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passing programs at compile-time. Our approach builds upon the following observation: due the combinatorial
explosion in complexity, programmers do not reason about their systems by case-splitting over all the possible
execution orders. Instead, correct programs tend to be well-structured so that the programmer can reason about
a small number of representative executions, which we call the program’s canonical sequentialization. We have
implemented our approach in a tool called Brisk that synthesizes canonical sequentializations for programs
written in Haskell, and evaluated it on a wide variety of distributed systems including benchmarks from
the literature and implementations of MapReduce, two-phase commit, and a version of the Disco distributed
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1 INTRODUCTION

Concurrent and distributed message passing programs have remained viciously difficult to imple-
ment, as the programmer gets little feedback about the correctness of their system at development

time. For classical single process applications, modern type systems and IDEs can provide instan-
taneous feedback about whether or not the individual parts compose correctly. In contrast, the
distributed systems developer must painstakingly construct workloads and stress tests to tickle
subtle concurrency errors like deadlocks without any guarantee that the tests actually cover all
errors. Model checking [Desai et al. 2015; Killian et al. 2007; Yang et al. 2009] is helpful in systemat-
ically searching the space of executions for finding corner-case bugs. However, the exploration can
take minutes or hours, and hence is only useful for post-facto validation and of little help during
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development. Worse, it is limited to finite systems: when the number of processes is unbounded, e.g.,
if processes are spawned based on input parameters, model checking cannot guarantee correctness
as the state space, and hence, the number of executions, is infinite. Consequently, the distributed
systems developer is bereft of development- and compile-time tools that guarantee the absence of
concurrency errors.

Our Approach In this paper, we propose canonical sequentialization, a new approach to verifying
concurrency properties of unbounded, asynchronous, message-passing programs at compile-time.
Our approach builds upon the following observation: due the combinatorial explosion in complexity,
programmers do not reason about their systems by case-splitting over all the possible execution
orders. Instead, correct programs tend to bewell-structured so that the programmer can reason about
a small number of representative executions which we call the program’s canonical sequentialization.

Example: Two-Phase Commit Consider the classic two-phase commit protocol [Lampson and
Sturgis 1976], which consists of a leader process trying to commit a transaction to a number
of database nodes. The protocol proceeds in two phases. In the first phase, the leader issues a
tentative transaction. The leader then waits for answers from the nodes who may decide to either
accept or abort the transaction. This initiates the second phase: if all nodes agreed, the leader
sends them a commit message; otherwise, it sends an abort message. Finally, each node sends its
acknowledgement of the final decision.
Even though leader and database nodes execute in parallel, the concurrency is well-structured.

First, due to the lack of a shared memory, most actions executed by different nodes are independent
of each other, and thus commute. For example, a tentative proposal sent to one of the database
nodes is independent of the messages other database nodes might send or receive. Thus, in the
spirit of Lipton’s movers [Lipton 1975], we can consider just the traces in which the proposal is
received immediately after it is sent, effectively moving the receive to its matching send in any
program trace.

However, this reasoning breaks down for the other parts of the protocol where there are multiple

potentially matching sends, e.g., when the leader is waiting to receive accept or abort messages
from the database nodes. Our second crucial insight is that correct parameterized message passing
programs often only contain symmetric races. For example, even though there is non-determinism
with respect to which accept or abort message is received first, the states resulting from picking a
particular winner are symmetric i.e., they are permutations of each other [Norris IP and Dill 1996].
Thus, instead of reasoning about the original distributed program, we can reason about its canonical
sequentialization which first delivers all tentative transactions to the database nodes in sequence,
then receives all the replies, sends out the final decision and finally receives all acknowledgments.

Example: MapReduce As a second example, consider an implementation of MapReduce [Dean
and Ghemawat 2004] which consists of (1) a number of worker processes that perform map/reduce
tasks, (2) a queue process that distributes work, and (3) a master process that orchestrates the entire
computation. Workers query the queue for assignments, perform the assigned task, and then send
the results to the master; the queue waits for a request and answers with a work assignment; the
master waits for results (see fig. 5.2).

Again, the apparently highly concurrent MapReduce protocol has a canonical sequentialization.
All the races are symmetric: even though worker threads compete for work assignments, the states
that result from picking a particular worker are equivalent modulo a shuffling of process identifiers.
Similarly, even though the order in which results reach the master is non-deterministic, the resulting
states are symmetric. Thus, instead of reasoning about the original distributed program, we can
reason about its canonical sequentialization, which first sequentially assigns all tasks to the workers,
and then passes the results to the master. We realize our approach via the following contributions.
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1. Symmetric Non-Determinism & Canonical Sequentialization Our first contribution is to
identify and formalize a property of message passing programs called symmetric non-determinism

which serves as a pre-requisite for sequentialization (ğ 2). We define a core language for message
passing programs (ğ 3) and use it to formalize canonical sequentialization as a set of local rewriting
rules (ğ 4). Each rewriting step produces a new program that consists of a sequential prefix and
remainder term that still needs to be rewritten. We show that each rewrite preserves the halting
states of all processes (ğ 4.4). This allows us to use the sequentialization to not only prove local
safety properties, but also global properties (e.g., deadlock freedom) of the original program.

2. Synthesizing Sequentializations Our second contribution is to demonstrate that our rewriting
rules can be turned into an method to automatically synthesize a canonical sequentialization from
a symmetric non-deterministic program (ğ 5.2). We use this synthesis algorithm to implement a
distributed systems verification tool called Brisk1 Brisk first compiles Haskell programs that use
the Cloud Haskell library [Epstein et al. 2011] into our core language (ğ 5.1). Brisk verifies that
its input has only symmetric races, and computes its canonical sequentialization thereby checking
absence of deadlocks and assertion failures.

3. Evaluation Our third contribution is an evaluation of our approach on a diverse range of bench-
marks including distributed programs taken from the literature [Honda et al. 2008], a concurrent
programming textbook [Marlow 2012], well known protocols such as two-phase-commit [Lampson
and Sturgis 1976], MapReduce [Dean and Ghemawat 2004] and implementations of a key-value
store, and a distributed file-system (ğ 6). We show that unlike model checking, which gets prohib-
itively slow Ð i.e., times out at one minute even with just 10 processes on our benchmark set Ð
Brisk verifies the unbounded versions of the benchmarks in tens of milliseconds, yielding the first
concurrency verification tool that is fast enough to be integrated into a design-implement-check
cycle.

2 OVERVIEW

We start with an overview of how Brisk lets us write and verify a concurrent task distribution
service in Haskell by synthesizing its canonical sequentialization (ğ 2.1), then explain the main
ideas underlying canonical sequentialization with a series of small examples (ğ 2.2) and finally
discuss its expressiveness (ğ 2.3).

2.1 A Task Distribution Service

Figure 2.1 shows the implementation of a task distribution service. The program consists of n
clients, each of which requests a task assignment from the server (line 12). Upon receiving the
assignment (line 14), a client executes the assigned task and finally either sends an acknowledgment
to the master (line 16), or fails in case no work was provided (line 18). The server uses the higher-
order combinator foldM to repeat the function serverLoop once for each client. In each iteration,
the server waits for a client to request a work item, (line 23), computes the next assignment (line
25), and finally sends the assignment to the client process (line 27). Finally, the master waits for
acknowledgements from each client (line 34).

Verification GoalsWe want to show that (1) the program is deadlock free and (2) the clients never
execute the fail statement in line 18. Even though these two properties seem obvious on inspection,
proving them is far from trivial. First, since the program contains unboundedly many threads, a
proof needs to track the number of processes that are yet to execute the sends in line 12 and 17 in
order to ensure that, any time, there are still enough processes left to make sure that the receives in
line 23 and 34 do not deadlock. Second and more problematically, the proof needs to reason about

1Brisk is available at http://goto.ucsd.edu/~brisk
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1 import Brisk

2 data Msg = Request ProcessId | Ack

3 data Work = Task ProcessId Item | None

4

5 main n = do self ← getSelfPid

6 cs ← spawnMany n (client self)

7 m ← spawn (master cs)

8 server m cs

9

10 client sv = do self ← getSelfPid

11 -- request a work item from server

12 send sv (Request self)

13 -- block until an item is assigned

14 msg ← receive

15 case msg of

16 Task m task → do process task

17 send m Ack

18 None → fail

19 server m cs = foldM serverLoop () cs

20 where

21 serverLoop _ _ = do

22 -- wait for a request

23 Request p ← receive

24 -- compute next item

25 item ← nextItem

26 -- send item to p

27 send p (Task m item)

28 return ()

29

30 master cs = foldM masterLoop () cs

31 where

32 masterLoop _ _ = do

33 -- wait for Ack

34 Ack ← receive

35 return ()

Fig. 2.1. A task distribution service.

the messages that are being sent and received by the processes, of which there may be unboundedly
many. This difficulty is often avoided by reasoning about the number of messages sent rather than
their content [Konnov et al. 2015].

for c in cs do
[Request p← Request c]server;
[item← nextItem]server;

[msg← Task master item]c;
case msg of

Task m task→ process task

None→ fail

c
end ;

for c in cs do
[Ack← Ack]master

end

Fig. 2.2. Canonical Sequentialization of the task distri-
bution system in fig. 2.1 as computed by Brisk.

This, however, is not enough for our example
as the correctness of the program relies on 1)
clients sending their own PID in line 12 as well
as the server sending the master’s PID in line 27
(if they sent some arbitrary value, the messages
might vanish into the ether leaving their in-
tended receives deadlocked) and 2) the server
always sending a work item (if it sent None, the
program would execute the failure branch in
line 18). Thus, in general, reasoning about pro-
grams like our task service requires complex
invariants that are universally quantified over
the set of participating processes (e.g., to track
the contents of messages) and require auxiliary
state (e.g., to track how many processes have
sent a certain type of message). Despite recent
progress, automatic synthesis of such invariants remains a difficult challenge [Bjùrner et al. 2013;
Farzan et al. 2014; Gleissenthall et al. 2016], and thus, we are not aware of any automated verification
method that an handle this simple example.

Verification via Canonical Sequentialization In this paper, we propose a new approach: rather
than verifying the original distributed program, we synthesize and verify its canonical sequential-
ization. Writing a verified program in Brisk starts by importing the Brisk library (line 1) which
provides primitives for sending and receiving messages (send and receivewhich are built on top of
Cloud Haskell), process creation (spawnMany), and iterating over sets of processes (forM). When
Brisk is invoked to verify the program, it compiles (ğ 5.1) the higher-order Haskell source into a
first-order core language called IceT in order to make explicit the control flow and process structure
of the input program. Brisk then synthesizes the program’s canonical sequentialization (ğ 4) which
we show in fig. 2.2. We use the notation [s]p to mean that process p executes statements s , we let
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·; · denote sequential composition, and use · ← · for assignments. The canonical sequentialization
consists of two for-loops over the clients cs. In each iteration of the first loop, the client issues a
request, the server assigns a task to the respective client, and the client processes the tasks or fails.
In the second loop, the master receives the clients’ acknowledgements.

Correctness In the canonical sequentialization, proving both deadlock-freedom and safety becomes
straightforward. As the sequentialization contains neither sends nor receives, the program cannot
deadlock. Similarly, since the clients assign Tasks to msg, the failure branch cannot execute ś a fact
that can be easily proved (Brisk verifies this assertion automatically). Since our method guarantees
that the original program and its canonical sequentialization are equivalent (or in general, the
canonical sequentialization over-approximates the original program ğ 4.4), we can conclude that
the original program is correct.

2.2 Main Ideas

Symmetric Nondeterminism The crux of our method, and thereby the reason whywe can soundly
represent a program through its canonical sequentialization, lies in the following observation: for
any given trace, we can always move a receive up to its matching send. This transformation is an
application of Lipton’s theory of movers [Lipton 1975]. Statically moving a receive up to a matching
send is only sound if either a unique matching send exists, or all matching sends are symmetric, i.e.,
picking an arbitrary one will result in equivalent states up to permutations of PIDs. To make sure
this requirement is met, Brisk checks that the program satisfies the following condition, which
we call symmetric non-determinism: every receive in a given program location can only receive
messages from either i) a single process, only, or ii) a set of symmetric processes (i.e., processes
running the same code) at the same program location.

[
send(q, ping);
w ← recv()

]
p

∥

[
v ← recv();
send(p, pong)

]
q

[v ← ping]q ; [w ← pong]p

Fig. 2.3. Example ex1 (left) and its canonical sequentialization (right).

Example 1: Canonical Sequentialization Figure 2.3 shows program ex1 written in our core
language IceT, in which two processes p and q exchange messages. Process p asynchronously sends
a ping message to q and then waits for a reply. Process q waits for a message and, upon receipt,
sends a pong message to p. Processes p and q are composed in parallel with the ∥ operator. Since
the sends and receives can only be executed in a single order, we can rewrite the above concurrent
program into its canonical sequentialization shown next to ex1 in fig. 2.3. Crucially, both programs
are equivalent in the sense that they terminate in the same state.

Example 2: Parametric Programs Next, consider program ex2 shown in fig. 2.4 which contains



for q in Q do
send(q, ping);
w ← recv(q)

end

p
∥
∏

q:Q .

[
v ← recv();
send(p, pong)

]
q

for q in Q do
[v ← ping]q ;
[w ← pong]p

end

Fig. 2.4. Example ex2 (left) and its canonical sequentialization (right).

an unbounded number of processes. In ex2 a single process p exchanges messages with a set of
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for q in Q do
[v ← ping]q ;

end;
for q in Q do
w ← recv()

end

p
∥
∏

q:Q .
[

send(p, pong)
]
q

for q in Q do [v ← ping]q end;
for q in Q do [w ← pong]p end

Fig. 2.5. Intermediate rewriting step of example ex3 (left) and its canonical sequentialization (right).

processes Q that run the same program code. We call such processes symmetric. Process p executes
a loop which iterates over all processes q in Q . For each q, it first sends a ping and subsequently
waits for a reply from q. Each process in Q first waits for a message and, upon receipt, sends a
pong message to p. We use

∏

to denote a parallel composition of symmetric processes. If we fix an
iteration order over Q , the sends and receives are again constrained to execute in a single order.
Thus, Brisk computes the canonical sequentialization shown right in fig. 2.4.

Example 3: Multiple Orders Next, consider fig. 2.6 which contains the program ex3 which allows
for multiple execution orders. This program is a variant of ex2 where p’s loop is split into two
parts: first p sends out all ping messages, then it waits for the answers to arrive.



for q in Q do
send(q, ping) a

end;

for q in Q do
w ← recv() {b}

end

p

∥
∏

q:Q .

v ← recv(); {a}

send(p, pong) b

q

Fig. 2.6. Example ex3. Each send is annotated with a tag
(red) and each receive is annotated with the set of all tags it
can receive from (blue).

Different executions of ex3 may see
messages sent and received in different or-
ders. For example, ping messages sent byp
can arrive at their respective processes
in Q in any order, as messages to differ-
ent processes may be transported at dif-
ferent speeds. By the same logic, p may
receive pong messages in any order due
to the speed of the underlying network
or differences in execution times between
members of Q .

Checking SymmetricNon-Determinism

In order to rewrite ex3 into its canonical sequentialization, we first need to check that it satisfies
symmetric non-determinism. For this, we annotate each syntactic occurrence of send with a unique
tag. For each receive, we then compute an over-approximation of the set of tags it can receive
from. Brisk computes these tags using a lightweight syntax-guided method (ğ 5). Figure 2.6 shows
send-tags in red and receive-tags in blue. In order to satisfy symmetric non-determinism, we require
that each receive-set contains either i) only tags from a single process, or ii) a single tag from a
process in set of symmetric processes. The tags for ex3 satisfy this requirement.

Moving Left: Eagerly Executing Receives We split the rewrite of ex3 into two steps. For the first
step, consider a send to some process q in p’s for-loop together with its matching receive in q.
Since ex3 satisfies symmetric non-determinism, we know that there are no additional sends q could
receive from. Moreover, the receive is independent of messages sent by p to other members ofQ and
of messages that other process might send to p. This means, we can eagerly execute it directly after

its matching send in p without changing the behaviour of the program. We say that the receive can
be moved left, up to its matching send. Applying the above reasoning, we can rewrite ex3 into the
partially sequentialized program shown left in fig. 2.5. The program consists of a sequential prefix
which is a rewriting of the boxed statements from fig. 2.6 and a remainder term that corresponds
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

for q in Q do
id ← recv(); {b}
send(id, ping) a

end

p
∥
∏

q:Q .


send(p,q); b

v ← recv() {a}

send(m, pong); c

q
∥


for q in Q do
w ← recv() {c}

end

m

Fig. 2.7. Example ex4.

for q in Q do
[id ← q]p ;
[v ← ping]q

end;

∏

q:Q .
[

send(m, pong);
]
q
∥


for q in Q do
w ← recv()

end

m

for q in Q do
[id ← q]p ;
[v ← ping]q

end;

for q in Q do [w ← pong]m end

Fig. 2.8. ex4 after the first rewrite step (left) and its canonical sequentialization (right).

to the part of the program that still needs to be rewritten. For the second rewriting step, consider
the boxed statements in fig. 2.5. In a given loop iteration, p can receive a send from any of the
remaining processes in Q . However, all processes behave the same, and only differ in their PIDs.
This means, moving the receive up to an arbitrary send will result in the same final state. As a
result, we can rewrite the program shown left in fig. 2.5 into its canonical sequentialization shown
on the right.

Example 4: Multi-Party Communication Finally fig. 2.7 shows example ex4 whose communica-
tion structure matches the task distribution service from fig. 2.1. Process p executes a loop in which
it waits for a message, and upon receipt, sends a ping message to the process it received from. Each
process in Q first sends its PID to process p, then sends a pong message to processm and finally
waits for a reply. Processm executes a loop in which it receives messages from processes inQ . First,
we check that ex4 is symmetrically non-deterministic. Figure 2.7 shows the tags which satisfy the
requirements.

for q in Q do
[id ← q]p ;
[v ← ping]q ;

end

∏

q:Q .
[
send(m, pong)

]
q

Fig. 2.9. Intermediate step in the rewrite of ex4. Prefix (left)
and residual term (right).

Next, we rewrite ex4 into its canoni-
cal sequentialization. The rewrite is split
into two steps: a first step in which Brisk

rewrites the communication between pro-
cess p and set Q , and a second step in
which it rewrites the communication be-
tween setQ andm. For the first step, Brisk
rewrites the boxed statements in fig. 2.7.
This rewrite step produces a sequential
prefix shown left in fig. 2.9 and an addi-
tional residual term which contains the messages the processes in Q sent tom, shown to the right.
In the second step, Brisk rewrites the parallel composition of the remainder program with the
residual term, i.e., the program shown left in fig. 2.8. Brisk rewrites the boxed statements in fig. 2.8
into the canonical sequentialization shown right in fig. 2.8.
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C ≜
∏

c:Cs .



if ∗ then
send(s,Get(k ))

else
send(s, Set(k,v ))

end

c
C’ ≜

∏

c:Cs .



if ∗ then
msд ← Get(k )

else
msд ← Set(k,v )

end;
send(s,msд)

c
S ≜



while true do
op ← recv(∗);
if isGet (op) then

doGetOp()
else

doSetOp()
end

end

s
2.3 Expressiveness

Not all programs have a canonical sequentialization. We can characterize the systems where our
method is applicable by describing its limits, i.e., the four cases where Brisk fails to synthesize a
sequentialization.

1. Asymmetric Non-determinism Brisk will reject programs if it cannot prove that they only
exhibit symmetric non-determinism. In this case, Brisk outputs the sends and receives that are
involved in the suspected asymmetric race. In our experience, this often is either a bug or easy to
remedy by restructuring the receives. That said, there are algorithms that do break symmetry and
hence cannot be sequentialized by Brisk, e.g., process sets with asymmetric topology (ğ 8).

Example Consider program C above, which is a set of clients of a key-value store S whose API
supports retrieving the value of a key k with a Get(k ) message, and setting the value v of a key
k with a Set(k,v ) message. Each c ∈ Cs performs a non-deterministic choice (represented by the
condition ∗) to either send a Get(k ) or a Set(k,v ) message to s . The composition C ∥ S does not
satisfy symmetric non-determinism, as there are two distinct sends of the same type to the store s .
However, this is easily refactored to a program C’ that first performs a non-deterministic assignment

to amsд variable and then sends the contents of the variable to s . Hence, C’ ∥ S has symmetric
non-determinism.

Example Next, consider a logging process that receives messages from every process in a system
and logs the messages it receives to disk. Except in simple instances, programs including such a
logger will have asymmetric non-determinism. In this example, there is no formula for refactoring
the program into a variant with symmetric non-determinism.

2. Superfluous Sends The program must not contain any superfluous sends that do not have
a matching receive. Brisk is unable to rewrite such programs into their sequentialization, but
returns a counterexample in the form of a sequential prefix that ends in the superfluous send.
While superfluous sends can be benign, (unlike superfluous receives which are deadlocks), they are
dubious; we consider their detection to be a virtue of our approach.

3. Indiscriminate Communication When iterating over an (unbounded) set of processes Q , a
process p must only talk to a single process in Q , in any iteration. Process p may however send
messages to other processes not in Q . This is also not an onerous requirement as in well-structured
programs, loops over unbounded setsQ are used primarily to łbroadcastž or łgatherž both of which
are amenable to sequentialization.

4. Stateful Loop Termination Finally, while-loops that interact with other processes must not
use loop-carried state to decide whether to loop again or exit. Sequentialization requires that the
decision only depends on values computed in the current iteration. This requirement models a
reactive pattern in which loop termination depends on external messages. We found that loops
requiring loop-carried state can often be restructured into an iteration over sets (processes or
otherwise) which our method supports.
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x ,X ∈ Identifiers t ∈ MsgType

e ::= Expressions

c literal values

| x variable

| f (ē ) primitive operations

w ::= Sender Specification

∗ any sender

| e expression

s ::= Statements

x ← e assignment

| x ← recv(w, t ) receive typed message

| send(t , e, e ) send typed message

P ::= Programs

skip empty process

| [s]e singleton process

| P ; P sequential composition

| P ∥ P parallel composition

|
∏

x :X .P parallel iteration

| for x in X do P end sequential iteration

| if e then P else P branching

| while true do P end unbounded iteration

| break loop exit

|
∑

x :X .P nondeterministic value

Fig. 3.1. Syntax of the IceT language.

Counterexamples Brisk provides useful feedback in each of the four cases of failure. When there
is a (possible) asymmetric race, the programmer is pointed to the race condition that needs to be
fixed. In the remaining cases, Brisk outputs the longest sequential prefix encountered in the failed
rewrite attempt (together with the remaining, unsequentialized program) thereby pinpointing the
exact conditions under which the relevant condition is violated. Since Brisk is fast enough (10s
of milliseconds) to provide this feedback during development, we envision a use case where the
coding discipline required by Brisk can nudge the developer towards well-structured programs
that are easier to reason about for machines (and humans).

3 MESSAGE PASSING PROGRAMS

In this section, we present the syntax and semantics of IceT, a core language for representing
message passing programs as in Erlang and Cloud Haskell [Epstein et al. 2011]. Figure 3.1 shows
the syntax of IceT.

Processes Each process is associated with a unique process identifier (PID), which serves as an
address for sending messages. We use [s]p to denote a single process with PID p executing state-
ment s , and assume that distinct processes have disjoint variable sets. We let skip denote the empty
process.

Programs Programs are obtained from single process statements through parallel and sequen-
tial composition. We allow grouping of consecutive statements of the same process, i.e., for
statements s1 and s2, we abbreviate [s1]p ; [s2]p to [s1; s2]p .

∏

x :X .P denotes the parallel com-
position of all instantiations of P to values in X . Let X = {x0,x1, . . . ,xk } and let t[u/x] denote
the substitution (without capture) of term u for variable x in term t . We thus define

∏

x :X .P ≜

P[x0/x] ∥ P[x1/x] ∥ . . . ∥ P[xk/x]. Similarly, we use (for x in X do P end) to denote the
sequential composition of all instantiations of P to values in X , i.e., for X = {x0,x1, . . . ,xk } we
get for x in X do P end ≜ P[x0/x]; P[x1/x]; . . . ; P[xk/x]. Finally,

∑

x :X .P nondeterministically
chooses a value from X and then assigns x to that value in P .

Normal Forms We say that a program is in normal form if it consists of a parallel compositions of
sequences of statements from distinct processes, and assume that input programs to our method
satisfy this requirement. For two programs P and Q in normal form, we let P ◦Q denote the result
of sequencing Q after P , process-wise.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 110. Publication date: October 2017.



110:10 Alexander Bakst, Klaus v. Gleissenthall, Rami Gökhan Kıcı, and Ranjit Jhala

R-Context

Γ,∆,A,Ψ⇝ Γ′,∆′,A′,Ψ′

Γ,∆,A◦B,Ψ⇝ Γ′,∆′,A′◦B,Ψ′

R-Congruence
A ≡ B

Γ,∆,A,Ψ⇝ Γ,∆,B,Ψ

R-Send

∆ |= x = q

q is a PID Γ(p,q, t ) =m

Γ ⊬ E(q) Γ′ = Γ[(p,q, t ) ←m·n]

Γ,∆, [send(t ,x ,n)]p ,Ψ⇝ Γ′,∆, skip,Ψ

R-Recv

∆ |= x = p

p is a PID Γ′ = Γ[(p,q, t ) ← n]

Γ(p,q, t ) =m·n ∆′ = ∆; [y ←m]q

Γ,∆, [y ← recv(x , t )]q ,Ψ⇝ Γ′,∆′, skip,Ψ

Fig. 4.1. Proof Rules (Basic Statements)

Example Consider programs A and B, where s1 to s5 are statements.

A ≜ [s1]p ∥
∏

q:Q .[s2]q B ≜ [s3]p ∥
∏

q:Q .[s4]q ∥ [s5]m

The composition A ◦ B is given by the program [s1; s3]p ∥
∏

q:Q .[s2; s4]q ∥ [s5]m . While the
above program is in normal form, A ; B and A ∥ B are not.

Typed Channels andMessage Orders Processes communicate by sending and receiving messages
over typed channels. There is a separate channel for each (ordered) pair of processes. Furthermore,
each channel is split into sub-channels for different types of message. Messages on the same
sub-channel are delivered in order whereas there are no guarantees for messages sent on separate
(sub-)channels. This semantics is standard and models languages like Erlang and Cloud Haskell.

Sends and Receives The statement send(t ,p, e ) asynchronously sends the value of expression e

to p’s sub-channel for type t . Dually, x ← recv(p, t ) blocks until it receives a value of type t from
process p, and then assigns the received value to the variable x . A receive from a set X denotes
a receive from any x ∈ X ; a receive from ∗ represents a receive from any process. In contexts
where there is only a single message type, we omit types from the statements, i.e., we use send(p, e )
to denote a send of value of e to p and x ← recv(p) to denote a receive from p. Finally, we use
x ← recv() as an abbreviation for x ← recv(∗).

Example Let s0 ≜ send(t , r ,v0) and s1 ≜ send(t , r ,v1), which send a message of type t to r :

A ≜ [s0 ; s1]p ∥

[
x0 ← recv(∗, t );
x1 ← recv(∗, t )

]
r

B ≜ [s0]p ∥ [s1]q ∥

[
x0 ← recv(∗, t );
x1 ← recv(∗, t )

]
r

InA, s0 and s1 are both executed by the process p which is composed in parallel with process r . Since
the messages are sent on the same sub-channel, they are delivered in order, and on termination we
have (x0,x1) = (v0,v1). However, in B, where s0 and s1 are executed by different processes, either
(x0,x1) = (v0,v1) or (x0,x1) = (v1,v0).

4 CANONICAL SEQUENTIALIZATIONS

In this section, we formalize canonical sequentializations through a set of rewriting rules.

Symbolic States Each rewriting rule defines a relation between a pair of symbolic states consisting
of the following components: A context (Γ); a sequential prefix (∆); the program (P ) to be rewritten;
and a residual process (Ψ) comprising statements that interact with processes outside of P . A
context Γ consists of a symbolic message buffer Buff and a set of assertions Asrt. Buff maps
each channel to the sequence of pending messages on that channel. More concretely, Buff(p,q, t )
returns the sequence of pending messages of type t sent from p to q. Asrt contains assertions
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skip; P ≡ P P ; skip ≡ P
∏

p:P .skip ≡ skip

P ∥ skip ≡ P P ∥Q ≡ Q ∥ P P ∥ (Q ∥ R) ≡ (P ∥Q ) ∥ R

Fig. 4.3. Congruence relation.

about process identifiers. We summarize the syntax in Figure 4.2. We sometimes use Γ to refer to
one of its components, for example, we write Γ(p,q, t ) to mean Buff(p,q, t ). Finally, for context
Γ ≜ (Buff,Asrt) and assertion a, we write Γ ⊢ a to mean a ∈ Asrt, and Γ ⊬ a to mean a < Asrt.

Buff ∈ (PID × PID ×MsgType) ⇀ Exp∗ Buffers

Asrt ::= Assertions

∅ Empty

| Asrt ∪ {x ∈ X } Membership

| Asrt ∪ {∅ ⊆ X ⊆ X } Bounds

| Asrt ∪ {E(x )} External

Γ ::= (Buff,Asrt) Contexts

Fig. 4.2. Syntax for context Γ.

RewritingRules Each rewriting rule
defines a judgment of the form
Γ,∆, P ,Ψ ⇝ Γ′,∆′, P ′,Ψ′. The goal
of each step is to move parts of pro-
gram P into the sequential prefix ∆

such that eventually we can rewrite
P to skip. We now describe the main
rules of our method, starting with ba-
sic rules, followed by rules for loops
and conditionals and finally residual
processes.

4.1 Basic Rules

Figure 4.1 contains the basic rules. We assume for now that programs do not contain wild card
receives and show how to eliminate wild cards from programs that only contain symmetric races
in (ğ 5.2).

Sends and receives Rule R-Send treats sends. The rule rewrites a send from process p to some x
into skip, if x is either a PID q, or a variable that maps to some PID q, and additionally, q is not
external (i.e., belongs to a residual process). We enforce the check that x corresponds to a PID
through the condition ∆ |= x = q, where we write ∆ |= φ to mean that formula φ is valid after
executing ∆ (see ğ 5.2 for a discussion of ∆ |= φ). The rule updates context Γ by adding expression
n to the end of the buffer for the respective channel, where we use Γ[a ← b] to denote the function
that returns the same values as Γ on all inputs except for a where it returns b. Rule R-Recv rewrites
a receive from some x into skip, if x corresponds to a PID p. R-Recv takes the most recent message
m from the respective channel and adds the corresponding assignment to the prefix.

Context and congruence Rule R-Context allows rewriting individual program parts indepen-
dently of program parts that occur later or in parallel. Rule R-Congr allows rewriting into congruent
programs, where ≡ is shown in Figure 4.3.
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R-Loop-Upd

q∗ and Q∗ fresh

Γ0 ≜ Γ ∪ {∅ ⊂ Q∗ ⊆ Q } ∪ {q∗ ∈ Q∗}

∆0≜ havoc(∆,A,B)

∆′ ≜ ∆ ;


for q in Q do

∆u [q/u]

end

 Ψ′ ≜ Ψ ∥
∏

q:Q .[Ψu ]q

Γ0,∆0, [A[q
∗/q]]p ∥

∏

q:Q∗.[B]q , skip⇝ Γ0, (∆0;∆
u ) ,
(

skip ∥
∏

q:Q∗\{u}.[B]q
)

, [Ψu ]u

Γ,∆,


for q in Q do

A

end

p
∥
∏

q:Q .
[
B;C

]
q
,Ψ⇝ Γ,∆′,

∏

q:Q .[C]q ,Ψ
′

Fig. 4.5. Rewrite Rules (Iteration over sets of processes).

Example Consider again program ex1 from ğ 2
(shown in fig. 4.4a) where we replaced wild card
receives with receives from the respective processes.
We start the rewrite with the symbolic state given
by ∆ ≜ skip, Ψ ≜ skip and Γ ≜ (Buff∅, ∅), where
Buff∅ maps every channel to the empty sequence
ϵ . We also assume that there is only a single mes-
sage type ⊤. In a first step, we apply the rules R-
Context and R-Send to rewrite ex1 into the pro-
gram shown in fig. 4.4b, where we update the buffer
to Buff∅[(p,q,⊤) ← ping]. Applying R-Context

and R-Recv yields the program shown in fig. 4.4c
with buffer Buff∅ and prefix ∆ = [v ← ping]q .
Applying R-Context and R-Congr twice yields
[w ← recv(q)]p ∥ [send(p, pong)]p . Finally, apply-
ing the same rules again yields skip with prefix
∆ = [v ← ping]q ; [w ← pong]p .

[
send(q, ping);
w ← recv(q)

]
p

∥

[
v ← recv(p);
send(p, pong)

]
q

(a) ex1

skip;
[w ← recv(q)]p

∥


v ← recv(p);

send(p, pong)

q
(b) after send

skip;
[w ← recv(q)]p

∥
skip;
[send(p, pong)]p

(c) and after receive.

Fig. 4.4. Example ex1: rewriting send and re-
ceive.

4.2 Loops, Unfolding and Conditionals

Next, we present our rules for loops.We first present our rules for iterating over sets of processes, then
our rules for iterating over sets of indices, and finally our rules for while-loops and if-statements.

Iterating over identical processes Figure 4.5 contains rule R-Loop-Upd for rewriting the inter-
action between a set of identical processes Q and a process p which iterates over Q . The rewrite
succeeds if we can rewrite the interaction between an arbitrary iteration of p and a single process
in Q , independently of previous iterations and other processes. This condition is enforced through
the rewrite-step that appears in the pre-condition of the rule. The rule picks a fresh PID q∗ ∈ Q

(corresponding to the value of q in the chosen iteration) and a subset ∅ ⊂ Q∗ ⊆ Q (corresponding to
the set of remaining processes, in that iteration) and shows that it is possible to unfold a process u
from Q∗ (u may or may not be equal to q∗) such that u and p can be rewritten to skip. Explicitly
unfolding process u from Q∗ ensures that the iteration talks to process u, only. To ensure iterations
are independent, the rule modifies the prefix by havocing all variables that may be assigned in
the loop by assigning a non-deterministic value. Likewise, the rule requires the context after the
rewrite to be the same as before in order to rule out superfluous sends.
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R-Send-Unfold

Γ ⊢ q∗ ∈ Q

Γ,∆,
(

[send(t ,q∗,n)]p ∥
∏

q:Q .A
)

, Ψ⇝

Γ,∆,
(

[send(t ,q∗,n)]p ∥
∏

q:Q\{q∗}.A ∥ [A]q∗
)

,Ψ

R-Send-Resid

V fresh q is a PID

∆ |= x = q ∆′ =
(

∆; [V ← V ∪ {n}]p
)

Γ ⊢ E(q) Ψ′ =
(

Ψ ◦
∑

v :V .[send(t ,q,v )]p
)

Γ,∆, [send(t ,x ,n)]p ,Ψ⇝ Γ,∆′, skip,Ψ′

R-Recv-Unfold

q∗ fresh

Γ ⊢ ∅ ⊂ Q ′ ⊆ Q

Γ,∆,
(

[x ← recv(q∗, t )]p ∥ [A]q∗
)

,Ψ⇝ Γ,∆′, [A′]q∗ ,Ψ
′

Γ,∆,
(

[x ← recv(Q, t )]p ∥
∏

q:Q ′.[A]q
)

, Ψ⇝

Γ,∆,
(

[x ← recv(q∗, t )]p ∥
∏

q:Q ′\{q}.A ∥ [A]q∗
)

,Ψ

R-Compose-Resid

Γ0 ≜ Γ ∪ E(p) for p ∈ Procs(B) rf (B ∥ Ψ)
Γ0,∆,A, skip⇝ Γ0,∆

′, skip,Ψ
Γ,∆′,B ∥ Ψ, skip⇝ Γ,∆′′, skip, skip

Γ,∆,A ∥ B, skip⇝ Γ,∆′′, skip, skip

Fig. 4.6. Rewrite Rules (Unfold, Residue)

Unfolding Figure 4.6 shows rules R-Send-Unfold and R-Recv-Unfold which unfold a single
process from a set of identical processes. Rule R-Send-Unfold allows unfolding a process q∗ from
a set Q , if there is a send to q∗, and it follows from the context that q∗ ∈ Q . Rule R-Recv-Unfold
treats a situation in which a process p can receive from any of the processes in a set of identical
processesQ ′, i.e., there is a race between these processes. The rule picks a fresh q∗ ∈ Q ′ and unfolds
it from the set. It then modifies the receive such that it can only receive from the freshly chosen PID.
The rule has an additional precondition requiring that the receive can be rewritten to skip, i.e., there
is in fact a matching send in A. This precondition is required to ensure that the rewrite-step does
not introduce any deadlocks (by over-specializing the receive from any process in Q ′ to just q∗).

Example Consider ex5 shown left below (this example is based on ex4 from ğ 2). As before, we
eliminated wild card receives and assume that there is only a single message type. Our goal is to
apply R-Loop-Upd to produce the sequentialization ex5Goal shown on the right.

ex5 ≜



for q in Q do
id ← recv(Q );

send(id, ping)
end

p
∥
∏

q:Q .

[
send(p,q);
v ← recv(p)

]
q

ex5Goal ≜ for q in Q do
[id ← q]p ;

[v ← ping]q
end

In order to satisfy the precondition of rule R-Loop-Upd, we need to rewrite the program I shown
below, which corresponds to an arbitrary iteration ofp’s loop (Q∗ is a fresh set with Γ ⊢ ∅ ⊂ Q∗ ⊆ Q),
by unfolding a process from Q∗ and rewriting p and the unfolded process to skip. Applying R-

Recv-Unfold yields the program I ′ shown on the right, where q∗ is a fresh PID. We can rewrite

I ′ into skip ∥
∏

q:Q∗\{q∗}.[· · · ] with sequential prefix ∆ ≜
(

[id ← q∗]p ; [v ← ping]q∗
)

thereby
satisfying the goal in the precondition of R-Loop-Upd. This allows us to rewrite the entire program
to skip (using an additional application of Rule R-Congr) which produces the sequential prefix
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R-While-Repeat

Γ,∆, [A]p ∥ [B]q ,Ψ⇝ Γ′,∆′, skip,Ψ′

Γ, ∆, [while true do A end]p ∥ [B ; C]q ,Ψ⇝

Γ′,∆′,[while true do A end]p ∥ [C]q , Ψ′

R-While-Remove

Γ,∆, [A]p ∥ [B]q ,Ψ⇝ Γ′,∆′, break,Ψ′

Γ, ∆,
[
while true do A end

]
p
∥ [B;C]q ,Ψ⇝

Γ′,∆′,[C]q , Ψ′

R-if-then

∆ |= e

Γ,∆, if e then A else B,Ψ⇝ Γ,∆,A,Ψ

R-if-else

∆ |= ¬e

Γ,∆, if e then A else B,Ψ⇝ Γ,∆,B,Ψ

Fig. 4.7. Rewrite Rules (Branch)

ex5Goal.

I ≜

[
id ← recv(Q );

send(id, ping)

]
p

∥
∏

q:Q∗.

[
send(p,q);
v ← recv(p)

]
q

I ′ ≜

[
id ← recv(q∗);
send(id, ping)

]
p

∥

[
send(p,q∗);
v ← recv(p)

]
q∗
∥
∏

q:Q∗\{q∗}.[· · · ]

Example Consider example ex6, shown below. ex6 is a variant of the previous example that is
rejected by our method. As before, in order to satisfy the precondition of rule R-Loop-Upd, we need
to rewrite the program I corresponding to an iteration of p’s loop.

ex6 ≜



for q in Q do
send(q, ping) ;
v ← recv(Q )

end

p
∥
∏

q:Q .

[
send(p, pong);
w ← recv(p)

]
q

I ≜

[
send(q∗, ping) ;
v ← recv(Q )

]
p

∥
∏

q:Q∗.

[
send(p, pong);
w ← recv(p)

]
q

Applying rule R-Send-Unfold yields the program I ′. However, our method fails to rewrite this
program as this would require unfolding a second process to handle the receive from Q .

I ′ ≜

[
send(q∗, ping) ;
id ← recv(Q )

]
p

∥

[
send(p, pong) ;
w ← recv(p)

]
q∗
∥ · · ·

Intuitively, this is because the receive in p can receive a pong message from any process (not just
the one it just sent to), which violates the requirement that each loop iteration should only talk to
a single process.

Iterating over sets of Indices Figure 4.8 contains rule R-Loop-Repeat. The rule rewrites the
interaction between a set of processes Q and a process p which iterates over a set of indices I .
Again, the rule contains a precondition that requires rewriting the interaction between an arbitrary
iteration of p and a single process from Q . For this, the rule picks a fresh i∗ and requires showing
that we can unfold a process u fromQ such that p’s iteration can be rewritten to skip while process
u remains unchanged, i.e., executable after the interaction. The rule produces a sequential prefix by
repeating the prefix produced in the iteration where the unfolded process u is substituted for an
arbitrary process from Q .

While Loops and Conditionals
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R-Loop-Repeat

i∗ fresh

∆0 ≜ havoc(∆,A,B)
∆′ ≜ ∆ ;


for i in I do
∑

q:Q . (∆u [i/i∗][q/u])

end

 Ψ′ ≜ Ψ ∥
*.,
for i in I do
∑

q:Q .[Ψu ]q
end

+/-
Γ,∆0,

(

[A[i∗/i]]p ∥
∏

q:Q .[B]q
)

, skip⇝ Γ, (∆0;∆
u ) , (skip ∥ [B]u ∥

∏

q:Q\{u}.B) , [Ψu ]u

Γ,∆,


for i in I do

A

end

p
∥
∏

q:Q .[B]q ,Ψ⇝ Γ,∆′,
∏

q:Q .[B]q ,Ψ
′

Fig. 4.8. Rewrite Rules (Iteration over sets of indices).

Consider again Figure 4.7. Rule R-while-repeat unrolls an iteration of a while loop, if the
iteration, together with some prefix B of another process, can be rewritten to skip. Rule R-while-

remove unrolls an iteration of a while loop, if the iteration together with some prefix B of another
process can be rewritten to break. It then removes the while loop from the program. Rule R-if-
then allows to rewrite the then-branch, if the condition holds; R-if-else allows rewriting to the
else-branch, if the condition does not hold. Our system additionally contains rules R-Branch that
allows to rewrite an if-statement, if both branches, together with an additional context, can be
rewritten to skip, R-Nondet-Recv which allows receiving from a non-deterministically chosen
process in an identical set, and a rule for rewriting pairs of for-loops.

Example Consider example ex7 shown below, in which processp interacts with a set of processesQ .
p executes a loop in which it receives a PID and then sends back the value 0. Each process in Q

sends its PID to p and waits for a reply. Upon receipt, it assigns the received value to stop and
breaks from the loop, if stop is one.



for i in I do
id ← recv(Q ) ;

send(id, 0)
end

p
∥
∏

q:Q .



while true do
send(p,q) ;
stop ← recv(p) ;
if stop = 1 then

break
else skip

end

q
Our goal is to use rule R-Loop-Repeat to rewrite p to skip so that the remaining program consists
only of the parallel composition over Q . Applying R-Loop-Repeat and R-Recv-Unfold yields the
program shown below, where q∗ is fresh:

[
id ← recv(q∗) ;
send(id, 0)

]
p

∥



while true do
send(p,q∗) ;
stop ← recv(p) ;
if stop = 1 then

break
else skip

end

q∗

∥ . . .

Using an application of R-while-repeat and R-if-else, we can rewrite process p to skip, producing
sequential prefix ∆ ≜ [id ← q∗]p ; [stop ← 0]q∗ , yielding the final sequential prefix:

for i in I do
∑

q:Q . *,
[id ← q]p ;

[stop ← 0]q

+- end
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4.3 Residual Processes

Finally, Figure 4.6 shows our rules for residual processes. Rule R-Send-Residmoves a send of valuen
to process x into the residual process Ψ, if x is external. Since we are postponing the execution
of the send, the rule takes a łsnapshotž of n by inserting it into a fresh set V and adding the
assignment to the sequential prefix (we assume that V is initialized to ∅). The residual process then
non-deterministically sends a value from V (note that this step introduces an over-approximation).
Our system contains an additional rule R-Recv-Resid for receives. Rule R-Compose-Resid allows a
modular rewriting of programs. It takes two parallel programs A and B and first rewrites A while
treating all processes in B as external, meaning that all sends to processes in B (Procs(B)) are added
to the residual process Ψ. The rule then composes the residual process with B and rewrites the
composition. The rule requires the composition of Ψ and B be symmetrically non-deterministic,
indicated by rf (B ∥ Ψ).

Example Consider again example ex4 from Figure 2.7. We apply rule R-Compose-Resid, rewriting
process p and the processes in Q , treating processm as external. This produces the residual term
shown in Figure 2.9, where we remove the non-deterministic choice as the set only contains one
element. Next, we compose the residual process with processm as shown left in 2.8. The program
is race-free up to symmetry as each receive inm can only receive messages from processes in Q

that are at the same program location. Rewriting the resulting program yields sequentialization
show right in fig. 2.8.

4.4 Correctness

Termination Each rewrite rule, with the exception of R-Congruence, decreases the size of the
input program. Moreover, there are finitely many ways to instantiate each rule. Therefore, we
guarantee termination of our rewriting by restricting the use of R-Congruence to situations where
it decreases the size of the input program.

Rewrite SoundnessWe now present our main correctness theorem. For this, we need the following
additional definitions. We define a program state as a triple (σ , µ, P ), where σ ∈ (PID × Var⇀ Val)
is a (partial) map such that σ (p,x ) is the value of the variable x in process p, µ ∈ (PID × PID ×

MsgType⇀ Val∗) is a map from channels to sequences of values, and P is a program. We define
an interpretation on prefixes and contexts such that (σ , µ ) ∈ J∆, ΓK when σ and µ are a store and
message buffer consistent with the states reachable by executing ∆ and the assumptions in Γ. Let
σ |P denote the store whose domain is restricted to the variables of the processes in P . We denote
the set of processes that are halted in a state (and will never become enabled) as halted(σ , µ, P ).

Theorem 4.1. Let P be a program in normal form. If

(1) Γ,∆, P ,Ψ⇝ Γ′,∆′, P ′,Ψ′

(2) rf (P ◦ E) for some extension E and (σ , µ ) ∈ J∆, ΓK such that (σ , µ,Ψ; P ◦ E) → (σQ , µQ ,Q )

Then there exists (σ ′, µ ′) ∈ J∆′, Γ′K such that (σ ′, µ ′,Ψ′; P ′ ◦ E) → (σQ ′, µQ ′,Q
′) and σQ |H = σQ ′ |H

where H = halted(σQ , µQ ,Q ).

The inverse direction does not hold since our method over-approximates values sent by residual
processes.

Proof (Sketch). The proof is by induction on the derivation of Γ,∆, P ,Ψ⇝ Γ′,∆′, P ′,Ψ′, split-
ting cases on the final step. Left-movers such as sends may be sequentialized while preserving
the states of halted processes, since they commute with other actions by definition [Lipton 1975].
Importantly, the case for R-Recv uses the fact that receives are left movers, up to their matching
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e ::= x | λx : t.e | e e | C e | case e of |C x̄ → e | let x = e in e | fix f .e Pure Terms

| send e e | receive | spawn e | getSelfPid | return e | e >>= e | foldM e e e Effectful Terms

t ::= () | Int | · · · | ProcessId | Process t | t → t Types

Fig. 5.1. Syntax of λp terms

1 data Message = Work Int |

Term

2

3 mapper :: ProcessId

4 → ProcessId

5 → Process ()

6 mapper q r = mapperLoop

7 where

8 mapperLoop = do

9 me ← getSelfPid

10 send q me

11 w ← receive

12 case w of

13 Work i → do

14 send r i

15 mapperLoop

16 Term → return ()

17 queue :: Int

18 → [Int]

19 → ProcessId

20 → Process ()

21 queue n work r = do

22 me ← getSelfPid

23 workers ← spawn n (mapper

me r)

24 foldM distribute () work

25 foldM terminate () workers

26 where

27 distribute _ i = do

28 x ← receive

29 send x (Work i)

30 terminate _ _ = do

31 x ← receive

32 send x Term

33 reducer :: Int

34 → Int

35 → Process ()

36 reducer k n = do

37 me ← getSelfPid

38 spawn 1 (queue n work me)

39 foldM waitForUnit () work

40 return ()

41 where

42 work = [1..k]

43 waitForUnit _ _ = receive

44

45 main :: Process ()

46 main = do n ← readNumWorkers

47 k ← readWorkUnits

48 reducer n k

Fig. 5.2. MapReduce implemented in Haskell

send. The case for R-Recv-Unfold relies on introducing a prophecy variable [Abadi and Lamport
1991] that guesses the sender of the eventually received message. □

Theorem 4.1 implies that we can check reachability for any halted subset of processes, consistent
with results from finite-state partial order reduction techniques (e.g., Siegel and Avrunin [2005]).
Thus, if we can rewrite a program P into prefix ∆, then (1) P is deadlock free and (2) process-local
safety properties of ∆ are enjoyed by P .

5 IMPLEMENTATION

Next, we describe the implementation of our approach in a tool called Brisk, that takes as input a
program written in Haskell using the Cloud Haskell libraries [Epstein et al. 2011]. Brisk first
compiles it to an IceT term (ğ 5.1) and then rewrites the IceT term to its canonical sequentialization
(ğ 5.2) in order to verify concurrency properties of the input Haskell source.

5.1 From Haskell to IceT

First, we describe how Haskell terms are compiled to IceT programs.

MapReduce in Brisk Figure 5.2 contains an implementation of MapReduce in Haskell which we
use as running example.MapReduce comprises a reducer, a queue, and a set of mapper processes.
The program is parameterized by k, the amount of work, and n, the number of mapper processes.
The mapper process (implemented in mapperLoop) queries the queue for work. If the response is a
unit of work, it sends a result (in this case, just the work unit i itself) to the reducer process and
calls mapperLoop to begin the next iteration; if the response is Term, it terminates. The work queue
first spawns n mapper processes, and then uses foldM2 to wait for k requests which it answers
with a unit of work Work i. Having distributed k units of work, the queue waits for each mapper

to send a request, and responds with a Term message, causing the mapper to exit. The reducer

2The foldM combinator is a standard left-fold where the łfold functionž can be effectful.
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λq.λr.fix loop.

getSelfPid >>=

λme. send q me >>=

λ_. receive >>=

λw. case w of

Work i → send r i >>=

λ_. loop

Term → return ()

Fig. 5.3. λp term corresponding to the body of
mapper from fig. 5.2. (λ binds tighter than >>=.)

wff (x ) = true

wff (λx . e ) = wff (e )

wff (e1 e2) = f < fv(e2) ∧ wff (e1)

wff (case e of pi → ei ) = f < fv(e ) ∧ ∀ i . wff (ei )

wff (let x = e1 in e2) = f < fv(e1) ∧ wff (e2)

wff (e1 >>= e2) = f < fv(e1) ∧ wff (e2)

Fig. 5.4. Well-formedness of bodies of λp fix expres-
sions. We denote the set of free variables of the ex-
pression e by fv(e ).

process first spawns the work queue and then waits to receive k messages from the mappers. The
main function first reads in the number of workers and work units and then executes the program.

Abstract Syntax We now describe how to extract a IceT program from a Haskell program. We
formalize our translation in terms of a language λp, which models Cloud Haskell programs. The
language consists of a lambda calculus extended with algebraic data types and let bindings (fig. 5.1).
General recursive functions are implemented using the fixed-point combinator fix. The language
is extended with the effectful primitives send and receive for sending and receiving messages.
Processes are spawned by calling spawn e p where e is an expression evaluating to the number of
processes to spawn and p is an expression3 evaluating to the program of the new process. The
primitive getSelfPid returns the identifier of the currently running process. Effectful programs
are built using these primitives and the monadic combinators return, >>=, and foldM. Figure 5.3
shows the desugared λp term corresponding to mapper from fig. 5.2.

Pure and Impure expressions. λp expressions are typed. For ease of presentation, we consider
a type system that is much simpler than that of Haskell, as our translation is oblivious to most
of its features. If the expression e has type t , then we write e :: t . Effectful expressionsm have
types of the form Process t , where t is the type of the value returned by executingm. We say that
Process t is impure, and call t ′ → t impure, if t is.

Translation to IceT In this section, we consider first-order terms m, where functions appear
as arguments only to primitives. Higher-order programs can be handled by defunctionalization

(e.g., Mitchell and Runciman [2009]). Next, we traverse the abstract syntax tree (AST) of m to
compute the corresponding IceT program, using the types of the child expressions to guide the
translation. Ifm :: Process t , then the term corresponds to a tree of expressions where each node
is an application of >>=.
To translate an impure λp termm, we define the mapping T {m}. The function T {m} traverses

the tree structure ofm. Sub-expressions of the formm >>= (λx.n) correspond to IceT programs
of the form x ← sm ; sn , where sm and sn are IceT terms corresponding to m and n. Let-bound
functions are inlined, and their subsequent applications are β-reduced before translating to IceT.
We translate algebraic data types to tuples, and hence translate case expressions to a sequence of
if statements [Cardelli 1984].
Since our goal is to produce IceT programs in normal form, (ğ 3), we limit the occurrences of

spawn. Our rewrite rules consider a flat, parallel composition of processes, so we require that uses
of spawn occur (1) before any message sends or receives and (2) outside of any loops (i.e., fix and
foldM) or conditionals.

3 We refer the interested reader to Epstein et al. [2011] for a discussion of how to handle closures.
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R ≜


for p in K do
x ← recv(∗, Int) {b} (1)

end

m

W (p) ≜



while true do
send(PID, q,p); a

w ← recv(∗, Message) {c,d } (2)
if w = Work i then
send(Int,m, i ) b

else
break

end

p

Q ≜



for i in K do
x ← recv(∗, PID);
send(Message,x ,Work i )

end;

{a} (3)
c

for p in P do
x ← recv(∗, PID);
send(Message,x ,Term)

end

{a} (4)
d

q
MapReduce ≜ Q ∥

∏

p:P .W (p) ∥ R

Fig. 5.5. Tagged IceT model of MapReduce program from fig. 5.2

We restrict the translation of recursive, impure computations by defining a notion of well-
formedness that corresponds to tail-recursion. The intuition is that any recursive computation, i.e.,
an expression of the form fix f .e , the recursive call f should be the last action. The definition of
wff (e ) in fig. 5.4 closely follows the definition of a tail recursion for a function f . We thus require
that wff (e

′) for all impure sub-expressions fix f .e ′ of e . With this restriction, it is straightforward
to translate recursive, effectful functions into while loops. The body of the fix term in fig. 5.3 is
well-formed: the recursive call to loop is the last action.

MapReduce in IceT The Haskell code for mapper from fig. 5.2 is thus translated to a while loop
in the extracted IceT program shown in fig. 5.5, which also shows the send and receive tags,
derived from the types as described in ğ 5.2. Both m and q contain receives that are tagged with
a single location in the set of processes P, while the receive in the P process is tagged only with
sends from the q process. Since the receive at (1) is tagged with b, which appears in the worker
process, the statement is equivalent to x ← recv(P, Int). Likewise, the receive at (2) is equivalent
towp ← recv(q, Message) and wildcards in (3) and (4) may be instantiated to P.

5.2 Canonical Sequentialization of IceT Programs

We synthesize canonical sequentializations by implementing our rewrite rules ğ 4 as a Prolog
predicate rewrite, shown below. Intuitively, predicate rewrite(P , Γ,∆,Ψ, P ′, Γ′,∆′,Ψ′) holds if
Γ,∆, P ,Ψ⇝ Γ′,∆′, P ′,Ψ′. In order to rewrite a program P we can use the query

rewrite(P , (Buff∅, ∅), skip, skip, skip, (Buff∅, _),∆, skip)

which rewrites P to skip producing its canonical sequentialization ∆.

rewrite(P , Γ,∆,Ψ, P ′′, Γ′′,∆′′,Ψ′′) :- ( P = P ′′, Γ = Γ′′,∆ = ∆′′,Ψ = Ψ′′

; rewrite_step(P , Γ,∆,Ψ, P ′, Γ′,∆′,Ψ′), !,
rewrite(P ′, Γ′,∆′,Ψ′, P ′′, Γ′′,∆′′,Ψ′′)).

Predicate rewrite is defined recursively: either the rewrite is complete (i.e., P = P ′), or the
predicate applies a predicate rewrite_step which implements a disjunction over all rewrite rules
(i.e., R-Send, R-Recv, and so on) and recursively rewrites the results. Crucially, rewrite performs
a cut (using the notation !) after each successful rewrite step: once a rewrite step succeeds, the
program cannot backtrack to try alternative steps. In general, this may eliminate valid rewrite
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sequences unless the rules are confluent (i.e., the order in which rules are applied does not matter).
Unfortunately, our rules are not confluent in a limited number of cases. For example, in some
situations both R-Send and R-Send-Unfold are applicable. In this situation, applying R-Send will
cause the rewrite to get stuck: R-Send consumes the send to a member of some set, and hence
it is impossible to unfold the corresponding set. We address this difficulty by fixing an ordering
on these rules. For example, our implementation will always try to apply R-Send-Unfold before
R-Send. The resulting system is confluent: the cuts do not eliminate valid rewrites. This step is
crucial for ensuring that Brisk is fast enough for interactive use.
Predicate rewrite can also be used to rewrite a program to something other than skip, e.g., for
programs where some reactive components (e.g., servers) may not terminate and we only want to
rewrite the finite interaction between clients and server. Here, we rewrite the client to skip and
keep the server as a remainder term.

Semantic Entailment Our proof system makes use of the entailment relation, ∆ |= φ, e.g., in R-

Send and R-Recv. As ∆ may contain loops, entailment is undecidable. Computing approximations
of ∆ |= φ is orthogonal to this paper, however, we found that for our benchmarks (ğ 6), loop
invariants that track constants were sufficient.

Checking Symmetric Non-Determinism We check symmetric non-determinism through the
following effective over-approximation: for each receive, we add tags of all sends of the matching
type, where we treat sends to variables as sends to any PID and assume processes do not send
messages to themselves. While this approximation sufficed for all our examples, our method is
orthogonal to the method employed for race detection and can easily be extended to a more precise
analysis.

Wildcard Instantiation We replace each wildcard with the expression implied by its tags. This
is possible since symmetric non-determinism ensures that each receive is matched with a single
process or a symmetric set.

6 EVALUATION

To test the effectiveness of our approach, we ported programs from related work to Haskell. Our
evaluation demonstrates that a large variety of idiomatic, asynchronous message passing programs
satisfy symmetric non-determinism. Even though programs satisfying symmetric nondeterminism
are nontrivial to verify, Brisk can rapidly compute their canonical sequentializations, implying
that our method can be easily integrated in an iterative design-implement-check loop.

Methodology To evaluate Brisk, we recorded the time it takes to rewrite each benchmark into
its canonical sequentialization. For programs that should terminate, we compute the canonical
sequentialization by rewriting the entire program to skip. For systems with reactive components,
we closed the system by adding clients that execute a finite program (e.g., non-deterministically
call RPCs). We then ran Brisk to compute the canonical sequentialization of the interaction of
clients and the reactive components. For both classes of programs, beyond summarizing the input
program’s behavior, computing a canonical sequentialization serves as proof that (1) the program
does not deadlock (modulo reactive components) and (2) processes do not call fail. We only check
for simple assertion failures such as the one in fig. 2.1 by treating fail as a special primitive that
cannot be rewritten. Checking arbitrary safety properties is an undecidable problem in general,
however, one can use the computed sequentialization to check more expressive properties using
off-the-shelf techniques for verifying sequential programs.
To gauge the complexity of verifying programs that satisfy symmetric non-determinism, we

have manually written a Promela model for each benchmark by instantiating its parameters and
suitably abstracting its data values. We found the smallest instantiation such that Spin was unable
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Name #Param #LOC
Spin IceT Brisk

N #Term time (ms)

ex2 1 14 - 69 20
ex3 1 13 11 57 20
PingDet 1 17 13 83 20
PingIter 1 19 11 63 20
PingSym 1 13 10 44 30
PingSym2 1 43 7 140 30

ConcDB 1 54 6 265 20
DistDB 2 42 2 218 20
Firewall 1 45 9 201 30
LockServer 1 28 12 109 30
MapReduce 2 64 4 205 30
Parikh 0 35 - 173 20
Registry 1 40 10 171 30
TwoBuyers 0 59 - 332 20
2PCommit 1 47 6 281 50
WorkSteal 2 39 5 141 40

Theqe 3 576 3 1443 100

Table 6.1. Brisk and Spin results. The first grouping is a set of micro-benchmarks, the second are ported from
related work, and Theque is our own case study. It takes at most 100 ms for Brisk to rewrite a program into
its canonical sequentialization.

Master:
AllocBlob(name)
PutBlob(name, data)
GetBlob(name)
AddTag(tag, refs)
GetTag(tag)

Tag Server:
AddTag(name)
GetTag(tag)

Data Server:
PutBlob(name, data)
GetBlob(name)

Fig. 6.1. Theque messages (top) and remote procedure calls (bottom). An arrow from A to B indicates that A
sends B messages. The dashed line surrounds the services comprising Theque.

to run without consuming more than 8 GB of RAM or taking more than 60 seconds to complete.
For programs containing multiple parameters, we instantiate each parameter with a value of the
same size. We ran Spin (optimized for safety checks with spin -run -safety) to to check for
invalid end states. We ran our experiments on a 2.8GHz Intel® Xeon® computer.

Benchmarks We evaluate our approach with the following benchmarks:

ś ex3, ex2, PingDet, PingSym, PingIter, and PingSym2 are microbenchmarks from ğ 2.
ś ConcDB [D’Osualdo et al. 2012], Parikh [D’Osualdo et al. 2012] and DistDB [Marlow 2012]
are implementations of key-value stores.

ś Firewall [D’Osualdo et al. 2012] is a firewall mediating communication between a worker
and a server.

ś Registry [Tasharofi et al. 2012] contains a master process, n workers and a registry server
that is used to keep track of the processes registered in the system.

ś WorkSteal is the first phase of MapReduce from fig. 5.5, where n workers compete for k
jobs.

ś LockServer [Wilcox et al. 2015] implements a lock service.
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ś 2PCommit [Lampson and Sturgis 1976] is the classic two-phase-commit protocol for atomic
commitment.

ś TwoBuyers [Honda et al. 2008] is a protocol where two łbuyersž negotiate a purchase from
a łseller.ž

ś Theqe is a prototype distributed file store that we developed, inspired by Disco [Disco-
Project 2017].

Case Study: Theque Cluster File System To demonstrate that realistic systems can be developed
using Brisk, we built a prototype cluster storage system, inspired by the Disco cluster file system,
called Theqe. A Theqe instance stores two types of data: (1) immutable, write-once blobs of
data and (2) mutable tags, which are metadata. Tags are references to blobs, other tags, or both.
Figure 6.1 shows the processes and remote procedure calls. Clients issue requests to a master
process. Operations on blobs are forwarded to a set of data servers, tag operations are handled by a
set of tag servers.
Theqe is naturally symmetrically non-deterministic. Each type of process is responsible for a

class of operations: the master for coordination, the data servers for data operations and the tag
servers for meta-data operations. The Theqe RPCs are partitioned into different Haskell data
types. For example, the data type MasterAPI defines the types of messages that the master process
expects in its main event handler (i.e., AllocBlob, PutBlob, GetBlob, AddTag, and GetTag from
fig. 6.1). Likewise, TagNodeAPI defines the types of messages for tag nodes. Since the respective
event handlers expect messages of different types, it is easy to prove Theqe has symmetric
non-determinism. For instance, tag nodes trivially cannot receive messages sent by clients, as the
messages are of type MasterAPI which does not match the expected type TagNodeAPI.

In order to create a closed system, we created a module that spawns all of the necessary processes,
including an unbounded number of clients that issue a non-deterministically chosen request to the
Master server. We then ran Brisk on this module to verify first that its implementation is indeed
non-deterministic up to symmetry and second to compute its canonical sequentialization.

Results In Table 6.1, we compare the results of running Brisk to those of verifying deadlock
freedom on finite instances with Spin. The column labeled #Param indicates the number of
parameterized components (sets of processes or indices). Spin N indicates the smallest parameter
instantiation such that the Spin verification exceeds either its memory or time bound. We omit this
number for the benchmarks that are not parametric, and for ex2, which is essentially deterministic.
IceT #Term indicates the size of the intermediate IceT program (compiled from Haskell source)
measured as the number of constant and function symbol occurrences. Finally, in the column labeled
Brisk Time, we report the time for Brisk to compute the program’s canonical sequentialization.
Our results show that for protocols involving asynchronous communication, the Spin verification
run suffers from the expected state space explosion for modest instantiations. In contrast, Brisk
computes canonical sequentializations in less than 100 ms. In order to test how Brisk performs
on faulty programs, we manually added errors such as missing sends, missing receives and sends
to non-existent PID’s to our benchmarks. We found that Brisk reports those errors in around the
same amount of time.

7 RELATED WORK

Next, we situate our approach with related techniques for verifying distributed programs.

Actors andProcess CalculiVarious techniques have been designed to reason about actor programs.
Tools for model checking Erlang programs, e.g., McErlang [Fredlund and Svensson 2007], are
inherently limited to finite state systems. To tackle the infinite state case, [Huch 1999] creates finite
models using abstract interpretation. However, this work does not handle programs with infinite
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control, i.e., an unbounded number of processes. In contrast, [D’Osualdo et al. 2013, 2012] convert
an Erlang program into a (infinite-state) vector addition system which can only be checked for
coverability properties, thus excluding e.g., deadlock-freedom. [Summers and Müller 2016] describes
a logic for reasoning about safety and liveness properties of actor programs. Their setting differs
from ours in that they consider actors that are always ready to receive, whereas our programs block
until a suitable message arrives.

In an actor setting, programs often violate symmetric non-determinism as they receive messages
from different non-symmetric processes at the same program location: usually, each process consists
of a single message handler with multiple continuations for different senders and message types.
Moreover, both actor programs and process calculi feature dynamic process creation. It would be
interesting to investigate whether symmetric non-determinism can be exploited in such a setting.
For instance, we speculate that, if the underlying protocol logic does not crucially depend on
bona fide races, one might often be able to (automatically) refactor the programs to only contain
symmetric races, e.g., along the lines described in ğ 2.3. Similarly, we conjecture that our notion of
unfolding can be generalized to handle dynamic process creation.

Verification of MPI programs It has been shown [Siegel 2005; Siegel and Avrunin 2005; Siegel
and Gopalakrishnan 2011; Siegel and Zirkel [n. d.]] that finite-state MPI programs, subject to
some restrictions, may be efficiently verified by model checkers that consider only synchronous
communications. The łsource-specificž condition of [Siegel 2005] is related to symmetric non-
determinism. Their condition allows receiving sends from various locations, if at each point of
an execution there is only one possible source that can be received from. In contrast, symmetric
non-determinism allows symmetric races which permit receiving from multiple sources. Again, all
above methods do not consider systems with infinite state or infinite control.

Session Types The Session Types [Charalambides et al. 2016; Deniélou et al. 2012; Honda 1993;
Honda et al. 2012, 2008] family of work projects a user-provided global protocol into a set of types
for the various local processes of a program. Session types have found applications in many settings,
including MPI programs [Honda et al. 2016], GO [Ng and Yoshida 2016] and Haskell [Orchard and
Yoshida 2016]. Unlike our approach, session types require the user to specify the global interaction
protocol. Moreover, session types do not allow for symmetric races and hence lack the expressiveness
needed to check some of our benchmarks (e.g., ex3 or MapReduce).

Partial-Order Reduction Exploiting commutativity in state transition graphs is crucial in mitigat-
ing the state-explosion problem in model checking. Partial-order reduction methods [Abdulla et al.
2014; Flanagan and Godefroid 2005; Godefroid et al. 1996] explore representative traces in acyclic
state spaces. These methods are based on the idea that often a concurrent or distributed system only
defines a partial ordering of events. Thus, whenever there is no ordering between two given events,
it is sufficient to explore an arbitrary representative one. This idea is embodied in the concept of
persistent sets [Godefroid et al. 1996] which is closely related to our use of left-movers. A persistent
set, for a given state, is a subset of all enabled transition (i.e., those that can be executed in this
state) such that (1) the transition cannot be disabled by other transitions and (2) it commutes with
all transitions reachable through transitions that are not in the set. Assuming one can efficiently
compute persistent sets, it is sufficient to explore, for each state, only the transitions in its persistent
set in order to cover all halted states. A related notion is that of sleep sets [Godefroid et al. 1996]
which avoid re-exploration of previously explored transitions.

The above partial-order techniques do not directly translate to parameterized or infinite state
systems, as persistent or sleep sets in these settings would be unbounded in size. While some work
has addressed the challenge of infinite state systems [Cimatti et al. 2011; Wachter et al. 2013],
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these techniques focus on systems with a bounded number of processes. In contrast, canonical
sequentialization applies to parameterized as well as infinite state systems.

Reductions The theory of reductions [Lipton 1975] has been used to identify groups of program
statements that appear to act atomically with respect to other threads [Elmas et al. 2009; Flanagan
and Qadeer 2003]. Our work exploits the insights from [Lipton 1975] in order to rewrite programs
into their canonical sequentialization. The work in [Desai et al. 2014] is similar to ours in that
our rules explore traces where buffers are small (by moving receives right after sends). However,
our work checks global system configurations whereas [Desai et al. 2014] is concerned with local

states, only and hence cannot account for deadlocks. Moreover, [Desai et al. 2014] does not consider
unbounded numbers of processes. A condition for transforming asynchronous finite-state programs
into synchronous programs is presented in [Basu et al. 2012], however, it is too restrictive for our
benchmarks.

Parameterized Verification Recent work focuses on automatically inferring counting arguments
in the form of counting automata [Farzan et al. 2014] or by synthesizing descriptions of sets and
referring to their cardinalities [Gleissenthall et al. 2016]. There has been much work on inferring
universally quantified invariants [Bjùrner et al. 2013; Gleissenthall et al. 2016; Monniaux and Alberti
2015; Sanchez et al. 2012]; despite recent progress, reliably synthesising both quantified invariant
and auxiliary state remains a challenge.

In general, clever abstractions are required to verify parameterized systems by model checking.
Counter abstractions [Pnueli et al. 2002] are a classic way to exploit symmetry in parameterized
systems. The work described in Konnov et al. [2015] encodes threshold-based distributed algorithms
into counter systems and uses acceleration and an SMT-based model checker to verify them. How-
ever, the programs we consider require tracking the contents of messages (e.g., PID’s as in example
ex4) which is challenging for counter-based approaches. The method of invisible invariants [Arons
et al. 2001; Pnueli et al. 2001] guesses candidate invariants from small instantiations, but is limited
to finite data domains.
We exploit the symmetry of groups of processes by treating identifiers as scalar sets [Norris IP

and Dill 1996]. Our unfold can be seen to perform a data type reduction [McMillan 1999] (an
instance of abstract interpretation [Cousot and Cousot 1977]).

User-Guided Verification Several recent papers focus on proving high-level correctness properties
of distributed systems. Protocols specified in the Verdi framework [Wilcox et al. 2015] require
the user to provide an inductive invariant. This quite significant burden is somewhat mitigated
by [Padon et al. 2016], in which the user guides the system toward an inductive invariant by
examining counterexamples. [Drăgoi et al. 2014] develops a logic based on the HO model (a
synchronous execution model with benign faults) and [Drăgoi et al. 2016] implements a DSL for
developing and verifying systems in this model. Like our approach, the synchronous semantics
of the HO model simplify verification. However, unlike the above, which require user-provided
invariants, we focus on generic lower-level properties (e.g., deadlock-freedom) and verify programs
automatically.

8 CONCLUSIONS AND FUTURE WORK

In this paper we have described canonical sequentialization, a new approach to verifying parame-
terized distributed programs. We have implemented canonical sequentialization in Brisk, which
rewrites distributed programs written in Haskell. Brisk verifies the unbounded versions of dis-
tributed programs in tens of milliseconds, yielding the first concurrency verification tool that is fast
enough to be integrated into a design-implement-check cycle. For future work, we would like to
address errors due to node failures or unreliable networks. Second, we do not yet handle programs
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with parameterized topologies such as rings and dynamic thread creation. We expect to be able to
extend our notion of unfolding to handle these types of programs. Finally, it would be interesting
to compare how our approach helps programmers understand and ultimately fix errors in their
code versus more traditional approaches.
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