.

5. HEURISTIC POLICY SEARCH
Because it is impractical to compute (16), it is not practi-

cal to apply forward-sweep policy computation to compute
an optimal policy. However, for the last|and most compu-
tationally demanding|stage we in fact do have the factored
optimal Q-value function available: it is given by the imme-
diate reward function. We propose a policy search method
based on Generalized MAA� (GMAA � ) [12] that employs a
factored Q-value function for, and thus exploits locality of
interaction in, the last stage.

GMAA � consists of three procedures. The �rst procedure
iterates over a pool of partial joint policies, pruning this



Algorithm 1 GMAA �

1: v? := �1
2: P := f ' 0 = () g
3: repeat
4: ' t := Select (P)
5: � Next := Next(' t )
6: if � Next contains full policies � Next � � Next then
7: � 0 := arg max � 2 � Next

V (� )
8: if V (� 0) > v? then
9: v? := V (� 0)

10: � ? := � 0

11: P := f ' 2 P j bV (' ) > v? gf prune P g
12: end if
13: � Next = � Next n � Next f remove full policies g
14: end if
15: P := (P n ' t ) [ f ' 2 � Next j bV (' ) > v? g
16: until P is empty

pool whenever possible. This is the core of GMAA� and
is �xed, while the other two procedures can be performed
in many ways. The second procedure,Select , selects which
policy to process next and thus determines the type of search
(e.g., depth-�rst, breadth-�rst, A*-like). The third proce-
dure, Next, constructs a new set of (partial) joint policies
based on the selected policy.

The core procedure of GMAA � (see Algorithm 1) main-
tains a set of partial joint policies ' together with their
heuristic values bV (' ). This `policy pool' P is initialized
with a completely unspeci�ed joint policy ' 0 = () and the
maximum lower bound (found so far) v ? is set to �1 . � ?

denotes the best joint policy found so far. First, Select se-
lects a partial joint policy ' from P. We assume that, as
in MAA � [18], the partial policy with the highest heuristic
value is selected. Next, the selected policy is processed by
the policy search operator Next, which returns a set of (par-
tial) joint policies � Next and their heuristic values. When
Next returns one or more full policies � 2 � Next , the pro-
vided values bV (� ) = V (� ) are a lower bound for an optimal
joint policy, which can be used to prune the search space.
Any found partial joint policies ' 2 � Next with a heuristic
value bV (' ) > v? are added to P. Then process is repeated
until the policy pool is empty.

The original MAA � can be seen as an instance of the gen-
eralized case with aNext operator that, given a partial joint
policy ' t = ( � 0 ; : : : ; � t � 1), constructs and returns all pos-
sible ' t +1 = ( � 0 ; : : : ; � t � 1 ; � t ) that are consistent with ' t

along with their heuristic values. (This corresponds with
constructing a regular BG for stage t and evaluating all BG-
policies � t .) Because the MAA � Next operator returns all
`children' ( ' t +1 consistent with ' t ), it is guaranteed to �nd
an optimal joint policy, as long as the used heuristic is an
upper bound to the optimal value function [18].

We propose GMAA � -ELSI, a method for exploiting the
last-stage independence (ELSI), which is described by Al-
gorithms 1 and 2 jointly. For stages 0 ; : : : ; h � 2 regular
MAA � is used, while for the last stage t = h � 1, a CGBG is
constructed rather than a regular BG. This CGBG is then
solved using NDP and the solution of this CGBG used to
construct a full-length joint policy � .

6. EXPERIMENTS
In Table 1 we compare results for GMAA � -ELSI with reg-

ular GMAA � (that solves a regular BG even for the last

Algorithm 2 Next(' t )|ELSI
1: if t < h � 1 then
2: f Perform regular MAA � for t = 0 ; :::; h � 2 g
3: � t +1 = construct all policies ' t +1 as in [18, 13]
4: return � t +1

5: else
6: f For t = h � 1 exploit independence g
7: G = ConstructCGBG( ' h � 1 ; b0 )
8: � h � 1 = NDPSolve( G)
9: � = ( ' h � 1 ; � h � 1 )

10: return �
11: end if

V � TGMAA � TGMAA � -ELSI

h = 2 � 5:213685 � 0:01 s 0:03 s
h = 3 � 6:654551 0:15 s 0:46 s
h = 4 � 7:462685 4834:07 s 12:67 s

Table 1: Results for the FFF for horizon 2, 3, and 4.
Column V � indicates the value of an optimal policy,
TGMAA � the computation time for the plain GMAA �

algorithm, and TGMAA � -ELSI the computation time
for our proposed method.

stage) for FFF, introduced in Section 2.3. We used QBG [13]
as the heuristic Q-value function for all time steps of GMAA � ,
and for time steps 0{ h � 2 of GMAA � -ELSI. As both meth-
ods are optimal, they compute identical optimal policies,
whose values are shown in the �rst column. The remaining
two columns show computation time of both methods. For
the low horizons, we can see that GMAA � is faster, as the
Bayesian games to be solved are small, and not worth the
overhead caused by the construction and solution of CGBGs
in GMAA � -ELSI's last time step. However, for horizon 4 we
can see the dramatic speedup provided by exploiting the lo-
cal interactions in this factored Dec-POMDP.

7. DISCUSSION AND FUTURE WORK
In this paper we presented a framework for exploiting lo-

cality of interaction in factored Dec-POMDPs. By formaliz-
ing the dependence propagation through time, and analyz-
ing the dependencies per stage, it is possible to construct
an interaction graph for each stage. The independence rep-
resented by this interaction graph can then be exploited by
e�ciently solving the corresponding collaborative graphical
Bayesian game (CGBG). Also, we presented a formulation
of factored Q-value functions that can be used as the payo�
function for these CGBGs, and have shown how GMAA � ; an
existing heuristic search method, can be extended to exploit
the independence in the last stage by using CGBGs.

The analysis of this paper strengthens our belief that
general Dec-POMDPs should be tackled per stage, rather
than trying to �nd individual full-length policies in an it-
erative procedure. It also shows that solution of CGBGs
scale exponentially in the induced width of the interaction
graph (w), but only polynomially in the number of agents
(n). In accordance, a preliminary experimental evaluation
shows that the resulting algorithm GMAA � -ELSI obtains
a speedup of two orders of magnitude. To our knowledge,
these are the �rst experimental results for general (factored)
Dec-POMDPs with more than 2 agents.

There are two main directions for future research. The
�rst is the identi�cation and evaluation of approximate fac-



tored Q-value functions. Analogous to our previous work
[13, 12], one idea is to �rst use dynamic programming to
compute a Q-function for the underlying (factored) MDP
or POMDP and then `project' this (typically non-decompo-
sable) function onto an interaction graph. Such projection
operators can possibly be integrated in the dynamic pro-
gramming backups [9]. Using such an approach, it will be
possible to exploit independence at all stages, by computing
CGBGs for stages 0: : : h � 1.

The second main research direction is the uni�cation of
two previous heuristic search methods for Dec-POMDPs.
On the one hand MAA � [18] searches over joint policies
which are partially speci�ed with respect to time (e.g., a
policy only speci�ed for the �rst stage). On the other hand
SPIDER [19] searches over joint policies that are partially
speci�ed w.r.t. the individual agents (e.g., a joint policy only
specifying an individual policy for agent 1). The algorithm
proposed here takes a step towards this uni�cation: intu-
itively GMAA � corresponds to the former, while solution of
the CGBGs with NDP corresponds to the latter. Future
algorithms may truly unify the two approaches.
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