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a b s t r a c t 

Classification is one of the most important tasks carried out by intelligent systems. Recent works have 

proposed deep learning to solve the classification problem. While such techniques achieve a very good 

performance and reduce the complexity of feature engineering, they require a large amount of data and 

are extremely computationally expensive to train. This paper presents a new supervised confidence-based 

classification method for multi-class problems. The method is a hierarchical technique using the belief 

function theory and feature selection. The method predicts, for a new sample input, a confidence-level 

for each class. For this purpose, a hierarchical clustering approach is adopted to create a two-level classi- 

fication problem. A feature selection technique is then carried out at each level to reduce the complexity 

of the algorithm and enhance the classification performance. The belief function theory is then used to 

combine all information and to give out decisions, by computing the confidence of the sample being in 

each class. The proposed method has been tested for indoor localization in a wireless sensors network 

and for facial image recognition using well-known databases. The obtained results prove the effectiveness 

of the proposed method and its competence as compared to state-of-the-art methods. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

The classification problem is widely tackled in data mining ap-

plications. It is stated as follows: given a set of labeled training

observations relative to certain features, determine the class label

of a new unlabeled data instance. Usually, classification methods

include two phases. An offline phase where a model is constructed

from training data, and an online phase where a new instance is

labeled using the constructed model. The output of such meth-

ods is either a discrete label for the new instance, or a numerical

score for each class label determining the relative tendency of an

instance to belong to different classes. This issue is important in

text categorization [1] , multimedia applications [2] , computer vi-

sion [3] , medical imaging [4] , mobile sensor networks [5] , etc. 

There are two main types of classification: a flat classification

that refers to the standard binary or multi-class methods [6] , or

hierarchical classification where the classes are classified at each

level of a defined dendrogram. Figs. 1 and 2 are examples of such

classifications, where { a, b, c, d, e, f, g, h } is a set of classes, C 1, C 2,

and C 3 are parent nodes, and R is a root node. The parent nodes

might be either predefined as a taxonomy or created via hierarchi-
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al clustering. In hierarchical models, it is distinguished between

ocal and global classifier approaches. In local classifiers, the hierar-

hy is taken into account by using a local information perspective.

his can be represented by three standard ways: Local classifier per

ode that trains one binary classifier for each node; local classifier

er parent node where, for each parent node, a multi-class clas-

ifier is trained to distinguish between its child nodes; and local

lassifier per level that consists of training one multi-class classi-

er for each level of the class hierarchy. Although the problem can

e tackled using any of the previously described approaches, hav-

ng a single complex model for all classes reduces the size of the

lobal classification model. This is known as the global classifier

pproach where one single classification model is built taking into

ccount the whole class hierarchy. The dendrogram is either pre-

efined, or created by means of hierarchical clustering techniques

ccording to similarity metrics. 

Although no theoretical evidence or proof whether hierarchical

r flat classification models are better [7] , experiments through-

ut previous studies have shown that a better accuracy could be

btained by the former especially for a large number of classes

8,9] . However, a large number of levels in the dendrogram causes

lowness in the classification procedure, in addition to the risk of

ropagating any error in a top level all along the hierarchy [7,9] . In

oth, flat and hierarchical approaches, classical classification meth-

ds such as naive Bayes, neural networks, support vector machines

10–12] can be applied either on the original classes or at each

https://doi.org/10.1016/j.sigpro.2018.02.021
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Fig. 1. Hierarchical classification. 

Fig. 2. Flat classification. 
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evel of the hierarchy. Another concept related to the hierarchi-

al approach is the deep learning that uses a cascade of layers for

eature extraction and transformation, each layer taking as inputs

he outputs of the previous one [13] . Though it has best-in-class

erformance and reduces the complexity of feature engineering as

ompared to other solutions in the domain, deep learning requires

 large amount of data and is extremely computationally expen-

ive to train. In difference with deep learning, this paper does not

ackle feature extraction, rather the work starts once the features

re derived. As a consequence, the proposed method can benefit

rom any feature extraction technique as a preliminary phase, in-

luding deep learning. 

This paper proposes a confidence-based classification method

or multi-class problems. The proposed method is a hierarchical

echnique, using belief functions and feature selection, described

n the following. Given a database of labeled training observations,

he classes are merged into clusters using an agglomerative hierar-

hical clustering method. An optimal level of clustering is selected

rom the obtained dendrogram, by optimizing the inter- and intra-

lusters scatters. The hierarchy is reformed into two levels: the

rst consisting of the optimal selected clusters, and the second of

he original classes in each cluster. Reducing the hierarchy to only

wo levels decreases considerably the complexity of the method,

ompared to classic hierarchical methods, with more robustness

gainst error propagation. It also reduces the considered labels at

 level, which makes it more efficient than flat techniques. After-

ards, the objective of classification becomes to determine the cor-

ect cluster and the correct class at the first and second levels re-

pectively. At each stage, a feature selection technique is applied to

hoose the best features capable of discriminating between classes

nd clusters. This creates a framework for the belief function the-

ry (BFT) that associates masses and combines evidence to deter-

ine a level of confidence of having the new instance belonging to

ach class. 

The contribution of our work can be summarized as follows.

irst, the transformation of the problem from a classical flat classi-

cation to a two-level hierarchical classification. Second, the fea-

ure selection technique. The proposed approach maximizes the

iscriminative capacity of the ensemble of features at each level

f the hierarchy and is consistent with the statistical distributions

sed to model the observations of the classes. Third, the belief

unctions framework where masses are assigned to supersets of

lusters and classes taking advantage of all available evidence at
ach level. All assigned masses are then combined to attribute a

evel of confidence to each original class. 

The remainder of the paper is organized as follows. Section 2 is

 state-of-the-art that states the problem and defines the concepts

eeded in the rest of the paper. Section 3 describes the proposed

lassification approach. Section 4 shows the results of applying

he proposed method for facial image recognition and for localiza-

ion in a wireless sensors network, compared to other well-known

tate-of-the-art classification techniques. Finally, Section 5 con-

ludes this paper. 

. State-of-the-art 

In this section, the classification problem is firstly stated and

ormulated. Afterwards, the concepts needed in the proposed ap-

roach to solve the problem are then introduced. 

The proposed classification problem can be formulated as fol-

ows. Let 

• S = { x 1 , . . . , x n } be a training dataset of n observations, with

x 1 , . . . , x n ∈ R 

p , p being the number of observations features; 
• m be the number of classes and y cl 

i 
denote the class i ; 

• L = { � 1 , . . . , � n } be the labels set associated to the observations

x 1 , . . . , x n and whose values are taken within { y cl 
1 
, . . . , y cl 

m 

} . 
The aim of the algorithm is to find a function h : R 

p → [0 , 1] m 

uch that h ( x ) = (Cf (y cl 
1 
) , . . . , Cf (y cl 

m 

)) , where Cf (y cl 
i 
) is the level of

onfidence of the statement: ‘‘ x belongs to class y cl 
i 

”. 

The first step of the proposed approach is merging the classes,

nce the distributions are defined, using clustering. Clustering aims

o organize a set of data into groups called clusters, according

o some criteria [14] . Hierarchical clustering builds a hierarchy of

lusters or dendrogram driving two strategies: agglomerative or di-

isive approaches. In the agglomerative or the bottom up approach,

ach observation starts as an independent cluster, and pairs of

lusters are merged upon moving up in the hierarchy; whereas in

he divisive or top down approach, all observations start as one sin-

le cluster, and are split upon moving down in the hierarchy [15] . 

At the end of the developed clustering phase, a two-level hi-

rarchy is obtained. At each level, a feature selection technique is

pplied to choose the best features. The observations have p com-

onents, each one being related to a certain feature, of the set

 = { f 1 , f 2 , . . . , f p } . Feature selection aims at searching for the best

ubset of the competing 2 p − 1 candidate subsets of F according to

ome evaluation function. This can be solved using filter or wrap-

er method [16] . The filter approach selects feature subsets based

n the general characteristics of the data without considering the

earning algorithm. Alternatively, the wrapper approach searches

or the best subset of features according to an evaluation criterion

ased on the same learning algorithm. Although the wrapper ap-

roach performs better than the filter approach in general, how-

ver it is more computationally complex which makes it impracti-

al in many cases [17] . 

The belief theory, which is also called the DempsterShafer the-

ry or the evidence theory, is a variant of the probability theory

here elements are not single points but rather sets or intervals

18] . It is a branch of mathematics that provides an original frame-

ork for data fusion based on evidence [19] . In general, the be-

ief function based decision fusion framework mainly includes two

hases, mass construction and basic belief assignment (BBA) com-

ination. In the proposed classification method, this is the last step

here masses are associated and translated into confidence lev-

ls. By taking into account information uncertainty, the proposed

ethod yields several possibilities of classes with different levels

f confidence of covering the new observation. 
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Fig. 3. Hierarchical clustering. 
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3. Proposed classification method 

The proposed classification method consists of the four phases;

distribution fitting, clustering, feature selection, and belief func-

tions, described in the following. 

3.1. Distribution fitting 

Consider a set of o i observations { x 1 , . . . , x o i } labeled at the

class y cl 
i 

. The aim of this section is to fit these observations to a

distribution Q i having a probability density function q i ( x ) defined

over a set of parameters to be estimated with the available data.

First, choose the types of distributions to be tested. Then, estimate

their parameters using the observations. And finally, apply a statis-

tical goodness of fit test to evaluate their fitting error. The problem

is in the form of hypothesis testing where the null and alternative

hypotheses are: 

H 0 : Sample data come from the stated distribution. 

H a : Sample data do not come from the stated distribution. 

The Kolmogorov–Smirnov (K-S) test [20] is used to test the hy-

potheses. An extension to this test in multivariate case is presented

in [21] . For each considered distribution, the hypothesis H 0 is re-

jected at a significance level α if the test statistic is greater than

a critical value obtained from the K-S table [22] . The significance

level is chosen by convention, and could be set to 0.01, 0.02, or up

to 0.05 if available distributions failed to fit with smaller levels. All

the considered distributions are tested, and the accepted ones are

ranked according to their statistics, the best fitting one being se-

lected. It is noteworthy that the observations of each class could

be fitted to a separate distribution. 

3.2. Clustering algorithm 

3.2.1. Building the dendrogram 

To build the dendrogram, an agglomerative strategy is adopted

here since it is less complex than the divisive case [23] . This strat-

egy is shown in Fig. 3 . To avoid having observations of the same

classes in different clusters, the proposed method considers the

classes as units. Indeed, a statistical distribution is assigned to each

class, by fitting its corresponding observations to one of the exist-

ing multivariate distributions. Let Q 1 , . . . , Q m 

be the fitted distribu-

tions, defined over a set of parameters, of the classes y cl 
1 
, . . . , y cl 

m 

respectively. Each class is then considered as an independent clus-

ter at the beginning of the algorithm. To merge clusters according

to a criterion, the agglomerative hierarchical clustering technique

measures the dissimilarity between the clusters. Of these criteria

are single-linkage, complete linkage, Ward’s minimum variance, etc
24] . Since distributions are being clustered here, statistical mea-

ures could be applied like Kullback–Leibler divergence, Hellinger

istance, total variation distance, etc [25] . The Kullback–Leibler di-

ergence [26] or relative entropy of two distributions Q i and Q j 

ith density functions q i and q j of input x is defined as 

 KL (Q i || Q j ) = 

∫ 
x 

log 

(
q i ( x ) 

q j ( x ) 

)
q i ( x ) d x . (1)

he relative entropy is asymmetric, always positive and equal to

ero when the two distributions are identical. The J-divergence

27] symmetrizes the Kullback–Leibler divergence as follows 

 J (Q i || Q j ) = D KL (Q i || Q j ) + D KL (Q j || Q i ) . (2)

his divergence computes the level of discrepancy or lack of simi-

arity between probability distributions. It is a measure of how dif-

erent two probability distributions, over the same event space, are

28] . The proposed clustering method employs the J-divergence as

he dissimilarity measure to construct the dendrogram. At each it-

ration, it merges the two clusters whose distributions have the

aximal divergence. Merging two clusters means here a merge of

ll the observations of the infant clusters and a computation of

 new distribution according to the new set of observations. By

aximizing the divergence, the infant clusters would be dissim-

lar, which helps the classification process within a cluster. The

lgorithm is iterated until all the classes are merged into one

luster [29] . 

.2.2. Two-level hierarchy 

After the dendrogram is created, it should be cut based on the

esired number of clusters. However, since there is no prior knowl-

dge regarding this parameter, it is calculated by solving an op-

imization problem that takes into account both inter- and intra-

lusters scatters. Several indices have been proposed to solve this

roblem [30–32] . A method developed by Fischer [33] finds the op-

imal number of clusters that maximizes the following quantity: 

(k ) = 

∣∣∣∣ DIF F (k ) 

DIF F (k + 1) 

∣∣∣∣ (3)

uch that 

IF F (k ) = (k − 1) 
2 
p W (k − 1) − (k ) 

2 
p W (k ) , (4)

IFF ( k ) being defined as the difference between a clustering of

he data in k and a clustering in k − 1 clusters. W ( k ), the sum of

quares function that corresponds to the clustering in k clusters, is

qual to: 

 (k ) = 

k ∑ 

j=1 

∑ 

n ′ 
� n ′ ∈ y C j 

|| x n ′ − μ j || 2 , (5)

j being the mean of the distribution of the cluster j . 

Let K 

C be the number of clusters that maximizes Eq. (3) , namely

 

C = argmax k ρ(k ) . The quantity ρ( k ) represents the ratio between

IFF ( k ) and DIF F (k + 1) . In fact, it is shown that if there exists

n optimal clustering solution in K 

C groups, the value of DIFF ( K 

C )

hould be comparably large and positive. In contrast, all values of

IFF ( k ) for k > K 

C will have small values, while values for k < K 

C

ill be rather large and positive [34] . 

The dendrogram is cut at a certain level where K 

C clusters

re obtained, denoted by y C 
j 

with j ∈ { 1 , . . . , K 

C } . All infant clus-

ers of each selected cluster are merged yielding a set of classes

or each cluster. This is shown in Fig. 4 . In the following, I j de-

otes the set of indices of the classes included in the cluster j ,

hat is, y cl 
i 

∈ y C 
j 

∀ i ∈ I j . The clustering technique is described in

lgorithm 1 , where inputs are the observations set S , their labels L
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Fig. 4. The two-level hierarchy and feature selection at each level. 

Algorithm 1: Clustering technique. 

Input : S, L, { Q 1 , . . . , Q m 

} 
Output : K 

C , I 1 , . . . , I K C 
1 k = m ; 

2 D = 0 m ×m 

; 

3 for u ∈ { 1 , . . . , m } do 

4 for v ∈ { 1 , . . . , u − 1 } do 

5 D (u, v ) = D J (Q u || Q v ) ; 

6 end 

7 Q 

′ 
u = Q u ; 

8 end 

9 U = { 1 , . . . , m } ; 
10 while k > 1 do 

11 (u max , v max ) = argmaxA u, v D (u, v ) ; 
12 Q 

′ 
v max 

= Q 

′ 
u max 

∪ Q 

′ 
v max 

, delete u max from U; 

13 if | U| > 1 then 

14 for { v ∈ U, v < u max } do 

15 D (u max , v ) = 0 ; 

16 end 

17 for { u ∈ U, u > v max } do 

18 D (u, v max ) = D J (Q 

′ 
u || Q 

′ 
v max 

) ; 

19 end 

20 for { v ∈ U, v < v max } do 

21 D (v max , v ) = D J (Q 

′ 
v max 

|| Q 

′ 
v ) ; 

22 end 

23 end 

24 Create parent node with child nodes y cl 
u max 

and y cl 
v max 

; 

25 Compute B (k ) using equations 3, 4, and 5 ; 

26 k = k − 1 ; 

27 end 

28 K 

C = argmaxA B (k ) ; 

29 Cut dendrogram at the K 

C clusters; 

30 Create I 1 , . . . , I K C by associating to each cluster all its infant 

classes without intermediary clusters. 
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nd the distributions Q 1 , . . . , Q m 

of the original classes, the outputs

re the number of clusters K 

C and the sets of indices of the classes

n the clusters I j , 0 m ×m 

denotes the m × m null matrix, Q u 1 ∪ Q u 2 

eans the merge of the observations of both distributions and fit-

ing them to a new one, and | U | denotes the cardinal of U . 

.3. Feature selection technique 

The feature selection algorithm is applied equivalently at

lasses of each cluster and between clusters, as shown in Fig. 4 . For

he sake of simplicity, unique notations for clusters y C and classes

 

cl are considered in the following, that is, let y denote either a

luster or a class within a cluster, and let K denote their num-

ers. A greedy filter feature selection method is adopted to maxi-

ize the discriminative capacity of the selected features. Though

t might not reach global optima, rather fall in a local one, the

reedy search algorithm is simple and easy to compute, especially

hat it will be applied at the clusters level, and at the classes level

f each cluster. Gibbs sampling [35] could be used instead of the

reedy search and aim to converge to a stationary distribution rep-
esenting the best subset of features. It indirectly samples from

he posterior distribution on the set of possible subset choices.

hose subsets with higher probability can then be identified by

heir more frequent appearance in the Gibbs sample. A similar ap-

roach has been presented in [17] for naive Bayes classification,

here each feature is given a score and ranked in a descent order.

owever, features cannot be treated independently, since a feature

hat might be useless by itself can provide a significance improve-

ent in the performance when taken with others [36] . Hence, it is

mportant to select the subset of features that, when taken all to-

ether, maximizes the discrimination between the sets to be clas-

ified. To do this, all the nonempty subsets of F are considered.

et F ′ ⊆F denote one considered subset. All the observations at the

eatures of F ′ belonging to each entity y j are thus taken, and they

re fitted to a distribution denoted Q F ′ , j , j ∈ { 1 , . . . , K} . The distri-

ution Q F ′ , j is either univariate or multivariate depending on the

ardinal of F ′ . The farther the distributions Q F ′ , 1 , . . . , Q F ′ ,K are one

rom the other, the more discriminative the feature subset F ′ is. In-

eed, this reduces the overlapping between the distributions and

hus decreases the ambiguity in discriminating between them. The

ullback–Leibler divergence is a metric that could be used to mea-

ure such a quantity. The discriminative capacity of a subset of fea-

ures F ′ ⊆F is then defined as follows, 

isC(F ′ ) = 

K ∑ 

u =1 

K ∑ 

v =1 

D KL (Q F ′ ,u || Q F ′ , v ) , (6)

 KL (Q F ′ ,u || Q F ′ , v ) being the Kullback–Leibler divergence measured

etween the distributions of the observations belonging to enti-

ies y u and y v , while considering only the features of F ′ . The ob-

ective of the feature selection technique is to find the subset F s 
uch that DisC ( F s ) is maximum. A greedy search algorithm with

ackward elimination strategy is applied to choose this subset. One

tarts with the whole set of features and progressively eliminates

he least promising feature, whose elimination maximizes the in-

rease of the discriminative capacity of the set. This process is it-

rated until the discriminative capacity of the set is no more im-

roved. Applying this technique at each level of the two-level hier-

rchy leads on one hand, the optimal subset of features that is best

o distinguish between the clusters and, on the other hand, sets of

eatures that should be used for classification between the classes

ithin each cluster. The feature selection technique is described in

lgorithm 2 . 

Algorithm 2: Feature selection technique. 

Input : F = { f 1 , . . . , f p } 
Output : F s 

1 F ′ = F ; 

2 while F ′ 	 = φ do 

3 for j ∈ { 1 , . . . , | F ′ |} do 

4 X = F ′ ; 
5 T j = F ′ \ { f j } ; 
6 DisC(T j ) = 

∑ K 
u =1 

∑ K 
v =1 D KL (Q T j ,u 

, Q T j , v ) ; 

7 end 

8 F ′ = argmaxA T j 
DisC(T j ) ; 

9 if DisC(F ′ ) < DisC(X ) then 

10 F s = X; 

11 return F s and quit algorithm; 

12 end 

13 F s = F ′ ; 
14 end 
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Fig. 5. Mass assignments of an observation. 
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3.4. Belief functions framework 

3.4.1. Mass assignments 

Let y be a discrete variable taking values in Y = { y 1 , . . . , y K } and

let 2 Y be the set of all the supersets of Y , i.e, 2 Y = {∅ , { y 1 } , . . . , Y } .
The cardinal of 2 Y is equal to 2 | Y | = 2 K , where | Y | denotes the car-

dinal of Y . One fundamental function of the BFT is the mass func-

tion, also called the basic belief assignment (BBA). A mass function

m f ( ·) is a mapping from 2 Y to the interval [0, 1], defined according

to a certain information source f . It satisfies: ∑ 

A ∈ 2 Y 
m f (A ) = 1 . (7)

The mass m f ( A ) given to A ∈ 2 Y stands for the proportion of evi-

dence, brought by the source f , saying that the observed variable

belongs to A . In the following, y denotes a cluster y C or a class y cl 

within a cluster depending on the level of the hierarchy where the

computations are made, F s denotes the set of selected features ei-

ther at the classes or the clusters levels and the information source

f denotes one selected feature of F s . 

In order to define the features BBAs, all observations related to

each selected feature belonging to a set A ∈ 2 Y are fitted to a dis-

tribution Q f, A . Then, having an observation x f related to a feature

f ∈ F s , the mass m f ( A ) is calculated as follows, 

m f (A ) = 

Q f,A (x f ) ∑ 

A ′ ∈ 2 Y ,A ′ 	 = ∅ Q f,A ′ (x f ) 
, A ∈ 2 

Y , A 	 = ∅ . (8)

The quantity m f ( A ) represents the amount of evidence brought by

the feature f saying that the observation x f belongs to the set A, A

being a singleton, a pair, or more. By taking all the supersets of Y

and not only the singletons, the proposed algorithm uses all avail-

able pieces of evidence, even if they are uncertain about a single

element. Note that m f ( A ) is not the probability of having x f in A ,

but only an interpretation of the information brought by the fea-

ture f by means of observation x f , that is, m f ( A ) could be higher

than m f ( B ) even if A ⊂ B . Indeed, consider the example of Fig. 5 ,

where Y = { y 1 , y 2 } . The set Y has three non-empty supersets { y 1 },

{ y 2 } and { y 1 , y 2 }, represented by their three distributions in Fig. 5 .

An observation x (1) for instance is more likely to be of the entity

y 1 and indeed the mass of { y 1 } is higher than those of { y 2 } and

{ y 1 , y 2 } using Eq. (8) . However, for observation x (2) , the distribu-

tions of y 1 and y 2 are too close. By taking the superset { y 1 , y 2 }

within the possibilities, a higher evidence is associated to { y 1 , y 2 },

instead of taking a risk in setting more evidence to { y } or { y }.
1 2 
he evidence assigned to { y 1 , y 2 } is higher than those of singletons

nly for observations where the distributions of singletons are two

lose, to avoid erroneous assignments, and to take advantage even

f uncertain data. This example illustrates clearly the effectiveness

f the use of other supersets than singletons and motivates the use

f the belief function theory. Note that instead of taking all the su-

ersets, one can only take singletons and pairs for example, in or-

er to reduce the complexity of the algorithm. One can also con-

ider the supersets whose distributions are higher than the others

t some observations. A set whose distribution is flat with a high

tandard deviation is non-informative and it could be eliminated

rom the considered set, to reduce the complexity. 

.4.2. Discounting operation 

The features selected at the features selection phase are not

ompletely reliable. Indeed, each feature could yield an erroneous

ttribution of evidence for some observations. In order to correct

his, one can discount the BBAs of Eq. (8) by taking into account

he error rate of the feature. The discounted BBA 

αm f of a feature f

aving an error rate αf is deduced from the BBA m f as follows [37] ,

m f (A ) = 

{ 

(1 − α f ) m f (A ) , if A ∈ 2 

Y , A 	 = Y ;
α f + (1 − α f ) m f (A ) , if A = Y ;
0 , otherwise . 

(9)

y doing this, the amounts of evidence given to the supersets of

 are reduced, and the remaining evidence is given to the whole

et Y . 

Now, to compute the error rate of a selected feature f , consider

n observation x f being truly in A . The feature f is assumed not reli-

ble if, according to x f , it associates more evidence to any set other

han A , that is, the mass associated to A is less than the mass of

nother set of 2 Y . Since the BBAs are defined using the probability

istributions related to each set, then a feature is erroneous for all

bservations of A where Q f, A ( x f ) is less than any Q f,A ′ (x f ) , for any

 

′ 	 = A . Let εf ( A ) be the error rate related to the set A with respect

o the feature f . Then, 

f (A ) = 

∫ 
D f,A 

Q f,A (x ) dx, (10)

uch that D f,A is the domain of error of set A according to f , de-

ned as follows, 

 f,A = { x | Q f,A (x ) ≤ max 
A ′ ∈ 2 Y ,A ′ 	 = A 

(Q f,A ′ (x )) } . (11)

he error rate αf of a feature f is then the average error of all sets

ccording to this feature, namely 

f = 

∑ 

A ∈ 2 Y ε f (A ) 

2 

| Y | . (12)

.4.3. Combining evidence 

According to the information retrieved from the features, mass

unctions αm f ( ·) are defined at the clusters levels and at the classes

evels within each cluster. Combining the evidence consists of ag-

regating the information coming from all the features at a given

evel [38] . By using the discounted mass functions, the information

s now reliable. The mass functions can then be combined using

he conjunctive rule of combination as follows, 

 ∩ (A ) = 

∑ 

A ( f c ) ∈ 2 Y 
∩ f c ∈ F s A ( f c ) = A 

αm f 1 (A 

( f 1 ) ) × . . . ×α m f | F s | (A 

( f | F s | ) ) , (13)

or all the sets A ∈ 2 Y , with A 

( f ) is the set A with respect to feature f ,

 F s | being the cardinal of F s . This combination rule leads to a more

nformative and specialized mass function [39] . The mass function

s then normalized, leading to the Dempster rule of combination.

hese computations are applied at the two levels of the hierarchy,
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Table 1 

Average face recognition accuracy (%) on the extended 

Yale B database based on the Gabor feature robust 

representation. Number of classes = 38, number of 

training data = 32, number of test data = 32. 

Method Feature dimension 

56 120 300 504 

NN 81.4 89.2 91.9 92.0 

SRC 92.6 95.6 97.4 97.9 

Yang and Zhang 92.7 95.6 97.9 99.0 

SVM 92.6 95.3 96.3 96.4 

HSVM 92.9 96.1 95.7 97.2 

LRC 94.1 94.7 95.4 95.7 

Random forests 90.4 90.6 92.6 93.5 

Proposed method 93.9 96.2 98.3 98.7 

Table 2 

Average face recognition accuracy (%) on the extended 

Yale B database based on weighted sparse representa- 

tion. Number of classes = 38, number of training data 

= 32, number of test data = 32. 

Method Feature dimension 

30 56 120 504 

NN 69.3 72.8 78.5 79.5 

NS 79.6 84.1 88.7 90.8 

SRC 75.7 84.8 93.9 96.8 

HSVM 73.5 78.2 81.8 84.8 

Random forests 76.7 80.3 84.1 87.6 

Khorsandi et al. 78.5 86.7 95.3 97.9 

Proposed method 83.1 87.8 95.8 96.9 

Table 3 

Average face recognition accuracy (%) on the AR database 

based on grayscale features. 

Method Accuracy 

SVM 68.10 

LRC 68.75 

SRC 63.87 

CRC 68.25 

Huange et al. 77.14 

HSVM 65.23 

Random forests 67.76 

Proposed method 82.64 
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hich yield a final normalized mass function m 

C ∩ (·) that works on

he sets of { y C 
1 
, . . . , y C 

K C 
} and also other functions m 

cl, j 
∩ (·) that work

n the sets of { y cl 
i 
, i ∈ I j } , with j ∈ { 1 , . . . , K 

C } . 

.4.4. Decision making using the belief function theory 

An adequate notion of the BFT to make the decision is the pig-

istic level [40] . It is defined as follows, 

etP (A ) = 

∑ 

A ⊆A ′ 

m ∩ (A 

′ ) 
| A 

′ | , (14)

here A is a singleton of 2 Y . The pignistic level is equivalent to

he probability of having the observation belonging to the con-

idered set. One could also compute the pignistic level of higher-

ardinal supersets. However, only the singleton sets are taken into

onsideration, as we are interested in determining a level of confi-

ence for the original classes only. Eq. (14) is applied at the clus-

ers level and the classes level within each cluster, leading respec-

ively to BetP C ({ y C 
j 
} ) , j ∈ { 1 , . . . , K 

C } , and BetP cl, j ({ y cl 
i 
} ) , i ∈ I j . Fi-

ally, to make a decision between the original classes, pignistic lev-

ls of classes and clusters are combined leading to a confidence of

ach original class as follows, 

f (y cl 
i ) = BetP C ({ y C j } ) × BetP cl, j ({ y cl 

i } ) , i ∈ I j , j ∈ { 1 , . . . , K 

C } . (15)

he class having the highest confidence is then selected. It is worth

oting that this method yields ranked results. As a consequence,

he resulting ranked classes can be used whenever required by the

ask under scrutiny. 

To show the importance of the belief based approach, we con-

ider the following example. Suppose we have three classes A,

, and C. If we had, for a certain new observation belonging

n reality to class B, evidence as follows, m (A ) = 0 . 25 , m (B ) =
 . 2 , m (C) = 0 . 02 , m (A, B ) = 0 . 2 , m (A, C) = 0 . 02 , m (B, C) = 0 . 3 , and

 (A, B, C) = 0 . 01 . If we depend on the masses only, we choose

lass A because m ( A ) > m ( B ), while considering all associated evi-

ence and using the pignistic transformation, the following is ob-

ained, Cf (A ) = 0 . 363 , Cf (B ) = 0 . 453 , and Cf (C) = 0 . 183 . As we can

ee, the confidence level of class B is now greater, and hence class

 will be decided. Hence, using a pignistic transformation to pass

rom the attributed masses to the confidence level through consid-

ring all evidence assigned to all supersets of classes in the belief

unctions framework enhances the classification. 

. Experiments 

.1. Facial image recognition 

Facial image recognition has gained a great attention in the

ecent years due to its wide applications in video surveillance,

atabase image matching, security measurements, etc. The Ex-

ended Yale B [41] , the ORL [42] , and the AR [43] face databases

ere used to evaluate the proposed classification method. Many

tate-of-the-art methods have been targeting these databases to

olve the facial recognition problem. In order to study the influ-

nce of the classification (recognition) method only, the same data

artition and feature extraction technique of each state-of-the-art

ethod were taken. 

The Extended Yale B database consists of 2414 frontal-face im-

ges for 38 individuals taken under various lighting conditions.

ang et al. [44] investigated the use of Gabor features for sparse

epresentation based classification (SRC) with a learned Gabor oc-

lusion dictionary. The authors randomly selected half of the im-

ges for training (32 images per subject) and used the other

alf for testing. All images were normalized to 192 × 168. They

emonstrate the results of the method versus the feature dimen-

ion while comparing with well-known classification techniques
VM, nearest neighbor (NN), and linear regression classification

LRC). Khorsandi and Abdel-Mottaleb [45] presented a classifica-

ion method based on a weighted sparse representation. They also

ropped and normalized the images to 192 × 168, and used half

f the images for training and the others for testing. The method

sed the mutual information between the query sample and the

raining samples to give a weight for the latter in each class in the

ictionary. We compared the results of these methods with those

iven by our proposed method using the same data portion and

he same feature extraction technique. The results are presented in

ables 1 and 2 . The numbers in bold refer to the best classification

ethod for a feature extraction method and a feature dimension. 

The AR face dataset consists of more than 40 0 0 images of 126

istinct subjects. Following the recent work of Huang et al. [46] ,

 subset of 1680 images for 120 subjects was constructed, where

ach image is 50 × 40 pixels. The authors proposed a class specific

parse representation-based classifier which incorporates the class

nformation in the learning process. The method defined classes as

roups that compete to represent the test sample. It considered L 1 
nd L 2 norm constraints to the classes and samples and was solved

y convex optimization. Table 3 shows the results of different clas-

ification approaches. 
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Table 4 

Average face recognition accuracy (%) on the ORL 

database. 

Method Number of training images 

2 4 6 8 

HSVM 90.8 92.6 93.6 94.7 

Random forests 90.2 91.3 94.8 95.3 

Wang et al. 95.6 96.7 97.3 98.4 

Proposed method 95.2 96.8 97.8 99.3 

Fig. 6. The first floor of the statistical and operational research department of the 

University of Technology of Troyes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 

Parameters of the experiment as obtained by the method. 

Cluster number 1 2 3 4 5 6 7 

Number of classes per cluster 2 4 2 3 2 2 3 

Number of features per cluster 6 6 5 5 5 6 5 
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cision. It is to note that the software scans the network and mea- 
The ORL database consists of 400 images for 40 subjects. Wang

and Sun [47] proposed a multiple kernel local Fisher discriminant

analysis for face recognition. The authors presented a method that

searches for maximum discrimination between inter- and intra-

classes scatters, producing nonlinear discriminant features with

multiple base kernels. They selected different numbers of images

per individual to form the training set, and the rest for test. The

experiments were repeated 50 times and the average recognition

accuracy was computed. All images were cropped and resized to

32 × 32 pixels, with 256 Gy levels per pixel. Each image is repre-

sented by a 1024-dimensional vector in the image space. The com-

parison results are shown in Table 4 . 

The results in the aforementioned tables show the competence

of the proposed method as compared to other well-known classi-

fication techniques in the domain of facial image recognition, out-

performing them in almost all the cases. 

4.2. Wireless sensors network 

To test the efficiency of the developed method, it was applied

in the domain of wireless sensor networks [48] . The objective is

to track, in real time, any mobile sensor in indoor environments.

The WiFi technology was adopted since it is ubiquitous process.

However, it suffers from high variations in the power of its signals

which magnifies the complexity of the algorithm to obtain high lo-

calization accuracy. While most schemes have been focusing on de-

termining the exact position of these sensors [49] , a zoning-based

localization technique was applied here. The objective is to deter-

mine the zone where the mobile sensor resides which orients the

issue to a multi-class classification problem. 

Real experiments are realized in a WLAN environment at the

first floor of the statistical and operational research department of

the University of Technology of Troyes, France. As shown in Fig. 6 ,

the considered floor of approximated area of 500 m 

2 is partitioned

into fifteen zones from both sides of a corridor, that we divided

into three zones according to its architecture leading to eighteen

zones in total. A personal computer, 1 with a WiFi scanner soft-
1 4 CPUs, 2.10 GHz. 
are, 2 can distinguish Access Points (APs) of the network through-

ut their MAC addresses. It measures then the Received Signal

trength Indicators (RSSIs) of their transmitted signals. Note that

everal APs could be detected at the considered area. Only the APs

ocated in the ground, first and second floors of the building to

hich belongs the studied area are considered. This leads to six

f the total APs installed in the network. Sets of 30 measurements

re taken in each zone in random positions and orientations of the

ersonal computer and used to construct the databases and train

he classifiers. The code is implemented in Matlab environment.

 new set of 20 measurements in each zone were taken after a

onth to test the proposed method, as measurements from the

ame day are strongly dependent. 

The RSSIs of the database are statistically modeled to be used

n the clustering phase. For each zone, the normal function was

anked first according to a significance level of 0.02. A dendro-

ram of the original eighteen classes is created and cut at seven

lusters level by optimizing the intra-inter cluster distances. The

bservations of each cluster are fitted to a generalized extreme

alue function with the same significance level. The seven clus-

ers with the initial classes constituting them are taken, forming

 two-level classification problem. At each level, the feature selec-

ion technique is applied to determine the most discriminating fea-

ures. Five APs were chosen at the first level, while five or six APs

ere chosen at the second level depending on each cluster. Table 5

hows the details of the experiment. The method generates then a

et of confidence levels of the classes, that are the confidence lev-

ls of having the mobile sensor residing in each zone. 

Table 6 shows the results of applying the developed method

o 360 test points and the influence of each phase over the per-

entage of accuracy and the processing time. The offline training

ime was considered as computationally complex training algo-

ithms are not preferred. An estimation is said to be correct if the

lgorithm assigns the highest confidence level to the right zone.

s this table clearly shows, just modeling the data with associat-

ng and combining masses lead to an accuracy of 78.61%. This low

ccuracy is due to the wide overlapping of the various functions

epresenting the distributions of the data in the different zones.

owever, when the two-level hierarchical clustering and classifica-

ion phase was carried out, a significant enhancement in the per-

entage of accuracy was noted (83.88%). This amelioration is at the

xpense of the processing time. It is clear that the training and

est times were approximately doubled. In addition, the feature se-

ection phase had a significant impact on the overall process. An

ccuracy of 86.38% could be obtained with a slight gain in the on-

ine test time, yet with an increase in the training time. More-

ver, discounting the BBAs of the sources of information based

n the features’ error rates raised the overall accuracy to 87.77%

ithout a huge impact on the processing time. One advantage of

he confidence-based approach is that it allows a second choice in

ase of an erroneous estimation, by choosing the zone having the

econd highest level of confidence. In our case, 7.22% of the erro-

eous estimations were recovered by this second choice. One more

dvantage can be examined when combining another confidence-

ased method related to the problem itself to make the final de-
2 Wi-Fi Scanner by Lizard Systems. 
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Table 6 

Influence of each phase of the developed method on the accuracy and the processing time. 

Applying the proposed method Accuracy (%) training time (s) test time (s) 

As it is 87.77 182 0.2508 

Without discounting of sources’ reliability 86.38 176 0.2184 

Without feature selection and discounting 83.88 126 0.2417 

Without clustering, feature selection, and discounting 78.61 67 0.1250 

Table 7 

Comparison between classification methods in terms of accuracy and processing time, over a uniformly and non-uniformly distributed 

data. 

Method Uniformly distributed data Non-uniformly distributed data 

Accuracy (%) Training time (s) Test time (s) Accuracy (%) Training time (s) Test time (s) 

K-nearest neighbors 83.33 16 0.1289 83.88 17 0.1308 

Naive Bayes 81.66 91 0.1018 80.55 89 0.1126 

MLR 82.78 122 0.1498 82.50 124 0.1514 

Neural networks 84.72 135 0.1866 85.27 131 0.1962 

SVM 85.55 143 0.1859 85.83 146 0.1884 

Random forests 86.66 224 0.4077 87.22 219 0.4222 

HSVM 86.38 291 0.4667 86.66 286 0.4394 

Proposed method 87.77 182 0.2508 87.50 188 0.2637 
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ures the RSSIs at a 0.75 second intervals, which is enough for the

obile sensor to execute the proposed method. 

In this paragraph, the proposed method is compared to some of

he well-known classification techniques. Flat classification meth-

ds such as k-nearest neighbors, naive Bayes, multinomial logistic

egression (MLR), neural networks, and support vector machines

SVM) were considered. A 10-folded cross validation was used on

he training database to train the classifiers and tune their parame-

ers. The parameters which minimized the average error of all folds

ere considered. This aims to enhance the ability of the classifiers

o generalize, with a better classification accuracy on the new data.

or k-nearest neighbors, the optimal number of neighbors used to

stimate the class membership was found to be 23. For naive Bayes

nd MLR, the maximum likelihood estimate was used to evaluate

he probability of having the data instance belong to each class. As

or neural networks, radial basis functions were used as activation

unctions for a one single hidden layer. A Gaussian kernel was used

or SVM. 

Moreover, the proposed method is compared to hierarchical

ethods such hierarchical support vector machines (HSVM) and

andom forests. Chen et al. [50] developed an HSVM technique that

olves a series of max-cut problems to recursively partition the

lasses into two-subsets, till pure leaf nodes that have only one

lass are obtained. Then, the classical SVM is applied to solve the

inary two-subsets classification problem at each internal node. In

ddition, a random forest model has been proposed in [51] to lo-

alize sensors in indoor networks. Random forests [52] is an en-

emble of trees, obtained both by bootstrap sampling, and by ran-

omly changing the feature set during learning. More precisely, at

ach node in the decision tree, a random subset of the input at-

ributes is taken, and the best feature is selected from this subset

nstead of the set of all attributes. The authors propose a straight-

orward random forest model and another modified one by defin-

ng a localization model for each access point that predicts the lo-

alization only when a signal is detected from that access point. 

Two configurations are studied, where in the first, the measure-

ents are collected in a uniformly distributed way over the tar-

eted area, while in the second, training instances were acquired

n half of the zone and duplicated to create a skewness in the fit-

ing distribution. Table 7 shows the percentage of accuracy and the

rocessing time of the proposed technique compared to these de-

cribed methods. As this table shows, the proposed method out-

erforms all the other ones in terms of classification accuracy. On
 t  
he other hand, its processing time is considered to be competi-

ive to the others, yet with a clear advantage of naive Bayes for in-

tance, and k-nearest neighbors that has no training phase where

he indicated time is just for storing the training data and calcu-

ating the optimal k by a ten-fold folded cross validation. 

In addition, since levels of confidence are being assigned to

lasses, it is interesting to consider a measure to evaluate the pro-

osed method in these terms and compare it to other techniques.

 utility function L γ : [0 , 1] m → R is used to measure the distri-

ution of levels of confidence on classes for a new observation γ ,

hose true class is y cl 
i 

. It is defined as follows, 

 

γ = 

m ∑ 

j=1 

p j × Cf (y cl 
j ) , (16)

here p j is a weight assigned to each class, Cf (y cl 
j 
) is the confi-

ence level assigned by the method to class y cl 
j 

for a new mea-

urement γ . This utility function is computed for a set of � obser-

ations and the average is recorded to determine the utility of the

pplied method. Since there is no difference between an erroneous

stimation between a class and another, all weights p j , j 	 = i are set

o zero, and hence the utility function becomes 

 = 

∑ �
γ =1 L 

γ

�
. (17) 

 set of 10 measurements in each class were taken, and evaluated

y all the classification methods indicated above. A probabilistic

ersion of the originally categorical methods was considered to be

ble to calculate the utility function. The confidence function was

eplaced by the output probability. As the utility function increases

or a certain method, this means that the latter is assigning the

ighest confidence or probability to correct class. The utility of the

-nearest neighbors was found to be L KNN = 0 . 6177 , of naive Bayes

 NB = 0 . 5781 , of multinomial logistic regression L MLR = 0 . 6593 , of

eural networks L NN = 0 . 7668 , of SVM L SV M 

= 0 . 6891 , of random

orest L RF = 0 . 7103 , of HSVM L HSV M 

= 0 . 7245 , and of the proposed

ethod L prop = 0 . 7258 . This indicates that the proposed method is

ssigning, in average, a confidence of 0.7258 for correct estima-

ions. 

. Conclusion and future work 

This paper presented a new confidence-based classification

echnique for multi-class problems. The main contributions of the
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paper can be described by the following points. First, a two-level

hierarchy was created having on the advantages of hierarchical

clustering using only two levels, and hence with no need to huge

dendrograms and complex computations. Second, the method per-

formed feature selection that not only serves to reduce the com-

plexity of the algorithm, but also ameliorated the execution time

and the classification accuracy by maximizing the discriminative

capacity of the ensemble of features. At last, the problem was

solved in the belief functions framework created to discount the

reliability of each feature according to its error rate, and then com-

bining evidence and associating levels of confidence of having the

new instance belongs to each one of the different classes. The pro-

posed method was applied for facial image recognition using the

extended Yale B, the ORL, and the AR databases. It was also ap-

plied in the domain of wireless sensor networks to localize, in real

time, a mobile sensor in indoor environments. The results showed

that the proposed method outperforms a set of well-known clas-

sification algorithms in terms of classification accuracy, yet with

a competitive offline and online processing time. One drawback of

the proposed method is that it requires a parametric distribution of

the data. This assumption might not be true in certain cases where

the observations cannot be considered to be from any parametric

distribution. Although this can be solved by increasing the num-

ber of observations, adopting an approximation, or using a non-

parametric distribution, yet this complicates the algorithms and

might not be practical and applicable in certain cases. As a future

work, focus will be on observation modeling to overcome the dis-

tribution problem. On the other hand, research must be carried on

to optimize the number of levels to be considered in the hierar-

chical clustering. The use of non-parametric distributions such as

kernel density estimation will also be studied. 
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