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Abstract—This paper deals with the issue of monitoring
physical phenomena using wireless sensor networks. It provides
principal component analysis for the time series of sensors’ mea-
surements. Without the need to compute the sample covariance
matrix, we derive several in-network strategies to estimate the
principal axis, including noncooperative and diffusion strategies.
The performance of the proposed strategies is illustrated in the
issue of monitoring gas diffusion.

Index Terms—Principal component analysis, wireless sensor
network, adaptive learning, distributed processing

I. INTRODUCTION

A Wireless Sensor Network (WSN) involves a large number
of wireless inexpensive devices, called sensor nodes [1].
Working in a stand-alone manner, a sensor node has several
modules, such as a microprocessor, a radio unit for commu-
nication and a sub-system for measurement, linking it to the
physical world. All these modules are powered by a system
of energy supply, very often a battery. However, with its
low price, a sensor node has limited amounts of memory,
reduced processing capabilities and low communication ca-
pacities. Also, with a non-exchangeable battery, its autonomy
imposes constraints of energy saving. In order to reduce energy
consumption, sensors only communicate with their neighbors
and hence, communication is focused on short distances.
Many applications of WSNs exist in several domains, such
as military, environmental domain, health [2], [3].

WSNs provide an inexpensive way to monitor physical
phenomena such as the temperature field, the atmospheric
pressure, the emission of a pollutant or a gas [4], [5]. Esti-
mating fields measured by a WSN has received considerable
attention. Using learning methods such as kernel machines,
the measurements are combined leading to a regression model
which links the measured quantity to the positions where
measurements are made [6], [7]. The authors in [8] propose
an estimation of the scalar field using adaptive networks.
Diffusion strategies, i.e., adapt-then-combine and combine-
then-adapt strategies [9] are used for this purpose. These
strategies have been investigated to solve linear supervised
learning problems, where the models are often estimated by
least-squares approach. In this paper, we take advantage of
these strategies to estimate the principal axis in principal
component analysis (PCA) in order to provide unsupervised
learning of the time series of sensors’ measurements.

The PCA is one of the most popular unsupervised learning
techniques, with applications in statistical analysis, data com-
pression and feature extraction [10]. This statistical method
defines a set of principal axes that transforms a number
of correlated variables into uncorrelated ones, the so-called
principal components. The most relevant principal axes retain
the largest variance of the data. This technique has been
investigated in many applications involving measurements of
a sensor network, e.g., to extract features from noisy samples
[11], or to compress and denoise high-dimensional datasets
(time series of measurement) [12], [13]. See also [14] for
intrusion detection and [15] for anomaly detection in network
traffic with PCA.

The conventional PCA requires the eigen-decomposition of
the sample covariance matrix. Sending all time series to a
fusion center is not scalable, thus inappropriate for WSNs.
Several techniques have been proposed to overcome these
drawbacks. In [16], each node sends the estimated principal
components, instead of the time series, to the fusion center. In
[17], the authors use the power iteration method to estimate
the most relevant principal axe. This method requires the
computation of the sample covariance matrix, which is ill-
suited for WSNs.

In this paper, we propose to estimate the principal axis
without the need to compute the sample covariance matrix. To
this end, we revisit Oja’s rule, initially described in [18] and
studied more recently in [19] for nonlinear PCA with kernel-
based machines. Within the WSN settings, we derive several
strategies in order to respect WSN constraints, including
scalability, energy consumption, as well as computational and
memory cost. Starting from the centralized scheme, we first
provide a noncooperative strategy for PCA. Then, we study
diffusion strategies, where sensors cooperate between each
other to estimate the principal axis. Two diffusion strategies
are derived, the so-called combine-then-adapt and adapt-then-
combine strategies, have been recently investigated in adaptive
filtering literature [20].

The rest of this paper is organized as follows: Next section
describes the WSNs and their topologies. In Section III,
we describe the proposed strategies for PCA in WSNs, and
study their convergence in Section IV. Section V provides
experimentation results and discussions, whereas Section VI
concludes the paper.



fusion center

Centralized strategy Noncooperative strategy Diffusion strategies

Fig. 1. Illustration of information processing within the proposed strategies for PCA in WSNs. The right-hand scheme illustrates both diffusion strategies:
combine-then-adapt and adapt-then-combine.

II. WIRELESS SENSOR NETWORKS

Let N sensors be deployed in a region X, where X ⊂ R2

or X ⊂ R3, for a two- or three-dimensional space. We
denote by xi ∈ X the position of sensor i, and yi,θ ∈ R

its measurement at time θ of some physical quantity (e.g.,
temperature or gas concentration measurements). Each sensor
collects measurements from θ = 1 to θ = Θ. Let Y ⊂ RΘ

be the measurement vector space, with the conventional inner
product y⊤

i yj for any yi,yj ∈ Y, where yi is the vector
of entries yi,θ , for 1 ≤ θ ≤ Θ. We denote by the real-
value z = w⊤y the inner product associated to the orthogonal
projection of any y ∈ Y onto some vector w ∈ Y.

In the following, we present several strategies to estimate
the principal axis for PCA in the WSN. Potential applications
include feature extraction, compression and denoising these
time series (as illustrated in Section I). Let Vi denote the index
set of the nearest neighboring sensors to sensor i. We consider
that xi is adjacent to itself, that is to say i ∈ Vi.

III. PCA FOR WSNS

We derive several strategies to extract the principal axis.
The communication between sensors and the information
interchange depend on the considered strategy. See Fig. 1.

A. Centralized strategy

Here, the network is assumed to be centralized, with sensors
connected to a fusion center, to which they send their measured
data without any local processing. Having the measurements,
y1, . . . ,yN , the fusion center solves the eigen-decomposition

problem Cw = λw, where C = 1
N

∑N
i=1 yiy

⊤
i is the

covariance of the data (assumed centered). The eigenvector
associated with the largest eigenvalue corresponds to the
principal axis, denoted w∗ in the following.

Since the covariance matrix C is a Θ-by-Θ matrix, the
computational complexity of such operation is O(Θ3). Fur-
thermore, the communication of N sensors with a fusion
center costs O(NΘ) on an average distance O(1). In order
to overcome these communication and computational com-
plexities, we propose next strategies that satisfy the scalability
constraint in WSNs, namely without the need of a fusion
center and without resorting to the covariance matrix.

B. Noncooperative strategy

Considering sensor-to-sensor scheme [21], we propose to
adaptively learn the principal axis, drawing inspiration from
Oja’s rule [18]. According to a routing process, a sensor i
receives from another sensor the estimation wt−1, and adjusts
it with the following update rule:

wt = wt−1 + ηt (yi zi − z2i wt−1), (1)

where ηt is the learning rate which can also change with
iteration and zi = w⊤

t−1yi. This learning rule converges
to the first principal axis w∗. In fact, when wt converges
to some state w, we have yizi = z2iw, or equivalently
yiy

⊤
i w = w⊤yiy

⊤
i ww. Averaging over the whole data,

we get the well-known eigen-decomposition problem of the
covariance matrix Cw = w⊤Cww, where the eigenvalue
w⊤Cw corresponds to the squared output zi that one wishes
to maximize. Therefore, the update rule (1) converges to
the largest eigenvector of the covariance matrix, without the
need to compute C. Communication between sensors in this
strategy costs O(N) on an average distance O(1/

√
N).

C. Cooperative strategies

In a cooperative scheme, each sensor k has access to the
information of its neighborhood Vk, which is the subset of
nodes currently connected to node k, including itself. In the
following, we study two diffusion strategies.

Combine-then-adapt strategy: At every iteration t, each
sensor k combines into φk,t−1 its estimate with the estimates
from its neighborhood, namely {wl,t−1}l∈Vk

. Then it updates
its own estimate using an update rule similar to (1) where
wk,t−1 is substituted by φk,t−1. These two steps are described
as follows:

φk,t−1 =
∑

l∈Vk

akl wl,t−1

wk,t = φk,t−1 + µk (yk zk − z2k φk,t−1).

Here, µk is the stepsize for node k, and akl are convex
combiner coefficients satisfying the conditions:

akl ≥ 0,
∑

l∈Vk

akl = 1. (2)



Adapt-then-combine strategy: In this strategy, at every iter-
ation t, each sensor k updates its own estimate and then fuses
it with those from its neighbors into φk,t−1. These two steps
are described by the following update rule:

φk,t = wk,t−1 + µk (yk zk − z2k wk,t−1)

wk,t =
∑

l∈Vk

akl φl,t.

Here, µk denotes the stepsize for node k, and akl are convex
combiner coefficients satisfying the conditions (2).

IV. CONVERGENCE ANALYSIS AND PARAMETER STUDY

Both adapt-then-combine and combine-then-adapt strategies
are “diffusion” strategies since the combination step allows
information to diffuse through the network. These strategies
have fundamentally the same structure. The difference lies
in which variable we choose to correspond to the updated
estimate. In the adapt-then-combine case, the estimate is the
result of the combination step, whereas in the combine-then-
adapt case the estimate is the result of the adaptation.

In the following, we provide a convergence analysis and
study the choice of the parameters for the strategies proposed
in the previous section.

A. Stepsize in the noncooperative strategy

In the noncooperative strategy, the stepsize parameter ηt
is chosen to be sufficiently small to ensure convergence. It
should be smaller than the inverse of the largest eigenvalue
[20]. Unfortunately, the eigenvalues are usually unknown. For
appropriate convergence, the stepsize ηt should decrease at
each iteration such as ηt = η0/t, where η0 is a positive
constant parameter. An alternative approach is the “search-
then-converge” scheme [19], with ηt = η0

1+t/τ . In this case,
the delay parameter τ determines the duration of the initial
search phase, with ηt ≃ η0 when t ≪ τ , before a converge
phase where ηt decreases as η0/t when t ≫ τ .

B. Stepsize for the adaptation in diffusion strategies

In the diffusion strategies, the stepsize parameter µk is
chosen small to ensure the convergence. It can also decreases
with iterations, such as with µk,t =

µk,0

1+t/τ . We notice that this
stepsize converges toward zero as t −→ ∞. Therefore it turns
off the adaptation. This choice is not suitable for continuous
learning. For this reason, we choose a constant stepsize to
ensure continuous adaptation.

C. Coefficients for the combination in diffusion strategies

The combiner coefficients akl used in the diffusion strate-
gies determine the weight that each node k assigns to the
estimates from its neighbors l ∈ Vk. These coefficients need
to satisfy the convexity conditions (2). By revisiting the
suggestions given in the adaptive filtering literature [22], we
consider the following rules to define these coefficients:

1) Averaging rule:

akl =

{

1/nk, when l ∈ Vk;
0, otherwise.

2) Laplacian rule:

akl =

⎧

⎨

⎩

1/nmax, if l ∈ Vk\{k};
1− (nk − 1)/nmax, if k = l;
0, otherwise.

3) Metropolis rule:

akl =

⎧

⎨

⎩

1/max{nk, nl}, if l ∈ Vk\{k};
1−

∑

j∈Vk\{k}
akj , if k = l;

0, otherwise.

In these expressions, nk denotes the degree of node k, i.e.,
the size of its neighborhood, and nmax denotes the maximum
degree across the network, i.e., nmax = max

1≤k≤N
nk.

V. EXPERIMENTS

In order to illustrate the results of this work, we consider the
framework proposed in [23], where we have the diffusion of a
gas in a two-dimensional space X = [−0.5, 0.5]× [−0.5, 0.5].
This distribution is governed by the differential equation

∂G(x, θ)

∂θ
− c∇2

x
G(x, θ) = Q(x, θ),

where G(x, θ) is the density of gas depending on the position
x and time θ, ∇2

x
is the Laplace operator, and Q(x, θ)

corresponds to the added quantity of gas and c the conductivity
of the medium. A gas source placed at position (−0.3, 0.3)
is activated from θ = 1 to θ = 15. We use N = 100
sensors deployed uniformly in the region under scrutiny X,
each acquiring a time series of 15 measurements, from θ = 1
to θ = 15.

We consider a predetermined range of communication in
the WSN. In this case, two nodes are connected when they
are less than s units of distance apart, that is

Vk = {l : ∥xk − xl∥ < s}.

In our experiments, we set this threshold to s = 0.15. For
the stepsize parameters (see Section IV), we consider as a
reference the constant stepsize η0 = 0.005. We compare the
results with the stepsize given by ηt = η0

1+t/τ , where the
delay parameter τ is given by the third of the total number of
nodes. We also use the same stepsize value for the cooperative
strategies, namely µk = 0.005.

In order to provide a comparative study, we use the same ini-
tial random estimate for all strategies. The performance is mea-
sured with the angle between the principal axis w∗, obtained
from the centralized strategy with the eigen-decomposition of
the covariance matrix, and the estimate wl at node l, namely

arccos

(

w⊤
l w∗

∥wl∥∥w∗∥

)

. (3)

Fig. 2 shows the convergence of each strategy, with the
angles averaged over the N nodes. These learning curves
show that the noncooperative strategy is more suitable when a
variable stepsize is used, as opposed to the constant one where
convergence is not guarantied. This strategy is outperformed
by any diffusion strategy, independently of the combination



rule. The analysis of the diffusion strategies shows that the
adapt-then-combine strategy performs slightly better that the
combine-then-adapt strategy. In terms of combination rules,
the averaging rule provides a slight refinement. The overall
efficiency of the diffusion strategies is shown in terms stability.

VI. CONCLUSION

In this paper, we studied the issue of estimating the principal
axis from PCA in WSNs. Under constraints imposed in WSNs,
we proposed several strategies including noncooperative and
diffusion strategies. Experimental results showed the relevance
of these strategies, and illustrated that the adapt-then-combine
strategy with the averaging rule outperforms the other strate-
gies. As a futur work, we will extend this technique to the
case of multiple principal axis by using a generalized Hebbian
approach. We will also study the use of the spatial information.
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