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Gas Source Parameter Estimation Using
Machine Learning in WSNs

Sandy Mahfouz, Farah Mourad-Chehade, Paul Honeine, Member, IEEE, Joumana Farah, and Hichem Snoussi

Abstract— This paper introduces an original clusterized frame-
work for the detection and estimation of the parameters of
multiple gas sources in wireless sensor networks. The proposed
method consists of defining a kernel-based detector that can
detect gas releases within the network’s clusters using concen-
tration measures collected regularly from the network. Then, we
define two kernel-based models that accurately estimate the gas
release parameters, such as the sources locations and their release
rates, using the collected concentrations.

Index Terms— Gas diffusion, machine learning, one-class
classification, ridge regression, source parameter estimation.

I. INTRODUCTION

GAS RELEASES might occur either accidentally, such
as for the Union Carbide release in Bhopal, India

in 1984 [1], or deliberately, such as for the Sarin gas attack
on Tokyo, Japan in 1995 [2]. Such explosions are potent
threats to the environment and to human society, wherever they
occur. Considering the potentially catastrophic consequences,
it is important to detect the gas explosion and estimate its
parameters, including the source’s location and the release rate.
These computations require the collection of gas concentration
measurements from the area of explosion, which necessitates
specially trained people with appropriate protective equip-
ments. Alternatively, wireless sensor networks (WSNs) have
proven to be very useful in such scenarios, where human
intervention is risky and expensive [3]. Typically, sensors
are deployed in the area to be monitored and are regularly
and continuously collecting measurements from the area. The
collected information is reported back to a fusion center, where
it is processed in order to estimate the source’s parameters.

Several methods have been proposed in the literature for
the estimation of the source’s parameters. For instance, the
authors of [4] developed an inverse model for inferring the
parameters of an instantaneous point source from gas concen-
tration measurements. The method solves a non-linear least
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squares estimation problem. In [3], the authors determined the
source’s parameters using mobile robots that collect concen-
tration measurements. The study was focused on the selection
of the sequence of locations where each robot should be
moved in order to obtain accurate real-time estimates. Another
method was proposed in [5], where the problem of pollutant
source localization and flow estimation is addressed in a
one-dimensional context, using a single remote sensor. The
pollutant is assumed to be generated by one out of several
possible sources, and the task is viewed as a conditional
deconvolution which requires a priori knowledge. In the end, a
joint estimation decision is derived in a Bayesian framework.

In terms of computational concept, algorithms in WSNs
can be divided into centralized, distributed, and clusterized
algorithms [6]. The centralized algorithms require the trans-
mission of all measurements to a fusion center (e.g., a sink
node) for processing. Such strategies often result in prohibitive
wasteful energy and bandwidth consumptions and can thereby
reduce the lifetime and utility of the network. In this paper,
we propose a new clusterized framework for the detection and
estimation of multiple gas sources in wireless sensor networks.
Sensors are uniformly or randomly deployed in the region of
interest and collect concentration measurements at regular and
short sampling intervals. The region is divided into clusters,
each having its own cluster head. Consequently, information
processing is done locally. Compared to a centralized strategy,
this clusterized approach is more robust to failures, since
several cluster heads are engaged in the detection phase. It is
also less energy consuming and thus more adapted to WSNs
limitations.

The proposed framework consists of two phases: the detec-
tion phase and the estimation phase. In the first one, a
kernel-based detector is defined using the Support Vector Data
Description (SVDD) [7]. The detector is used by each cluster
head in order to identify any gas release in the specified cluster.
When an anomaly is spotted, the concentration vector that
first triggered the alert is treated to estimate the gas release
parameters, such as the source’s location and the release rate.
Note that not all the concentrations will be processed in the
estimation phase, since some are irrelevant for parameters esti-
mation. Details about the selection of the useful information
will be given in the sequel. A first estimate of the parameters is
obtained using a non linear model, which is also defined within
the framework of kernel methods, proved to be successful for
solving non linear regression problems [8]–[10]. Then, part of
the estimated parameters are processed as internal feedback,
along with the measured concentrations, in order to provide
a more accurate estimate of the source location. Simulations
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show that the proposed estimation method yields accurate
results in the case of a single source, as well as in the case of
multiple sources.

To our knowledge, such an approach has not been yet
proposed in the literature. Indeed, in this paper, we develop
a more generalized version of the advection-diffusion model
of [4], where we consider that the wind is in both X and Y
directions instead of only one direction. We also propose an
original solution to large-scale areas of interest by dividing the
considered region into distinct clusters. Relevant concentration
information are then extracted from the clusters in alert using
a strategy that we present in this paper. Finally, we develop
two non linear models that allow us to find the source
parameters using the extracted concentrations.

The rest of the paper is organized as follows. Section II
introduces the considered advection-diffusion model.
Section III provides a thorough description of the detection
phase in the proposed framework. In Section IV, the
estimation phase is described, along with details about the
definition of the two kernel-based regression models. Next,
in Section VI, the effectiveness of the method is discussed
for different scenarios, and a comparison to other methods is
provided. Finally, Section VII concludes the paper.

II. THE ADVECTION-DIFFUSION MODEL

This section describes the advection-diffusion model consid-
ered in this paper for the generation of the concentrations. Note
that this model is a generalized version of the one developed
in [4]. Indeed, the authors of [4] consider that the wind is only
in the X direction. In this work, we develop a more general
form of the model in which the wind is in both X and Y
directions. Now consider an instantaneous gas release of Q kg,
assumed to occur at time t0 at location (x0, y0, z0). A wind
with mean velocity U = (ux , uy, 0) spreads the gas particle
in the region. The mass concentration C of the released agent,
at an arbitrary location (x, y, z) and at time t , is governed by
the equation of mass conservation given by the following:

∂C

∂ t
= −∇q, (1)

where ∇ is the gradient operator, and q is the pollutant mass
flux per unit area. The flux q is given by:

q = C U −
⎡
⎣

Kx

0
0

0
Ky

0

0
0

Kz

⎤
⎦ ⊗ ∇C, (2)

where C U is the mean mass advection by the wind, ⊗ is the
tensor product, and Kx , Ky , Kz are eddy diffusivities in the
X, Y and Z directions respectively. Equation (2) can then be
written as follows:

q =
(

C ux − Kx
∂C

∂X
,C uy − Ky

∂C

∂Y
,−Kz

∂C

∂Z

)
. (3)

By substituting (3) into (1), we get an equation that can be
solved subject to two boundary conditions [3], [4]. The first
condition results from the fact that the concentration is zero at
infinity in all spatial directions, and the second condition is that
the gas is not absorbed by the ground. To simplify the model,

the velocity of the wind U , as well as the eddy diffusivities
Kx , Ky , Kz , are assumed to be constant. Following these
assumptions, we get the following solution:

C(x, y, z, t)

= Q

8 π
3
2 (Kx Ky Kz)

1
2�t

3
2

× exp

(
− (�x − ux�t)2

4Kx�t
− (�y − uy�t)2

4Ky�t

)

×
(

exp
(

− �z2

4Kz�t

)
+ exp

(
− �z′2

4Kz�t

))
, (4)

where �x = x − x0, �y = y − y0, �z = z − z0, �z′ = z + z0
and �t = t − t0.

In the following, for the sake of simplicity, we assume that
all measurements are taken at ground level. We also suppose
that the gas release occurs at ground level, which means
that the gas source is at location (x0, y0, z0) = (x0, y0, 0).
Therefore, using (4), the concentration measured at a location
(x, y, 0) is given by the following:

C(x, y, 0, t)

= Q

4π
3
2 (Kx Ky Kz)

1
2�t

3
2

× exp

(
− (�x − ux�t)2

4Kx�t
− (�y − uy�t)2

4Ky�t

)
. (5)

Note that the wind velocity U could be provided by an
anemometer, and is therefore treated as a known constant [3].
The other parameters of the model are unknown and need
to be estimated when a gas explosion occurs over the area
under scrutiny. Hence, having gas concentrations measured
over a certain area using a WSN, the aim of this paper is to
detect the gas explosion when it occurs. Then, the objective
is to estimate the location (x0, y0, 0) of the explosion, the gas
release mass Q, and the eddy diffusivities Kx , Ky and Kz ,
with Kx and Ky assumed to be equal [4].

III. THE DETECTION PHASE

As we already stated, the proposed method uses a WSN to
continuously measure gas concentrations over a certain area �.
Then, computations consist of two phases: the detection phase
and the estimation of the source’s parameters phase. In this
section, we first give a brief description of the network’s setup
and of the detection phase. Then, we define a classifier that
is capable of optimally separating the data into normal and
abnormal data, where the abnormality denotes the occurrence
of a gas diffusion.

A. Description of the Detection Phase

Consider N sensors deployed in the area � to be monitored,
at fixed locations (xn, yn, zn) = (xn, yn, 0), n ∈ {1, . . . , N}.
These sensors measure, at each time t , the gas concentrations
at their locations. Let (C(x1, y1, 0, t) . . .C(xN , yN , 0, t))� be
the N × 1 vector of the gas concentrations measured at time t
by the N sensors. These concentrations are assumed to follow
the advection-diffusion model, detailed in Section II. In order
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Fig. 1. Region topology- represents the cluster heads and • represents the
deployed sensors.

to thoroughly monitor the area of interest, the concentrations
are measured at regular and short sampling intervals by the
deployed sensors.

Assume now that an instantaneous gas release of Q kg
occurs at time t0 at location (x0, y0, z0) = (x0, y0, 0), all these
parameters being unknown. The gas particles are then spread
by a wind with a mean known velocity U = (ux , uy, 0). Since
a gas is released in the area, an alarm should be triggered
based on the vector of measured concentrations. To this end,
we need to develop a detector, capable of determining whether
the concentrations are normal or not.

We propose to partition the area into Z distinct clusters,
in order to make the computations less complex and the
method more robust to transmission impairments and network
failures. Each cluster is managed by a cluster head, that is a
smart central processing unit (CPU), responsible of handling
(gathering and synchronizing) data, performing calculations,
and exchanging information with the sensors. Note that this
device could also be one of the sensors of the network, and it
can be placed anywhere in its specified cluster. In addition, all
cluster heads can communicate with each other, and clusters
could have any shape or dimension. Without loss of generality,
we consider here that clusters are rectangular, with the cluster
heads located at their centers, as illustrated in Fig. 1. Now that
the network has been configured, each cluster head receives
the measured concentrations from the sensors in its cluster at
every time t . Let nz denote the number of sensors in cluster z,
z ∈ {1, . . . , Z}, and let C(z)(t) denote the concentration vector
of size nz × 1 collected by the cluster head of cluster z at
time t . The received data are then processed instantly to detect
whether a gas diffusion has occurred or not.

To achieve this, we aim at finding a detector that can detect
an anomaly in the monitored region; in other words, it can
detect whether or not there is one or more gas diffusions.
A one-class classifier is able to do this task. Indeed, the
Support Vector Data Description (SVDD) has been introduced
to address the problem of anomaly detection [7], [11].

B. Definition of the Detector Using SVDD

The objective here is to define the class boundary, given
data that are originated from a single class, i.e., the nor-
mal data, but are possibly contaminated with a small num-
ber of outliers, i.e., the abnormal data. For simplicity, the

number of sensors in each cluster is assumed to be the
same, so that the same defined detector could be used for
all the clusters, as will be explained in the experimental
results. As we already explained, a one-class classifier can
be used for the detection, such as the Support Vector Data
Description (SVDD) [7], [12], [13]. It essentially fits the
smallest possible sphere around the given normal data, allow-
ing some samples to be excluded as outliers. Therefore, a
spherically shaped decision boundary with minimum radius
is computed to enclose most of the training data. Data lying
outside this decision boundary are considered as abnormal,
i.e., outliers.

Let φ denote a function that maps the data from the
input space IRnz , where the concentrations lie, into a higher
dimensional feature space H. Consider a reproducing kernel
κ : IRnz × IRnz �→ IR, with H its reproducing kernel
Hilbert space (RKHS) with inner product 〈·, ·〉H. We then
have κ(C i ,C j ) = 〈φ(C i ), φ(C j )〉. Now consider a training
set C i , i ∈ {1, . . . , Ndet}, Ndet being the size of the training set
for the detection phase. The SVDD consists of estimating the
hypersphere with minimum radius that encloses all data φ(C i )
in the feature space H. Let a be the center of the hypersphere,
and R > 0 its radius. To allow a better description of
data, we allow the presence of outliers in the training set
by introducing the slack variables ξi ≥ 0. Consequently,
abnormal concentration vectors are also used in the training
set. Mathematically, the values for the slack variables are
obtained by minimizing a cost function that balances the
volume of the hypersphere against the penalty associated with
outliers. Note that minimizing the hypersphere’s volume is
equivalent to minimizing R2. Therefore, we get the following
constrained optimization problem:

min
a,R,ξi

R2 + 1

νNdet

Ndet∑
i=1

ξi (6)

subject to

‖φ(C i )− a‖2
H ≤ R2 + ξi and ξi ≥ 0 ∀i = 1, . . . , Ndet. (7)

The quantity ν is a predefined parameter that regulates the
trade-off between the volume of the hypersphere and the
number of outliers.

Let L denote the Lagrangian of the above constrained
optimization problem. By taking the partial derivatives of L
with respect to R, a and ξi , we get the following relations:

Ndet∑
i=1

αi = 1, a =
Ndet∑
i=1

αiφ(xi ), and 0 ≤ αi ≤ 1

νNdet
,

where αi are the Lagrangian multipliers. Incorporating
these relations into the Lagrangian L gives us the fol-
lowing objective functional to be maximized with respect
to αi :

L =
Ndet∑
i=1

αiκ(C i ,C i )−
Ndet∑
i=1

Ndet∑
j=1

αiα jκ(C i ,C j ), (8)

subject to
∑Ndet

i=1 αi = 1 and 0 ≤ αi ≤ 1
νNdet

. This
is a quadratic programming problem, whose solution



5798 IEEE SENSORS JOURNAL, VOL. 16, NO. 14, JULY 15, 2016

is found using an off-the-shelf optimization technique.
For instance, one can use the Matlab function
quadprog to solve such a problem, and consequently compute
the αi .

As for the radius of the optimal hypersphere, it is, by
definition, the distance from the center a to any sample φ(Ck)
on the boundary in the feature space H. Therefore, the radius
is given by the following:

R2 = κ(Ck,Ck)− 2
Ndet∑
i=1

αiκ(Ck,C i )

+
Ndet∑
i=1

Ndet∑
j=1

αiα jκ(C i ,C j ).

Sensors record the concentrations at regular short inter-
vals T . Therefore, each T seconds, a new concentration vector
C(z)(td) is taken from each cluster z, with td = d × T,
d ∈ IN. The decision rule for each new concentration vec-
tor C(z)(td) is obtained by evaluating the distance between
the center a and the mapping φ(C (z)(td)) in the feature
space, given by ‖φ(C (z)(td)) − a‖2

H. Note that to compute
this distance, one does not need the exact expressions of
φ and a. Instead, by developing the distance expression, one
gets scalar products of φ functions, that could be replaced by
kernels [13], [14]. The new concentration C (z)(td ) is con-
sidered as normal if the distance calculated is smaller than
the radius, i.e., ‖φ(C(z)(td )) − a‖2

H ≤ R2. Otherwise, an
alert is triggered in the considered cluster. According to
[15, Sec. 7.1], we can provide an upper-bound on the false
alert rate, that is the probability that a normal concentration
vector is mistakenly classified as abnormal.

The proposed algorithm can detect and estimate more than
one source. Therefore, more than one detector might detect
a gas release at the same time. However, for simplicity, all
the diffusions are assumed not to overlap. It is worth noting
here that by dividing the whole area into several clusters, the
computations are processed in parallel at all the cluster heads.
Moreover, the size of the considered data in the classifier for
training and detection is limited to nz , instead of taking all the
sensors’ concentrations at once. This way, the network could
be as large as needed without increasing the computations’
complexity.

IV. THE ESTIMATION PHASE

Now that our detector is defined, we are able to detect a gas
diffusion in a specified cluster. Once an alert is triggered in
a cluster z, we proceed to the processing of the concentration
vector C(z)(t) recorded by the sensors in the specified cluster.
In this section, we give a brief description of the estimation
phase, and we emphasize on the choice of the concentrations
to be used in the source’s parameters estimation. The idea here
consists of grouping the clusters in alert in a way to discern
all the sources of explosion. One can take all the clusters in
alert together; however, if the network is too large, with many
sources of explosion, one gets high dimension data to process.
An alternative way consists of grouping adjacent clusters in
alert together; by adjacent, we mean the clusters that share

Fig. 2. Region on interest in the case of multiple gas releases- represents the
cluster heads when there is no alert, when there is an alert, ∗ represents the
locations of explosions, and the red rectangle represents the defined groups.
Grouping the clusters in alert according to their adjacencies leads here to four
groups.

a common boundary. Each cluster in alert but not adjacent
to others will form a group on its own. To illustrate this, see
Fig. 2, where six explosions are assumed to occur in the region
of interest.

At the end of this step, several groups with different sizes
are generated, each covering one or more explosion sources.
The concentration vectors recorded by the sensors of a group
are then communicated to a cluster head of the group, e.g.,
the one having the highest computation capabilities, and the
concentrations are concatenated in a single group vector. Now,
in order to detect the multiple gas releases per group, the
proposed method uses the concentration group vectors to com-
pute local maxima, leading ideally to the concentrations of the
closest sensors to the gas sources. Let Ns be the total number
of local maxima detected at all groups. This means that Ns

sources have exploded at time t , or have exploded at different
times, but are being detected and estimated simultaneously,
since the maximal concentrations would be at the release
source. Consider now the example of Fig. 3, where the source
of explosion is near the boundary of two clusters. The alert
is then triggered in both clusters, the gas being spread all
around the source. Since the clusters are adjacent, they are
grouped together in order to form one group. Then, the local
maximum is estimated, leading to only one sensor, instead of
two if the clusters were considered separately. This means that
by grouping the clusters, one would identify the exact number
of exploded sources, even if the gas is spread over several
clusters.

Having detected the local concentrations maxima, we now
need to process the information in each group in order
to estimate all Ns sources’ parameters. It is important to
mention that not all concentration information have the same
importance in the algorithm. Consequently, only the infor-
mation collected around the local maxima will be treated.
This solution relies on the fact that the highest concen-
trations are collected by the sensors around the source of
explosion, and these concentration measures are the most
relevant for parameters’ estimation. If we reconsider Fig. 3,
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Fig. 3. Group topology- represents the cluster heads, • represents the
deployed sensors, ∗ represents the location of the explosion, and represents
a local maximum.

only the concentration information from the sensors around
the red triangle denoting the maximum will be consid-
ered. Note that the size of the clusters and the number
of sensors in the figure are only chosen for illustrative
purposes.

In this paragraph, we propose to choose the concentra-
tions to be treated based on the advection-diffusion model
of Section II. In other words, we need to estimate the size
of the small local zone around the local maximum as illus-
trated in Fig. 3. Let Cthres be a threshold under which the
concentrations are considered really small, which means that
they are measured by sensors far from the source. Depending
on the considered application and the type of monitoring
needed, one can determine an approximation of the maximum
release mass Qmax. Using Cthres and Qmax, we can find the
maximal distance between a source and a sensor. Then, this
distance is used to determine the boundaries of the local zone,
whose center is the local maximum and the estimated maximal
distance is the distance separating the local maximum from the
boundary of the zone. By taking the logarithm of (5), we get
the following:

log Cthres = log

(
Qmax

4π
3
2 (Kx Ky Kz)

1
2�t

3
2

)

− �x2 − 2ux�t�x + u2
x�t2

4Kx�t

− �y2 − 2uy�t�y + u2
y�t2

4Ky�t
.

For simplicity, assume now that the local zone is circularly
shaped, which leads to �x = �y. In addition, having
Kx = Ky yields the following:

log Cthres = − 2

4Kx�t
�x2 + 2 (ux + uy)

4Kx
�x

+ log

(
Qmax

4π
3
2 (K 2

x Kz)
1
2�t

3
2

)
− (u2

x + u2
y)�t

4Kx
.

Finally, a second degree polynomial in terms of�x is obtained
as follows:

a�x2 + b�x + c = 0, (9)

where⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a = − 1

2Kx�t
,

b = ux + uy

2Kx
,

c = log
( Qmax

4π
3
2 (K 2

x Kz)
1
2�t

3
2

)
− (u2

x + u2
y)�t

4Kx
− log Cthres.

The local zone dimensions �x = �y are then obtained
by resolving the quadratic equation (9), using Qmax, Cthres,
and initial approximative values of Kx and Kz . Then, only
the concentrations measured by the sensors in that zone will
be considered for the source parameters estimation; in other
words, the considered concentrations are the ones measured
by the sensors at a maximal distance �x from the local
maximum. For simplicity, we assume that we have the same
Qmax and Cthres for all the groups, thus for all Ns local max-
ima. Therefore, the same local zone size will be considered
for all Ns explosions. Nevertheless, depending on the type of
application, one can define different sizes for the local zones
around the Ns maxima.

Now let c(s)(t), s ∈ {1, . . . , Ns }, denote the vector of
useful concentrations collected at time t around each local
maximum s, i.e., around each source s. For the sake of
clarity, we drop the time t in the following, since only the
concentrations around the detection time are used. The first
objective is to define a model ψ A that takes as input the
concentration vector c(s) and yields as output the vector of
parameters θ (s) of source s, which includes the gas release
mass Q(s), the source location (x (s)0 , y(s)0 , 0) and the diffusivity
constants. Then, the next objective is to define a second
model ψ B that provides an enhanced estimation of the source
location. Kernel methods [16] provide an elegant framework
to define both models, as it will be shown in the following
section. Note that estimations are handled by the cluster heads
that are the closest to the local maxima sensors.

V. DEFINITION OF THE MODELS ψ A AND ψ B

Let V be the number of sensors in the local zones. As we
mentioned earlier, only the concentrations around the local
maxima will be considered in the estimation phase. Therefore,
the vector c(s) of size V × 1 is the vector that will be
processed to find the parameters of source s. In the following
paragraph, we define the model ψ A, that takes as input the
concentration vector c(s) and yields as output the source’s
parameters θ (s), that are the gas release mass Q(s), the source
location (x (s)0 , y(s)0 , 0) and the diffusivity constants. Then, we
define a new model ψ B that provides an enhanced location
estimation of the source, using a part of the estimated source’s
parameters and the measured concentration vector c(s).

A. First Estimation

In this subsection, we define a model ψ A : IRV �→ IR5,
that associates to each concentration vector the corresponding
source’s parameters. We propose to find the model ψ A by solv-
ing a nonlinear regression problem. The main benefit of such
an approach is that no prior knowledge of the model is needed.
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Kernel methods [16] have been remarkably successful for
solving nonlinear regression problems. More specifically, we
consider the kernel ridge regression [17] to determine ψ A, by
combining five separate optimization problems, one for each
component of the output vector.

Consider the following training set (c�, θ�), � ∈
{1, . . . , Nreg}, where Nreg is the size of the training set used
for the regression phase and θ� = (Q� Kx Kz x0� y0�).
The vector c� yields the concentrations recorded by V sensors
uniformly distributed in a zone of the same size as the
small local zone introduced previously, around the time of
a gas release of parameters θ�, with (x0�, y0�, 0) being the
source’s location and Q� the gas release mass. As already
mentioned, the eddy diffusivities Kx and Ky , with Kx = Ky ,
are assumed constant, since they depend on the atmospheric
conditions and the type of chemical agent, considered constant
as well. Note here that the advantage of using a local small
zone to select the relevant concentrations allows us to save
computations and reduce the training complexity, since V
sensors are now considered instead of N . In the following, let
� = (θ�

1 . . . θ
�
Nreg
)�. The matrix � is then of size Nreg × 5,

having ��,i for the (�, i)-th entry, with � ∈ {1, . . . , Nreg} and
i ∈ {1, . . . , 5}. We also denote θ� by��,∗, and the i -th column
of � by �∗,i .

Let ψ A = (ψA1 . . . ψA5), where ψAi , i ∈ {1, . . . , 5}
estimates ��,i , the i -th component of the vector ��,∗, for an
input c�. Each function ψAi is then determined by minimizing
the mean quadratic error between the model’s outputs ψAi (c�)
and the desired outputs ��,i :

min
ψAi ∈HA

1

Nreg

Nreg∑
�=1

(��,i − ψAi (c�))2 + ηA‖ψAi ‖2
HA , (10)

where ηA is a regularization parameter that controls the
tradeoff between the training error and the complexity of
the solution. According to the representer theorem [16], the
optimal function ψAi can be written as follows:

ψAi (·) =
Nreg∑
�=1

β�,i κA(c�, ·), (11)

where “·” is the function’s input, κA : IRV × IRV �→ IR is a
reproducing kernel, and β�,i , � ∈ {1, . . . , Nreg}, are parameters
to be determined. We now denote by β the Nreg × 5 matrix
whose (�, i)-th entry is β�,i . The vector β∗,i denotes then its
i -th column, and β�,∗ its �-th row. By injecting (11) in (10), the
dual optimization problem in terms of β∗,i is obtained, whose
solution is given by taking the derivative of the corresponding
cost function with respect to β∗,i and setting it to zero. We
then obtain the following:

β∗,i = (K A + ηA NregI)−1�∗,i ,

where I is the Nreg × Nreg identity matrix, and K A is the
Nreg × Nreg Gram matrix whose (v,w)-th entry is κA(cv , cw),
for v,w ∈ {1, . . . , Nreg}. For an appropriate value of the
regularization parameter ηA , the matrix between parenthesis
is always non-singular.

Since the same matrix (K A +ηA NregI) needs to be inverted
in order to estimate each source’s parameter, all five estima-
tions can be collected into a single matrix inversion problem,
thus reducing the computational complexity, as follows:

β = (K A + ηA NregI)−1�. (12)

Finally, using equation (11) and the definition of the vector of
functions ψ A(·), we can write ψ A as follows:

ψ A(·) =
Nreg∑
�=1

β�,∗ κA(c�, ·). (13)

Having detected a local maximum in the region, with its
relevant concentration vector c(s), one could then obtain a first
estimate of the source s parameters as follows:

(Q̂ K̂x K̂z x̂0 ŷ0) = ψ A(c
(s)). (14)

B. Enhancement of the Estimates

In this subsection, we introduce the second model ψ B , that
takes as input the measured concentrations, the estimated mass
release and the estimated eddy diffusivities, and gives as output
an enhanced estimate of the location of the source. Using the
already estimated information as internal feedback is expected
to provide an improved accuracy of the first location estimates
of the sources.

The definition of the model ψ B is also done using the
ridge regression [17]. However, the training set is defined
differently, such that the training input is given by W � =
(c�
� Q� Kx Kz)

� and the training output is the source’s
location (x0� y0�), � ∈ {1, . . . , Nreg}. Let ψ B = (ψB1 ψB2),
where ψB1 and ψB2 estimate x0� and y0� respectively. Let X0
denote the Nreg × 1 vector whose �-th entry is given by x0�,
and Y 0 denote the Nreg × 1 vector whose �-th entry is given
by y0�.

Here as well, the models ψB1 and ψB2 are obtained by
minimizing the mean quadratic errors between the estimated
outputs and the desired ones, as follows:
⎧⎪⎪⎨
⎪⎪⎩

minψB1∈HB
1

Nreg

∑Nreg

�=1
(x0� − ψB1(W �))

2 + ηB‖ψB1‖2
HB

minψB2∈HB
1

Nreg

∑Nreg

�=1
(y0� − ψB2(W�))

2 + ηB‖ψB2‖2
HB

The quantity ηB is also a regularization parameter. In analogy
with the previous paragraph, the optimal solutions can be
written as follows:

ψB j (·) =
Nreg∑
�=1

γ�, j κB(W�, ·),

where κB : IRV +3 × IRV +3 �→ IR is a reproducing kernel,
and γ�, j , � ∈ {1, . . . , Nreg} and j ∈ {1, 2}, are the unknown
parameters to be determined. Let γ denote the Nreg ×2 matrix
whose (�, j)-th entry is γ�, j , and γ �,∗ its �-th row. Following
the same line of reasoning as in the previous paragraph,
one can collect the two estimations into a single one. Then, the
unknown parameters γ�, j are estimated at once, as follows:

γ = (K B + ηB NregI)−1(X0 Y 0), (15)
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where K B is the Nreg × Nreg matrix whose (v,w)-th entry is
κB(Wv ,Ww), for v,w ∈ {1, . . . , Nreg}. Finally, one is able to
write ψ B as follows:

ψ B(·) =
Nreg∑
�=1

γ �,∗ κB(W�, ·). (16)

After determining the first estimates of the parameters of the
source s given by equation (14), one can set the (V + 3)× 1

vector W = (c(s)
�

Q̂ K̂x K̂z)
�

. Using the model ψ B , a
new estimate of the source’s location is obtained as follows:

(x̂0enh ŷ0enh) = ψ B(W), (17)

where (x̂0enh ŷ0enh) is the new enhanced location estimate of
the source.

It is important to note that we are only using the first posi-
tion estimate to compare its accuracy towards the enhanced
one. When implementing the algorithm in a practical setup,
one does not need to find the first position estimate, since it
is not used in the enhancement process, which then reduces
the complexity of the algorithm in terms of storage and time.

VI. SIMULATIONS AND RESULTS

In this section, we evaluate the performance of the proposed
detection and estimation method for different scenarios.
We consider a region of study of dimensions
5000 m × 5000 m. Sensors are deployed in a uniformly
distributed manner in the area at a rate of one sensor each five
meters, which is equivalent to a density of 0.05 sensor/m2.
The region is divided into Z = 25 clusters with same size,
thus having the same density of sensors. Fig. 4 shows the
region’s topology. The concentrations measured by the sensors
are generated using the advection-diffusion model of (5).
The maximum mass release Qmax is taken equal to 1000 kg.
The eddy diffusivity in the Z direction, Kz is taken equal
to 0.211 m2/s, while the eddy diffusivities Kx and Ky , in the
X and Y directions respectively, are taken equal to 12 m2/s.
As for the mean wind velocity U , it is first taken equal to
(1.8; 0; 0) m/s for illustrative purposes as in [4], then equal
to (1.8; 2; 0) m/s. Finally, the sampling time T is taken equal
to 1 s. The rest of this section is organized as follows. The
training parameters are defined in the first subsection. In the
second subsection, an evaluation of the method is proposed in
the case of a single source with different noise values; then,
in the third subsection, an evaluation in the case of multiple
gas releases is provided. Finally, in the fourth subsection, a
comparison of the proposed framework to the state-of-the-art
is provided.

A. Training Parameters

First, we start by describing the training phase for the
detection. As we already mentioned, we assume that the
atmospheric conditions are the same in all the region of
interest. Therefore, in order to reduce computations, we only
define one detector; then, this detector is communicated to all
cluster heads in order to be used in the clusters. The advantage
is that only one training phase is needed now. The size of

Fig. 4. Region topology- represents the cluster heads.

the training set for the detection Ndet is taken equal to 330,
where 300 are normal data and 30 are outliers. We mean by
outliers concentrations measured by sensors in the case of a
gas release. In order to generate the outlier data, 30 different
gas release scenarios are considered, where the source could
be anywhere in the cluster, and the gas release mass Q is
also randomly varying between 5 kg and Qmax = 1000 kg.
The Gaussian kernel is considered in our simulations.
Consequently, the detection kernel κ : IRnz × IRnz �→ IR is
given by the following:

κ(C i ,C j ) = exp

(
−‖C i − C j‖2

2σ 2

)
,

where i, j ∈ {1, . . . , Ndet}, and σ is the kernel’s bandwidth
that plays a crucial role in defining the boundary around the
training data.

Next, let us give a brief description of the training phase
for the estimation step of the proposed framework. According
to Section V, after finding the local maxima, only the con-
centrations around these maxima are used with the models
ψ A and ψ B . By solving (9), one can find the size of the zone
encapsulating the useful concentrations. For Qmax = 1000 kg
and Cthres = 10−5 kg/m3, the solution is then �x = 26 m.
Therefore, we only need to use a zone of 52 m × 52 m
for the training. Let the number of considered scenarios Nreg
in the training phase be equal to 200, where x0 ∈ [0; 52]m
and y0 ∈ [0; 52]m. Q is again randomly varying between
5 kg and 1000 kg. The Gaussian kernel is used here as well.
The first kernel κA : IRV × IRV �→ IR is then given by the
following:

κA(cv , cw) = exp

(
−‖cv − cw‖2

2σ 2
A

)
,

where v,w ∈ {1, . . . , Nreg}, and σA is the kernel’s bandwidth
that controls, together with the regularization parameter ηA,
the degree of smoothness, noise tolerance, and generalization
of the solution.

Due to the difference in the order of magnitude between
the elements of the input W , we consider four dif-
ferent distances and bandwidths for the second kernel
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TABLE I

PERCENTAGE OF ERRORS ON THE ESTIMATED SOURCE’s
PARAMETERS FOR DIFFERENT RANDOM RELATIVE

NOISES FOR U = (1.8; 0; 0) m/s

κB : IRV +3 ×IRV +3 �→ IR. Then, κB is given by the following:

κB(Wv ,Ww)

= exp

(
−‖cv − cw‖2

2σ 2
B1

)
[6 pt] × exp

(
− (Qv − Qw)

2

2σ 2
B2

)

× exp

(
− (Kx v − Kxw)

2

2σ 2
B3

)
× exp

(
− (Kzv − Kzw)

2

2σ 2
B4

)
,

where v,w ∈ {1, . . . , Nreg}, and σB1, σB2, σB3, σB4 are also
the kernel’s bandwidths, with σB3 = σB4, since Kx and
Kz have the same physical properties. The regularization
parameters and the kernels’ bandwidths are chosen in a way
to minimize the error on the training set, using the 10-fold
cross-validation technique [18]. Simulation results show that
taking σB1 = σB2 = σB3 yields very close results to the
ones obtained by taking different values for the bandwidths.
Therefore, in order to save time and computations in the cross-
validation phase, we take σB1 = σB2 = σB3.

B. Testing in the Case of a Single Source

Now that we have defined all the parameters for the training
of the detector and the two regression models, we can evaluate
the performance of the proposed method in the case of a single
source. The source is randomly positioned in the region of
interest, with x0 ∈ [0; 5000]m and y0 ∈ [0; 5000]m, and
Q ∈ [5; 1000] kg. All other parameters are set according
to the beginning of this section, and as taken in [4]. The
testing phase takes place during an interval of 10 s; then,
the concentrations are measured each T = 1 s during this
interval. The gas release can occur at any time in this interval.
Note that random relative noises varying from 1% to 5%
are added to the simulated concentration vectors, in order to
account for transmission impairments or sensing errors. Using
the proposed method, the gas release is detected in the affected
clusters, and the source parameters are estimated based on the
measured concentrations from the clusters. Table I shows the
mean percentage of error on the estimated source’s parameters
averaged over 50 Monte-Carlo simulations for U = (1.8; 0; 0)
m/s, whereas Table II shows the mean percentage of error for
U = (1.8; 2; 0) m/s. One can see that the percentage of error
is higher when the wind is in both X and Y directions than
the case where the wind is only in the X direction. This result
was expected, since it is in essence due to the fact that the
particles are more scattered for U = (1.8; 2; 0) m/s than for

TABLE II

PERCENTAGE OF ERRORS ON THE ESTIMATED SOURCE’s
PARAMETERS FOR DIFFERENT RANDOM RELATIVE

NOISES FOR U = (1.8; 2; 0) m/s

TABLE III

PARAMETERS OF THE FOUR SOURCES

Fig. 5. Concentration distribution in kg/m3 at different times t around
Source 2 (t0 = 3 s).

U = (1.8; 0; 0) m/s. Nevertheless, we have a 100% detection
in the affected zones, and one can see that the parameters
of the source are accurately estimated for both values of U .
Also, notice the improvement in the source’s location after the
enhancement phase of Subsection V-B. Moreover, one can see
from the small increase in the percentage of errors that the
method is robust to noise.

C. Testing in the Case of Multiple Sources

Now let us evaluate the accuracy of the method in the
case of multiple gas releases, having different parameters and
occurring at different times. To this end, consider four sources,
whose parameters are given in Table III. The concentrations
are generated using (5), and a random relative noise of 5% is
considered. The test phase is run here as well during an interval
of 10 seconds. The subplots of Fig. 5 show the concentrations
measured by the sensors around Source 2, whose parameters
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TABLE IV

ESTIMATION OF THE PARAMETERS OF THE FOUR SOURCES
USING THE PROPOSED FRAMEWORK

TABLE V

COMPARISON OF THE PERCENTAGE OF ERRORS OBTAINED BY THE

PROPOSED METHOD (PM) AND THE METHOD IN [4] (KM),
FOR DIFFERENT RANDOM RELATIVE NOISES

are given in Table III. Notice how the maximal concentration
at each time t is moving along with the X-axis, and its value
is decreasing with time because of the diffusion phenomenon.
The estimated sources’ parameters and time of detection of
each source are given in Table IV. One can see that the
estimations are accurate, showing that the proposed method
can also be used for the case of multiple sources.

D. Comparison to the State-of-the-Art

In this subsection, we compare the percentage of errors to
the ones obtained with the method in [4], for different values
of the random relative noise varying from 1% to 5%. In [4],
the source’s parameters are estimated in an area of around
5500 m × 5500 m, using the measured concentrations and an
inverse model obtained after solving a non-linear least squares
estimation problem. The source is placed at a fixed location
with x0 = 5000 and y0 = 100, and the release rate Q is taken
equal to 1000 kg. Table V shows the percentages of error for
both methods, where PM denotes the proposed one and KM
the one in [4]. Note that in this table, for the proposed method,
only the enhanced estimates of the source’s location are taken
into account. Also, results over Kz are not shown, since in [4],
Kz is assumed to be known. When comparing the errors,
one can see that the proposed method greatly outperforms the
KM method in terms of accuracy. Moreover, it is important to
see here that the proposed method is much more robust to the
increase of the noise percentage compared to the KM.

VII. CONCLUSION

This paper introduced a new clusterized method for the
detection and estimation of the parameters of multiple gas
sources in wireless sensor networks. Both phases of the
method were defined within the framework of kernel meth-
ods, that proved to be very efficient in modeling nonlinear
problems. Indeed, the evaluation of the proposed method
on simulated data showed that the method yields accurate
estimates, and the accuracy was maintained even with the
increase of the noise level and in the case of multiple sources.
Future work will handle further improvements of this method,
such as to include cases where the eddy diffusivities or the
wind’s velocity and direction are not constant. Moreover, the
problem of the estimation of the number of sources will also
be considered.
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