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Abstract

A versatile assembly system, using TV cameras and
oomputer-controlled amm and moving table,
It makes almple assemblies such aa a peg and rings and
a toy car. It separates parts from a heap, recognising
them with an overhead camera, then assembles them by
feel. It can be instructed to perform a new task
with different parte by spending an hour showing it
the parts and a day or two programming the assembly
manipulations. A hierarchical description of parts,
views, outlines etc. is used to construct models, and
a structure matching algorithm is used in recognition.

1, Introduction

A computer-controlled versatile assembly system
has been programmed during the past 12 months using,
the Edinburgh hand-eye hardware (Barrow aid Crawford )
The equipment (Fig. 1) consists of a moveable table,
a mechanical hand with sensors and rotating palms,
and two TV cameras, all conneoted via an 8X Honeywell
316 to a 128K time-shared ICL 4130 running POP2
programs. Several other programs are running on
thia equipment, including a program for recognising
irregular objects and one which packs arbitrarily
shaped objects into a box (Michie et al ). The
program described here is our most ambitious effort.
It is capable of assembling a variety of structures,
and much of our effort has been spent in enabling the
machine to acquire descriptions of the parts for
itself using an overhead TV camera.

Related work has been carried out at Hitachi
(EJiri et al), at MIT (Winston*® ) and at Stanford
University (Feldman). The Hitachi program could
build a variety of simple structures of blocks from
line drawings of the structure, the HIT programs can
learn concepts about structures and copy an arbitrary
structure of simple blocks given spare parts, and a
recent Stanford program can assemble a simple auto-
mobile water pump using preprogrammed hand manip-
ulations.

2.__The TAsk

A number of parta are placed by the operator in
a heap on the table (Fig. 2, peg and rings). The
machine's task is to separate the parts and recognise
them, then to assemble them into some predetermined
configuration (Fig. 3). Figs. 4 and 5 show another
example, a toy oar. We are currently thinking in
terms of up to a dozen parts with outlines described
by up to twenty or so straight or ourved segments from
any one view, possibly with some holes of similar
complexity.

In order to explore the capabilities of a
computer-controlled system aa opposed to a
conventional electromechanical device we seek a
versatile assembly system. The demand for versa-
tility is also calculated to raise interesting
aspects from an Artificial Intelligence point of view.

Our goal has been to develop a system which
enables one to:-

is described.

(i) think up a new aaaembly involving a kit of
parta which have not been used before,

(ii) spend a day or so familiarising the machine
with the appearance and manipulation of the parts and
instructing it how to assemble them into the required
structure,

(iii) leave the machine unattended, busily making
the structures ad nauseam, provided that a fresh heap
of parte is dumped on the table from time to time.

We have achieved this goal for simple structures.
We can show the machine half a dozen new parts and
instruct it how to lay them out ready for assembly in
about two hours; interactively programming the
assembly operations themselves takes four hours or so.
The machine can make the structures like the peg and
rings, the toy car or a toy ship unassisted,but slowly,
taking an hour or two to find and assemble the parts.
It completes the assembly correctly about four times
out of five. It should be possible to ease the
programming of the assembly operations somewhat, but
removing the need to program movements in terms of
numerical co-ordinates would need a new approach.
The system is about 50K of POP-22 code.

3. Howv The Syatem Performs the Task

The system transforms a heap of parts into a
completed assembly, typically going through the
following step:-

Layout: Identify parts visually and put them in
standard positions.

1. Locate all parts or heaps of parts on the
table using the side camera (wide angle).

2. Inspect each part or heap with the overhead
camera. If it is recognisable as an isolated part
pick it up and lay It out in a standard position and
orientation.

3. If there are no parts or heaps left, or if
all the required parts have been found go to step 5.

4. Using the overhead ocamera look for a
protrusion in the smallest heap, grasp the protruding
part or parts and separate them from the heap and go
to step 1. If it has no protrusions try to break up
the heap by picking it up as a whole and turning it
over so that it falls apart. If this does not work,
try pushing it with the hand at various heights.
stil no success, try another heap. Go to step 1.

5. If some parts are missing, complain. If
there are more parte than are needed, clear them away.

If

Assembly:

Pick up each part from its standard position and
insert it into the assembly, by feel. A workbench
with a simple vice and various working surfaces is
used.

The program is written as two quite distinct sub-
programs, layout and assembly. At present they do
not communicate; they both know the standard



positions and orientations of the parts. The layout
subprogram uses descriptions of the parts, acquired
during the instruction phase, to recognise them, pick
them up, turn them over if necessary and put them
into standard positions. The assembly subprogram
works blind, using no internal descriptions of the
parts. It is written interactively during the
instruction phase.

The system carries cut the steps listed above at
'execution time'. It is able to do so because the
following steps have been carried out previously at
'instruction time'.

A. Instructing the layout program

For each part in each stable state (e.g.
way up, or on its side).

1. The operator places the part on the table
under the vertical camera, the machine takes a
picture and creates from it an internal deacription of
that view of the part. This is repeated several
times, and the machine adjusts its descriptions each
time, taking note of the variations caused by
reorientation of the part and imperfect picture
information.

2, The programmer types in on-line commands to
move the hand, to pick up the object, turn it over,
put it down and pick it up again if necessary, then
to put it down in the standard position and orient-
ation, (if the assembly has several identical parts
separate commands are given for putting each one down
in its own place.) The programmer intersperses these
commands with instructions to remember the current
state, e.g. when the hand has closed over the part.
The system takes a note of these specified states and
at execute time constructs a sequence of actions to
put the part into its standard position and orient-
ation,

right

...... Writing
For each part

1. The programmer puts the part on the table in
its standard position and orientation, and he inter-
actively devises and edits some POP-2 program to make
the machine pick up the part and fit it into the
assembly. His program uses basic move and grasp
operations, and two high level manipulation operations
provided for constrained moves and hole fitting.

the assembly program

4. The Layout Subprogram; Descriptions

We must first explain the kind of internal
descriptions of parts used in the layout program.
We can then show how it creates these descriptions at
instruction time and how it uses them to recognise
partB at execution time. For clarity we have
simplified a few programming details, glossing over
some unnecessary or uninteresting distinctions.

The program works in terms of a hierarchy of
concepts called entities, each represented by program
data structures, having other entities as its com-
ponents. The entities used are summarised in
Table 1 and Table 2 gives a brief description of each.
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TAble

Hierarchical structure of entitles

An entity is either a table top,
an object, or a part, or a hand, or a workbench, or
a heap, or a stable state, or a view, or a region,
or a hole-set, or a hole, or an outline, or a seg-
ment.

A table top has an object-set.

An object-set has objects.

An object is either a part,

or a heap.

part has stable states.

stable state has a view.

view has a region.

region has an outline and a hole-set.

hole-set has holes.

hole has an outline.

An outline has segments.

or an object-set, or

or a hand, or a workbench,

>>>>>>

Table 2

The entities used

The Table top is the whole collection of things on the
table.

An Object is any physical thing on the table which can
be seen or touched; it is initially distinguished
from its surroundings by clear space on the table.

A Part is one of the separate pieces needed for the
assembly e.g. one of the wheels of the car.

A Stable-state is one of the states in which a part
can rest on the table, irrespective of orientation
or position e.g. on its side, upside down. There
should be only a small number of distinguishable
such states.

A View is an analysed TV picture.

A Region is a connected light area in

possibly with darker holes (we use

on a dark background).

Hole is a dark area inside a region.

Outline is the outer boundary of a region or hole.

Segment is a segment of a circle (up to 360 ) with

specific length and curvature (zero curvature

means a straight segment). The irregular boundary

of a region or hole is analysed into a small number

of segments by curve fitting (Fig. 6).

a picture,
light objects

A
An
A

Bach entity either has an n-tuple of components,
or it has a aet of components. The size of the
n-tuple is fixed as in the above 'syntax', for
example a region has a pair of components; but the
size of the set is not fixed until instruct time,
for example the system discovers that the hole-set of
a car body side view has two holes.

An entity may possess properties and some
relations (at present only binary ones) may subsist
between its components. The properties and relations
have names and may be truth-valued or take values in
some other domain such as numbers.

We make an important distinction between two
kinds of entities: model and individual. Bach has
entities of its own kind as components. An individual
entity is an internal description generated by a
particular exposure to a physical objeot using
information from TV camera and hand aensors.
when the operator puts a car body on the table,
machine takes a picture, turns it over and takes
another picture, one individual entity of type 'part’
is generated and two individual entitiea of type
'view' are generated, together with individual out-
lines, holes, segments etc. A model entity, on the
other hand, is a summary or composite of a number of
such experiences. The end result of the instruction
phase is a collection of model entities incorporating
the system's knowledge about the parts, their views,
outlines etc.; the individual parts, view and out-

Thus
the



lines which gave rise to these will have been dis-
carded.

The important operation in recognition is the
creation, from visual and tactile sense data, of an
individual entity which matches a model entity and
whose components match the components of the model
entity. The individual entity contains a pointer to
its model and one to its sense data, thus binding
them together; it also contains certain specific
information, e.g. position and orientation, not
appropriate to model entities.

There are a few exceptions to the above. The
system does not create models for its hand or the
workbench at instruction time; these are given
beforehand. There is no model for a heap since an
individual heap is generated by elimination, on
failure to recognise a part, hand or workbench.

The system has a data structure for each model
entity and individual entity; these are POP-2
records linked by pointers to their components into
tree structures. There is also a data structure for
each entity class, for example the class 'view' and
the class 'region’. Each model or individual entity
belongs to some class and certain data pertains to
the class as a whole - for example a list of the
properties which an entity of that class enjoys and
functions for computing their values.

To build entities the machine needs raw material
which we shall call 'sense data1, information from
the TV camera or possibly the hand sensors which has
not yet been recognised as referring to any known
entity. The recognition process, which we describe
below, takes a model entity and some sense data and
tries to create an individual entity which corresponds
to the model.

Table 3 summarises the four notions of entity
class, model entity, individual entity and sense data
showing what information is associated with each.

The use of this information will be clearer when we
discuss the recognition process.

The matching process which recognises parts

To understand the recognition process let us
consider what happens when the system has taken a TV
picture and tries to interpret it as a side view of a
car body.
it has been told that it is looking at the side view
of a car body, or during the execution phase after it
had found an upright car body and turned it over. Or
again it might be dealing with an unknown object, and
*sideview of car body' might be just one possible
interpretation among several which it was trying.

The TV picture, a 2-dimensional array of bright-
ness levels, constitutes a sense datum, d in D, A
matching function is now applied to this sense datum
and the model of the side view of the car body.
This function produces a set of individual side views
of car bodies, an empty set if there is no way of
interpreting the picture as such a view, otherwise one
element for each possible interpretation. Thus

matchi Sense data x Models -> Set of individuals

The matching function works its way recursively
down the hierarchy from top to bottom, comparing
gross properties on the way down and failing if they
are too discrepant. Thus it might fail because the
area of the region it is looking at in the picture is
too small for a car body, without bothering to
analyse the outline of the region. As it goes down
it refines the sense data, using a thresholding
region finder routine to set region level sense data
from the view level brightness array, finding holes
with the same routine to get hole data and fitting

This may be during the instructionphass when
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Ration Aspociated deaariptive information

and symbol

Propsrty nemes P, Relation names R,
Froperty finding functions f :L-}H

Entity cleasses,
¢

for peP (V im the met of valles fo
propertisy and relatiogs), Helati
finding functiona f tDEEW for r¢R|
Classes of componesnts, Component
finding functicns in D->D, matchi
funetion in Ind-»2°,

Maglel entitiea,
|

Class, values of properiiea and
rslations, components.

Clapa, valuss of properties and
relaticns, oomponents, parameters,
pointers to model and to sense deim

Individual
antitiss,
Y

At view level:
2=D brightness array from TV pio-l
turs.

At region level:
reglon perimeter ps list of veo-
tor increments, Z2-D Beolean
showing whether point is inside
and brighiness arrsy,

At hole level:
as for reglon level referring to
dark holes

At segment level:
sogment length, curvature and
poaition.

Sanme data,
D

-

curves to the perimeters to get segment data. (We
have called the region finder and curve fitter
‘component finding functions')* When it gets to the
bottom level the recursion unwinds and passes up the
hierarchy descriptions of individual entities, using
their finer properties and relations between them to
establish correspondence with the model. At each
level the matching function produces a set of
individual entities each of which might correspond to
the model, thus dealing with ambiguity essentially as
would a 'back-track' or nondeteministic process.

To be more precise,
as followst-

the function 'match' works

Function mateh(d,m)
Let ¢ be the entity class of m.
Let f be the special matching function of class
c.

f(d,m)

The special matching function f may vary from
class to class, but normally f is 'general-match',
defined as follows:-

general-match : Sense data x Models -> Sets ofindividua;s
Function general-mateh(d,m)
Let ¢ be the entity class of m.
Let F be the set of properties for class c.
For each p in P, oompare f (d), the value of
property d for the senaePdatum, with the value of
p in the model m. If there is too much dis-
crepancy exit with result = empty set.

result

Case 1. m has an n-tuple of components, m1...,m. .
Apply the component finding functions of the
class ¢ to d, to find sense data relevant to the
components say d1 ,dn . As each d. is com-
puted, match it against the oomponentdm,, thus
let li=match(d.fm,). If some |. is empty then
exit Immediately with result "empty set.
Otherwise use each element of. [ (the
Cartesian product of the setsJof Individual
components) to construct a new individual with
these components. The result is the set of



these individuals. eliques (those with marimal number of elements) rather

Case 2. m has a set of components, S . than maximal ones. Mg, B shows the conpatibllity
Apply the component finding functions for class graph for our previous example and the three maxyimal
c to find a set of sense data relevant to the oliques indicated by A, and 0. (Remember modes in
components, S.. Use the relation value finding this graph represent corresponding pairs of elsmenta of
functions of e, f for r in R, to compute the the two atructuree and connecting arce represent com—
values of relations between the Sd. Compare patibility betwsen such paire,} In practice we do not

these with the known values of the relations for nssn to get too many largeat cliques when desling with
the S , and use the relational structure matching relatlonal structures of a dozer or so elements, and

algorithm (described below), together with the the algorithn takes enly a few mecnnds or so to gemer-
function match, to find the largest subsets of ante them.
3. which correspond. If these subsets are Our clique finding algorithm builds up cliques a
sufficiently large construct a new individual node at a tﬁﬂa i& ;, Fy ive function,
entity from eaoh correspondence among the com- cligues: 2 o isxz d 5_>2§ﬁg&g§ such thet c]jgugg(x Y)
ponents.  The result is the set of individuals is the sst of all cliques which include a cliqus X and
so constructed. are included in ¥, Thus gligues(f,Nodes) is the get
5 Matching Relational Structures ::fm;i-; :iizues in the graph. It is defined most
A set of segments forming the outline of a part cliques(X,¥) <= if no node in Y-X is connected to all
can be regarded as a relational structure endowed elements of X then [X}
with properties, such as length and curvature, and else cliquas{X U 1yl,T) VU cliquealx, ]
relations, such as adjacency, distance or relative ¥here y is such a node.
orientation, similarly for holes or objects on the (The reasoning is that if some y is eligible for
table top.  Although the properties and relations addition to the clique X then each clique including X
usually take numerical values (length) it will must aither contain y or exclude v.) This generatas
simplify the discussion to talk in terms of truth a soarch tree whome podes &rs labelled with s pair:
valued ones (long, medium, short).  In the algorithm set of nodes chowen, set of nndes available for choice.
given in the last section there is a point (case 2) It atarts with the empty set and all the nodes and

where we need to put two sets (of segments, say) into each branch consists of including or excluding &-node,
correspondence on the basis of these properties and

relations. TV picture processing being what it is If we are looking for mazimal eligues only we cen
we expect discrepancies (segments missing, two seg- cut dewn the mearch by computing &t amch stete the set
ments coalesced) but we want to match as many ¥ whers P={z in Nodes: & io comnected to smch nods in
elements as possible. Pig. 7 shows two simple out- 7} and noting that eny marimal clique includes 7, also
lines and corresponding relational structures; they noting that if T & ¥ then there are no marimal cliques
have several common substructures, e.g. included in ¥. In fact sur progran seeks only largest
{(11',32', 54*, 43 cliguss and runs a veraion of the function cligqueg of
_ ) size X, atopping the recursion if the size of X plus
More precisely, by a relational structure we the numbsr of nodes in X-Y cornscted to all of X
mean a set S of elements together with a set of beaocmes leas than k. We count down on k until some
properties P and a set of relations R over it (we cliquas are found,
consider only binary relations here). Given two
relational structures <S,P,R> and <S2,P,R> we define In this section we have defined an assignment as
a match between them as a set T1 C s1 a set T2C S2 2 pair of elements, one from emch atructure, which
and an isomorphism, ~ , between T1 and T2 preserving heve identlical property values. More loosely one can
properties and relations.  Thus s1 = s2 implies demand only some degree of similarity in the
p(s1) iff p(s2) for each p in P, also S1=S2 and properties,  Our program uses az the sssignwents the
w' s1 imply r(S1,51) iff r(s2,s2') for each r in R, set of all pairs <m',1'> such that 1" is in match(d',m’)
and a match represents a common substructure in our for gome n' in S and som# d' in 3,. This gives us
two relational structures. the nodes in our graph; the arce ﬂrs found by
. defining ccmpatibiliiy to be some suitable degree of
We can find matches as foI.Iows. ] By an assign- gimilarity in the relstions.
pwiiv we mean a pailr <adia2> wiith s41 in Sj and s2 in .
S2 such that p(s1) iff p(s2) for each p in P. In This relational structure matching is used three
Fig. 7 the assignments are  11', 12', 14', 23", 31',  %imes by the layout programs: to match segments in an
32', 34'.etc.  We say two assignments <s1S2> and outline, %o match holes in & region and to match
<S1l’sl> are comgatible if I’(S1,S') iff F(S,,,SI) for ohjacts on & table 'bop, LYY assoclate mome Obdﬂdtﬂ
all rin R, New by definition a match is just a wiich it now sees with its previous imowledge. Tt
set of assignments such that each assignment is given us & robust matching technique which can make
compatible with every other assignment in the set. correspondences betwsen obperved and predicted elements
Indeed we may think of the assignments as forming in spite of imperfect datm. It has mome similerity
the nodes of a graph with compatibility as the in ite way of working,to Walts's teehnigue for labvel.
(symmetric) relation forming the arcs. Our problem ling plctures (Welte ). Winaton aleo does
then is to find totally oonnected subsets of this structure matching, Graph isomorphien ig,a well-
graph, often called cliques. known problan {e.g. Corneil and Gottlisb 9; relationd
atructure isomorphism is esmsentially the sames. Testing
A clique is said to be maximal if no other whather one atructure is a subatruocture of u.notherH
clique properly includes it. Finding maximal aomputaticnally harder (Barrow, Ambler and Buratall'”}
cliques is a well known problem (Karp7) A and our problem here, finding common substructures i
graph of n assignments may have (n/2) maximal still more onerous, but it im needed if hoth atructures
oliques in a theoretical bad case, but at least we have imperfections,
can find each maximal clique in time proportional 1 " h
ton (orn log n if we push it). We can do this
by using a refinement of a simple binary search The process of removing parts from a heap 1s
algorithm given by Burstall8. KnSdel? gives a heurietic, that is it neads & 1ittle luck, But 1t
similar algorithm. In fact for our recognition hag never failed, if the machine ie left to worry at a

problem it seems adequate to generate only largest



heap long enough. Our program does not detect
internal lines, relying on the outline of the heap.
It attacks the smallest heap first.

The first tactic used is to look for a pro-
trusion in the heap outline with a 'neck' which
might indicate a part which is easily separable. A
number of possible hand positions are then considered
so as to pick up the protruding part or parts without
fouling the rest of the heap. If it succeeds in
picking something up the machine examines both this
and the rest of the heap, trying to recognise an
isolated part. The second, cruder, tactic is to try
and pick up the whole heap, then rotate the palms to
let pieces fall off. The third is to push the heap
with the hand at various heights. Clearly there are
subtler ways of picking objects out of a heap, but
for the time being our simple tactics suffice.

Overall control aspects of the layout program

The control structure of the layout program is
quite simple. At the top level there is a simple
loop. We may transcribe the POP-2 code thus

if all=tidy then goto exit:

Af do-mssrch then exrplors (work-area)

algs Af parts-untidy then put-all-sway

plpe if extra—objects then dimcard-objects

alas 3L lost-parts thep ssarch-forenisping-

parte

elwe if parts-needed then amash.a-heayp

8lpge if sxtre=heaps then put-heaps-in-
corner; goto loop

loop:

exit:

This snables it to cope with too many or too few
parts. If one of the lower level routines enoounters
difficulties it simply jumps out to loop. At a
lower level various routines on entry assign a label
to the variable pick-up-fail, and failure to pick
something up satisfactorily causes a jump out to the
current label.

Our recognition process is basically recursive
(we have experimented with some process-swapping
techniques but they are not in our program at present).
This does not lead to too much rigidity, because we
make rather extensive use of 'memo-functions' (Michie'®
for example, when an analysis of the outline of a
region is required the analysing function remembers
the result and, when asked for it again, simply
returns it immediately. Thus outline analysis is
only done when needed and never repeated.

6. The Assembly Subprogram

This program works blind, using only hand
sensing. It is written interactively at instruction
time in terms of basic hand moving and sensing
operations together with two higher level operations.

The basic operations include 'raise z centime-tea’,
'move to (x,y)', 'grasp to w centimetres', 'rotate
palm by O ', and functions for reading forces on the
hand by means of strain guages, namely gripping force,
weight of the object held and torque. There are two
higher level operational constrained move and hole
fitting.

Constrained move. This operation has two
parameters, both force vectors, f a force opposing
movement and f a constraining force, (Fig. 9). Let
u and u be Tne unit vectors in these two directions.
Let 6 and £ be small scalar distances. The
hand attempts to move in direction -u until it is
opposed by a force larger than f . ~2t the same time
it keeps in contact with a surface which offers a
resisting force f . The resulting movement will not
necessarily be in direction -u but along the surface

Til
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according to the component of -u, tangential to
tfh(leI surface. The operation works in detail as
ollows:-

1, If a foreca grsater than ‘:m is felt then mtop.
2. Move b’ -Eﬂ L ]

3, If a force gréater than I is felt then move
and goto 3, otherwise gotd 1.

Fig. 9 shows an example of the pattern of move-
ment which a single call on the constrained move
operation might produce. The constraining force
parameter may be left undefined giving an unconstrained
move in direction -u until an opposing force is felt.
This operation was suggested to us by work at HIT
Draper Laboratory (Kevins et al'5).

Hole fittjpg. Thia operaticn has two force
vector parameters f and £ . Let u_ and u be the
scorraaponding unit Vectors and £ € Susll
scalar distances, It im used whén the hilnd 1s holding
an object with a protrusion which muast be fitted inte
a hole {e.g. arls into car body) or is helding sn
cbjeet with a hele whieh is to be fitted over mome
protrusion (e.g. putting a ring oo the peg). The
hand moves in & spiral pattern normal to u. ., pushing
repeatedly in the direction u_until am opbosing
force greater than f im falt and then retreating mnd
making a short move In the direction of the spiral
bafore trying agein., V¥hen, at aame point in the
apiral it succeeds in moving forward by £ y it
testa whether it has found the hole by moviﬁgnsidewnya
by ¢ u. If a fores greater than f is encountered
{or ar five attenptn) the procoas stt-sps. otherwise
the spiral pettern is resumed,

The wooden car assembly gives an idea of how the
program proceeds. A ‘'workbench' is used, fixed to
one corner of the table (Fig. 10). It has a 'vice'
for holding a wheel while an axle is being inserted,
consisting of an L-shaped corner piece and a pivoted
bar which the hand closes so that the wheel is held
between the bar and the L. It also has a vertical
'wall' so that the car body can be held firmly while
the second wheel is pushed onto each axle.

The sequence of events, in outline is:-

(i) The hand puts a wheel in the vice and
inserts an axle.

(ii) It turns the car body upside down, picks up
the axle with the wheel on it and inserts it into the
body.

(iii)
axle.

(iv) Put the car body against the wall upside
down with the two wheels against the wall.

(v) Push the remaining two wheels onto the
protruding axles.

(vi) Pick up the assembled oar and place it on
the table.

Assembly programming is still quite tedious,
involving choice of numerical parameter® for distances
and forces, and we have some ideas for easing it,
Popplestone'®, There is clearly a lot of thinking
to be done before we could make the assembly phase
as versatile and easily instrucable as the layout,
e.g. by replacing numerical commands with instructions
using relations like 'on top of and 'fitting into' or
by showing the machine intermediate assemblies. In
particular our present assembly subprogram does not
use the internal descriptions of the parts which have
been acquired during instruction by the layout pro-
gram. Such descriptions would have to be recast so
as to be useful for assembly as well as recognition.

Repeat (i) and (ii) for the second wheel and

7, Concluding Remarks

Writing this program has been a valuable exercise



from the point of view of understanding- what problems
are important for an integrated assembly system. By
tackling a definite task but imposing the requirement
of versatility, We hare raised some interesting
Artificial Intelligence questions without writing a
program just to justify A.l. dogmas. We hope to
work in future on (i) making the learning system more
coherent (il) extending the vision system to deal
better with side views (essentially requiring
3-dimensional teohnigues) and to analyse half-completed|
assemblies, and (iii) making it easier to program
assembly manipulations, being less specific about
nuaerical co-ordinates and the magnitudes of forces.
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Session 11 Robot Implementations

PLANNING CONSIDERATIONS FOR A ROVING ROBOT WITH ARM*

Richard A. Lewis and Antat K. Bejczy

Guidance and Control Division
Jet Propulsion Laboratory
California Institute of Technology

Pasadena,

Abstract

The Jet Propulsion Laboratory is engaged in a
robot research program. The program is aimed at
the development and demonstration of technology
required to integrate a variety of robntic functions
{locomotion, manipulation, sensing and perception,
decision making, and man-robot interaction) into a
working robot unit operating in a real world environ-
ment and dealing with both man-made and natural
objects. This paper briefly describes the hardware
and software system architecture of the robot bread-
board and summarizes the developments to date.
The content of the paper is focused on the unique
planning considerations involved in incorporating a
manipulator as part of an autonomous robot system.
In particular, the effects of system architecture,
arm trajectory calculations, and arm dynamics and
control are discussed in the context of planning arm
motion in complex and changing sensory and work-
space environments.

KEY TERMS: Robot system; Robot system
planning; Robot breadboard architecture; Arm mo-
tion planning; Arm control; Arm dynamics; Sensors
for manipulation; Manipulating in natural and con-
strained environment.

1.0 introduction

Autonomous goal-directed coordination of
locomotion, manipulation, and sensation and percep-
tion in a semi-natural environment is the capability
being sought by the JPL Robot Research Program.
The initial goal of the program is to demonstrate
the integration of sensory and motor functions in the
autonomous performance of manipulation and loco-
motion tasks in response to global commands issued
by an operator. The long-range goal is to develop,
test, and display concepts of robot structure, system
integration and operation, and machine intelligence
for the design and use of adaptive autonomous ma-
chines for advanced space and planetary exploration.
The JPL program utilizes results of progress ob-
tained at other institutions engaged in robotics and
artificial intelligence work reviewed in Ref. 1.

(Ref. 1 contains an extensive list of related litera-
ture. ) The robot breadboard itself is a mobile
vehicle (similar to that used by the astronauts on the
moon) equipped with a six degree-of-freedom manip-
ulator (a modified version of the Stanford Electric
Arm, see Ref. 2), a complement of sensors (TV,
laser range finder, navigation and guidance sensors,
tactile sensors, and, eventually, proximity sensors),
and a local mini-computer in communication with
remote computers, graphic displays, and operator
consoles.

*This paper presents the results of one phase of re-

California

search carried out at the Jet Propulsion Laboratory,

California Institute of Technology, under Contract
No. NAS7-100, sponsored by the National Aero-
nautics and Space Administration.
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In this paper, we focus on the particular plan-
ning considerations involved in incorporating a
manipulator as part of a total robot system operating
in a complex sensory environment and dealing with
both man-made and natural objects. First the ar-
chitecture of the JPL robot breadboard and then the
different aspects of planning manipulator motion are
discussed.

2.0 Breadboard System Architecture

The breadboard is divided into six functional
subsystems: locomotion, manipulation, environment
sensing and perception, computing and data handling
facilities, robot executive (REX), and operator-
robot interface. Each subsystem contains both hard-
ware and software. Subsystem design is based solely
on criteria of functional compatibility, performance,
growth capability, and convenient interfacing. Total
robot system integration will be studied experimen-
tally and different concepts wil! be demonstrated in
successive stages.

2. 1 Breadboard Hardware

The major subsystem hardware elements are
shown in Fig. 1, indicating also the physica] size of
the moving part of the breadboard.

Fig. 1.

Breadboard Hardware Configuration

The vehicle, on loan from Marshall Space
Flight Center, provides a flat and relatively stable
platform for mounting breadboard elements to be
moved around in the environment. Total effective
load capacity of the vehicle is about 500 pounds.
Travel speed will be limited to 1 mile/hour. The
vehicle has Ackerman-type double steering; the two
ends can be steered in the same or opposite direc-
tions. Alternatively, one or the other end only can
be steered. Each wheel is independently driven by
a DC torque motor. Currently, the vehicle has only
dynamic braking. The suspension has a modified



independent spring action at each wheel. Inputs to
the vehicle navigation, guidance, and control system
are furnished by odometers mounted on the front
wheels (providing vehicle center line distance travel
information), a "ruggedized" directional gyro com-
pass (providing directional reference), and wheel
drive motor tachometers (providing information on
vehicle velocity).

The manipulator is a modified version of the
Stanford Electric Arm described in detail in Ref. 2.
It has six degrees of freedom, allowing any desired
hand position and orientation in an open or slightly
obscured workspace. The reachable set of points
(the workspace) is within a radius of 52 inches mea-
sured from the origin of the manipulator base refer-
ence frame. (See Fig. 2.) The six joints connecting

2. Reference Frames
.Link-Joint Pairs of Arm

Fig.
For

the links from the base to the hand are in the follow-
ing sequence: two rotary joints (providing shoulder
azimuth and elevation action), a linear joint {provi-
ding in and out reach action), and three rotary joints
(providing the wrist action). The hand is presently
a simple parallel jaw mechanism. The joints are
driven by permanent magnet DC torque motors
geared directly to the corresponding links. Depen-
ding on the relative position of the links, the arm
can handle loads of up to 5-8 pounds Earth weight.
The arm servo control utilizes analog position mea-
surements from the joint outputs and analog velocity
measurements from the motor shafts. Holding
torque at each joint is provided by electromagnetic
brakes. The arm's structural stiffness and tight
servo control can provide hand positioning accuracy
within a few tenths of an inch. A suitable articulated
and adaptively controlled hand will be added at a
later date.

Environment sensing and perception is mainly
obtained from two sources: TV cameras and laser
ranging. The laser ranging device is a GaAs pulsed
mode laser with fast pulse (~10 ns). The beam is
pointed by a gimballed mirror and detected by a
photomultiplier. Provisions are made for multipulse
averaging using analog integration and variable
averaging time. The sensing range is tentatively
up to 150 feet. The design is based on previous JPL
experiments (Ref. 3). Related data handling prob-
lems are treated in Ref. 4. The vision system con-
sists of two identical and optically parallel vidicon
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TV cameras which will provide'digitized stereoscopic
input to both scene analysis and operator display
(Ref. 5). A 729 by 729 resolution sequential column
digitizer furnishes video data for computer-rate
digital picture processing and operator display. The
TV cameras and laser are mounted on a pan and tilt
mechanisms referenced to a common coordinate
system and will be used as an integrated scene anal-
ysis subsystem. Arm-mounted proximity sensors
{described in Ref. 6) and tactile sensors will at a
later date augment the environment sensing and
perception subsystem.

The proximity sensor is a small (about 0. 3
cubic inch) electro-optical device with a small
ellipsoid-shaped sensitive volume permanently fo-
cused at a distance of a few inches in front of the
sensor. |If this proximity sensor is mounted to an
appropriate place on the hand, the sensitive volume
will move with and ahead of the hand at a known dis-
tance relative to a reference point on the hand. A
voltage signal will appear when the sensitive volume
"touches" a solid surface as the hand approaches the
surface. This voltage signal can be used to guide
and control the terminal motion of the hand in direct
response to sensed relative hand-object position and
orientation. Of course, several proximity sensors
can be mounted on the hand, providing several sensi-
tive volumes in a known pattern around the hand and
facilitating the design of a versatile conditional ter-
minal guidance and control logic for hand motion.

The computing and data handling subsystem
architecture is currently based on a remote PDP-10
in the ARPA net as an off-line computer. This will
be connected to a local real time computer perfor-
ming realtime robot control and I/O functions. (See
Fig. 3.) The remote computer system will be used
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Fig. 3. Computing and Data Handling

Subsystem Architecture

to process TV and laser pictures, to construct the
"world model, " to operate the different subsystem
planning programs, and to execute top-level decision-
making programs of the robot executive (REX). REX
is described in detail below.

The realtime computer will interface with the
robot through input and output units which contain
A/D and D/A converters. A Cable Unit will contain
the necessary logic devices allowing the robot to be
tethered to the CPU via a 50-100 foot cable. TV data
from the robot will interface directly (via the Video
Converter) to the CPU through a separate cable. A
disk storage unit will be used for fast, random access
mass storage and will serve to store the operating



system routines, robot eupport programs, TV and
laser pictures, and status files for the operator
terminal. A magnetic tape unit will be used for
performing system diagnostics and for entering oper-
ating system programs and any robot subsystem pro-
grams developed in the off-line computer. The
operator console will allow operator interaction with
the system and development of subsystem support
programs.

The operator-robot interface functions will be
performed through an IMLAC terminal connected to
the realtime computer. (See Fig. 3.) During pro-
gram development, the IMLAC will also be used for
simulation studies. The IMLAC terminal includes a
CRT display, a teletype, and a read/write cassette
recorder.

2.Z Breadboard Software

The software system architecture is essentially
hierarchical with the robot executive (REX) control-
ling and monitoring the various software subsystems.
REX performs problem solving, interacts with the
human input command structure, manages the "world
model," and calls the major subsystem software
modules (vehicle, arm, etc.). The major subsystems
are designed to be largely independent of each other.
Necessary data concerning the state of the robot and
environment used by the various subsystems are fur-
nished through the "world model, "

A Master Control Program (MCP) ties the
various subsystem programs together and acts as an
operating system for them. Present plans are to
design the MCP in the remote computer using the
mechanisms in SAIL (Stanford Artificial Intelligence
Language , Refs. 7 and 8) for the creation and control
of concurrent processes. Operating system modifi-
cations are also planned based on the use of the
TENEX paging system (Ref. 9) which makes available
interrupts of various types not incorporated into
SAIL, Subsystem programs can be written in SAIL
or possibly in other languages. SAIL provides easy
linkages to FORTRAN and assembly languages.

The total breadboard system is of experimental
nature. Thus, the software system is intended to be
expandable and evolutionary.

3. 0 Planning Manipulator Motion

This task involves three separate efforts: sys-
tem architecture effects, trajectory planning, and
manipulator dynamics and control. These are, re-
spectively, planning for manipulator motion, planning
of motion, and execution of planning. Planning tor
manipulator motion occurs at the system level in the
selection, design, and placement of robot hardware.
Planning of motion involves the selection and imple-
mentation of methods of specifying particular motions
and motion constraints. Execution planning deals
with motion control implementation schemes. We
now consider each of these three separately.

3.1 System Architecture Effects

Placement of the manipulator along the center
line of the vehicle about 8 inches from the front edge
of the vehicle platform allows a reasonable workspace
for the manipulator on the ground (which is 18 inches
below the platform) while still permitting access to
tools and sample storage bins near the center of the
platform. This placement does, however, give rise
to several motion constraints; the manipulator can
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easily collide with the platform, the front edge of the
platform, the wheels, and the wheel drive motors,
even though the basic vehicle was modified exten-
sively to minimize this problem.

The selection and placement of sensors give
rise to additional motion constraints for the manip-
ulator as well as allowing the manipulator to know
its world. The manipulator makes use of both exter-
nal and internal sensors. In the initial configuration
of the robot, the primary external sensors to be used
by the manipulator are the dual TV and laser range
finder. These are used to determine a priori manip-
ulator targets and are assumed to have sufficient
resolution in the initial simplified robot environment
for effective target specification. Later operation of
the robot in richer and more perceptually complex
environments rendering the sole use of these sensors
open to question will be accompanied by the use of
conditional arm control loops regulated by direct
inputs from tactile and proximity sensors. Use of
these latter devices in conjunction with an adaptive,
articulated terminal effector will permit the arm to
respond directly to relevant aspects of the environ-
ment.

Fig. 4a shows a proximity sensor mounted on
the hand,, while Fig. 4b shows the concept of proxim-
ity sensor application for terminal guidance and
control of hand motion in "distance seeking" and
"distance keeping" modes of operation. A more de-
tailed treatment of proximity sensor application to
manipulator control can be found in Ref. 10.

i m UNIFORM DISTANCE BETWEEN A
FIXED POINT ON THE HAND AND
SOLID OBJECTS DURING MOTION

DRECTION OF HARD MOTIDN

PROYIMATY SEWSOR F

" SENSED "POINTS" PURIN
DEAECTIONAL MOTIDN

CONCEPT Of PROXIMITY SENSOR APPLICATION
FOR CLOSED-LOOP GUIDANCE AND CONTROL
OP HAND MOTION

Fig- 4. Terminal Guidance and Control
Of Hand Motion Using Proximity Sensing

Our robot-hand application calls for handling
a variety of both regular (man-made) and irregular
(natural) objects of different size and weight in var-
ious manipulative tasks. Therefore, a versatile
hand-finger mechanism will ultimately be required.
An articulated and adaptively controlled hand (using
design and control principles similar to those applied
in prosthetic hand research; see Refs. 11 and 12)
will not require detailed a priori information on ob-
jects to be handled and will ease the control of many
details of a grasping motion since the hand, while
gripping an object and monitoring only one actuator,
adapts itself "reflexively" to the shape, size, orien-
tation, and weight of the object.

Placement of tactile and proximity sensors on
the manipulator itself creates no new obstacles or
additional constraints, but placement of the TV/laser
head is a Berious problem. The present configuration
places these sensors on a mast above the arm support



post and represents a tradeoff between good viewing
angle and keeping out of the way of the manipulator.
Even so, it is possible for the manipulator to collide
with the TV/laaer head, either in normal motion or
in switching from a right arm to left arm configura-
tion. However, since the manipulator and TV/laser
systems are not run simultaneously in this bread-
board and the TV/laser head is mounted on a pan/tilt
mechanism, these sensors can be moved out of the
way.

The physical dimensions of the manipulator
have been modified from the original Stanford design
to permit a greater workspace on the ground. Spe-
cifically, the arm support post has been reduced by
two inches and the extendable boom lengthened con-
siderably.

The initial configuration of the robot thus pro-
vides the tools for deterministic planning of arm
motion based on a priori TV/laser data with motion
implementation based on feedback fronvinternal
position (pot) and rate (tach) sensors. Only primitive
tactile feedback in the initial configuration allows for
some conditional modification of plan. In subsequent
configurations, proximity sensing and an adaptive
terminal effector will permit more flexible and
environment-responsive manipulator motion planning.
In all cases, rover hardware design constrains ma-
nipulator motion by presenting a series of permanent
obstacles to the arm.

3.2 Trajectory Planning

The term "trajectory” is here meant to refer
to some description, partial or complete, of the
path that the arm follows.

Trajectory "planning" is the activity preceding
arm motion (that is, trajectory execution), the pur-
pose of which is to constrain or otherwise define
that motion. Target and environmental obstacle in-
formation are here assumed to be provided by REX
and the "world model."

The degree to which the trajectory is to respond
to external sensing during trajectory execution de-
fines a continuum of trajectory planning. At one
extreme is purely deterministic trajectory planning.
Any external sensing to be done is performed during
the planning stage; only a catastrophe halts execu-
tion of the planned path. Internal sensing is used
throughout execution to maintain the adherence of
actual motion to plan. Deterministic planning as-
sumes a static world during arm motion as well as
sufficient a priori knowledge and execution accuracy
capabilities, and limits adaptive control. Towards
the other extreme is conditional planning, the nature
of which is highly dependent on the specific external
sensors used. The benefits of conditional planning
are flexibility of response and possible reduction of
planning time at the possible cost of increased real-
time computation requirements.

In the initial configuration, deterministic plan-
ning similar to that used in the Stanford hand-eye
project (Refs. 13 and 14) is to be employed. Reasons
include the initial lack of proximity sensing, the
adequacy of TV/laser a priori information in the
initial simplified environment, and the fact that most
of the obstacles to arm motion are (in the initial
configuration) permanent obstacles known a priori
and resulting from the placement of vehicle hardware.
Conditional planning is to be implemented and inter-
faced with existing deterministic planning at a later
time.

A related distinction concerns the manner in
which the trajectory plan is specified. Either a
sequence of a few points or the complete time history
of the arm (that is, the path) can be planned. Arm
motion in a constrained workspace involves path
planning.

Deterministic path planning can be performed
in joint-variable space or in 3-space. In the former
case, the time history of each joint is planned; it is
the combination of the time histories of the joint vari-
ables that describes the motion of the arm. In the
latter case, it is the motion of a particular point on
the manipulator (commonly, a point on the hand) that
is planned; the required joint variable time histories
are derived from the plan. The advantage of planning
in joint-variable space is that the plan is formulated
more directly in terms of the variables to be con-
trolled during motion. The associated disadvantage
is the difficulty in determining where the various
links will be during motion, a task required to guar-
antee avoidance of collisions with the other parts of
the robot, the natural environment, or even with the
arm itself.

Constraining the fingertips to describe an
elliptical arc is an example of planning in 3-space.
In addition to the difficulties in finding the path de-
scribed by other points on other links of the arm,
there is also the problem of determining the kine-
matic sequence of joint variable values required to
implement the plan.

In the Stanford Hand-Eye Project (Refs. 13 and
14), the focus to date has been on deterministic path
planning in joint-variable space, with some condi-
tional planning. Specifically, the time histories of
the joint variables have been specified in terms of
sequences of polynomials with continuity of joint
variable value and its first two derivatives guaran-
teed at the boundary points of polynomials in the
polynomial sequence. The number of polynomial
segments and specified motion contraints determine
the total number of coefficients required for a com-
plete quantitative specification of joint trajectory.
The JPL robot research program uses a modified
version of the Stanford planning algorithm.

Fig, 5a shows the time history of a joint vari-
able described by a cubic, a quintic, and another
cubic. It has been found that trajectories using
polynomials of degree five or higher typically wan-
der, as shown. This behavior appears in observa-
tion as gross extraneous motion of the arm.

Use of a quartic-cubic-quartic trajectory re-
veals a somewhat different problem. As shown in
Fig. 5b, the desire to assure an appropriate direc-
tion of departure and approach of the terminal effec-
tor can be thwarted by the tendency of the quartic-
cubic-quartic trajectory to overshoot or undershoot
its endpoint values. The Stanford Hand-Eye project
used both of these polynomial sequences, eliminating
overshoot by special code.

A third polynomial sequence, five cubics, is
being implemented for the JPL arm. This trajectory
appears to minimize the "wander" and "overshoot"
problems. Typically, as in Fig. 5c, there is no
overshoot; wander, when it occurs, is small.

Obstacle avoidance has been implemented for
the JPL arm in two ways. The first method consists
of the specification of an additional safe intermediate
position for the joint(s) most critically affecting arm
motion in the sensitive direction. An additional
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cubic is required for each additional intermediate
position specified. The effect of implementing this
type of obstacle avoidance is shown in the trajectory
illustrated in Figs. 6 and 7. Fig. 6 describes joint
variable motion and Fig. 7 illustrates the projection
of the same planned trajectories in the base coordi-
nate system, as well as the associated total veloci-
ties.

As seen in Fig. 7a, the task is to lift an object
from the ground (from xq = 20", yo= 30", zq - -17"
in the base reference frame) and deposit it on the
vehicle platform at xq 10", yo = -25", zo - 2"
The hand orientation is also specified at both end
points of the trajectory. Further, to aid the deter-
mination of the lift-off and terminal approach phases
of the joint trajectories, two intermittent hand posi-
tions are also specified. As seen in Fig- 6, joint
trajectories #2 and #5 contain, respectively, 9 and 8
segments due to obstacle avoidance.

A second method of obstacle avoidance is called
the "freeway method. " Precomputed safe trajecto-
ries (called "freeways") relating commonly accessed
points are utilized in conjunction with entrance and
exit "ramps" relating planned arm configurations to
existing freeways. This freeway method is poten-
tially useful in avoiding obstacles permanently affixed
to the vehicle, such as the TV/laser head and support
the wheels and wheel motors, and the vehicle plat-
form. Presently, there are 14 such permanent
obstacles on the JPL robot. The freeway method can
be used more frequently if the vehicle is positioned
in a predetermined standard manner with respect to
objects of intended manipulation.

Obstacle detection is performed by the rela-
tively cumbersome method of checking for collision
with all possible objects at various points along the
trajectory. Of course, for many obstacles, the
safety of several links mast be examined. In the
case of permanent obstacles, however, the invariant
property of the relationship has been exploited to
produce a series of increasingly complex tests.
Thus, in many cases, simple checks of joint variable
values can assure safe motion,

3. 3 Manipulator Dynamics and Control

Execution planning deals with the specification
of control laws and the design of control schemes
whose implementation will assure that the physical
motion of the arm will follow the desired motion.

Arm motion between distant points without
prescribed continuous trajectories between the points
can simply be controlled by driving each motor at
some preset rate and terminating the motor drive
at each joint when an appropriate signal (potentiome-
ter or some external sensor) indicated that the joint
position had reached the preset or desired terminal
value, Arm trajectories planned in terms of contin-
uous space-time coordination of joint motions, how-
ever, require that the joints be driven to comply
strictly with the planned time histories of joint
positions.

Several techniques are available to build a
suitable position servo for each joint drive. (See
Ref. 15.) An appealing computer-oriented servo
technique (used in the Stanford Hand-Eye project) is
to compute the required torque or force as a func-
tion of time for each joint drive, accounting also for
gear ratio, efficiency, and possible nonlinearities,
and construct the joint position servo loops around

the computed nominal tarque or force inputs. (See

Fig. 8.}
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Fig. 8.

The dynamics of motion at the six joints of the
arm is described by a coupled set of six second order
nonlinear differential equations with time-varying
(in fact, with state-varying) coefficients. There is
no simple proportionality between torque {or force)
acting at one joint and the acceleration of the same
jyint when several joints are in motion simulta-
neously. Even if only one joint moves at a given
time, the proportionality between torque and accel-
eration is a complex function of the actual configura-
tion of all links ahead of the moving joint and any
load in the hand. The total variations in link iner-
tias as seen at the joint drives due to changes in arm
link configuration or load in the hand have been
calculated for the JPL arm (Ref. ]16) and are shown

in Fig. 9.
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Fig. 9. Relative Maximum Variations
In Total Liok Inertias
In the case of simultaneous motion of several
arm joints, the effective torque (or force) acting at

each joint is the sum of a number of dynamic com-
ponents: inertial acceleration of the joint; reaction
torques or forces due to acceleration and velocity

at other joints; gravity terms. The relative impor-
tance of the various dynamic components related to
the planned motion displayed in'Figs. 6 and 7 and
computed for the actual kinematic and inertial param-
eters of the JPL robot research arm is illustrated
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in Fig- 10. To simplify the displayed variations, Acknowledgment

only motions and inertias of the first three joints are
accounted for in the diagrams of Fig. 10. If the
speed of motion (or rather, the total lime of motion)
is changed by a factor n, then the acce leration and
velocity dependent torque and force-components of

Fig. 10 can simply be scaled by a factor n?
Two questions are currently investigated (Ref.
16): to what extent should the reaction components

be accounted for, and in what form should the state-
varying dynamic coefficients be specified to ease
control scheme implementation.

4.0 Summary

The integration of several robot subsystems
into a functioning autonomous adaptive machine re-
quires significant planning considerations on all
system levels. The JPL robot research program is
currently focused on subsystem planning and design
and is in the process of implementing results in
hardware and software. The manipulator itself has
been manufactured and is undergoing final testing.
Vehicle modifications are partly completed. Con-
struction of the TV and laser systems are in pro-
gress. Selection of complementary sensors and
other hardware and acquisition of a realtime control-
ler (the local computer) are underway. The design
and building of the A/D and D/A interface units are
also underway. Development of the executive and
subsystem software and the master control program
have begun. The future concerns are mainly related
to the implementation of subsystem execution pro-
grams, planning for subsystem interaction, and the
integration of subsystems into a unified robot bread-
board.

The outlined considerations and results related
to the design of a self-contained planning algorithm
for manipulator control, when the manipulator is
part of a total robot system, suggest conducting fur-
ther work in two directions: direct path planning in
the object space; and truly adaptive manipulator con-
trol through unification of deterministic and condi-
tional elements in the planning algorithm.
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The preparation of the first part of the paper
benefited from discussions with several members of
the JPL Al working group.
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CONTROL ALGORITHM OP THE WALKER CLIMBING OVER OBSTACLES

D.E. Okhotsimski,

A.K, Platonov

USSR

Abstract. The paper deals with the prob-
lem of development the multilevel control al-
gorithms for six-legged automatic walker,
which provide the walker with the possibili-
ty to analyse the terrain profile before it
while moving over rough terrain, and to syn-
thesize adequate, rather reasonable kinema-
tics of body and legs for walker's locomoti-
on along the route and climbing over obstac-
les on its way. DC simulation and analysis
of walker's model moving image on DC display
screen make it possible to evaluate the al-
gorithms developed and to find ways for

their improvement.
Key words: six-legged walker, DC simu-
lation, control algorithm, data processing,

obstacle overcoming.

The paper deals with the problem of con-
trol algorithm synthesis for a six-legged
walker. It is supposed that the walker is
supplied with an onboard digital computer.
Rather a complicated algorithm may be used,
which provides walking over rough terrain
and climbing over some isolated obstacles. It
is also supposed that the walker is equipped
with a measurement system giving informati-
on about the terrain relief. Measurement da-
ta are processed by DC and used when making
decision.

An effective method of testing the al-
gorithms is their simulation on a digital
computer with a display unit. It is possible
to simulate the walker itself, terrain re-
lief, measurement system functioning! data
processing, decision making and walker con-
trolling. Observing on the CRT screen the
moving image of the vehicle walking over the
terrain, it is possible to check the functi-
oning of the algorithms, to estimate their
effectiveness and to find ways for their im-
provement .

This paper deals with the algorithms in
the range from the environment information
(input) to the vehicle kinematics (output)..
The problem of terrain measurement data pro-
cessing and measurement controlling are also
investigated. The simulation results are
discussed.

On the first stage of the control algo-
rithm synthesis it was assumed that all ne-
cessary information about the terrain relief
was got and processed and was kept in the
computer memory in the form convenient for
its further use in the decision-making algo-
rithm.

Several types of six-legged walking sys-
tem were investigated. Schematic image of
one of them is seen in Pig. |. All six legs
of the walker have equal geometrical parame-
ters and equal orientation of the joint

axes. Each leg has three degrees of freedom
in the joints: two in the hip joint and one
in the knee. The first hip-joint axis is

perpendicular to the plane of the vehicle
body, while the second one is parallel to
the body plane and perpendicular to the

thigh. The knee axis is parallel to the se-
cond hip-joint axis. The total number of de-
grees of freedom in six legs amounts to eigh-
teen. The vehicle body has no kinematic con-
straints, and therefore it may have six de-
grees of freedom in its motion relative to
the supporting surface.

The walker of this type has rather rich
kinematic feasibilities which may be used to
provide the vehicle's adaptivity to the ter-
rain. The problem is to synthesize appropri-
ate control algorithms which, could organize
the walker kinematic in a reasonable way for
the effective solving of different locomotion
tasks.

It was reasonable to design control al-
gorithms as a multilevel hierarchical system.
The following 5 levels were adopted:

1. Leg. This level is the lowest one.lt
is necessary to synthesize leg motion during
the support and swing phases and to avoid
small-size obstacles.

2. Leg coordination. This level is high-
er than the previous one. The leg-coordinati-
on algorithms provide support scheduling of
the legs, i.e. they generate sequences of
"up" and "down" times for all legs. The con-
dition must be satisfied: The stability mar-
gin of the vehicle should be always no less
than a given value.'®

3. Standpoint sequence. This level fixes
in advance several supporting points on the
support surface. In a simple case, if the
terrain relief allows it, the level generates
a regular standpoint sequence described by
two parameters: the gauge width and the
stride length. In more complicated cases it is
necessary to plan an irregular standpoint se-
quence, e.g. for some cases of climbing over
obstacles.

4. Body. The output of this level is the
parameters of motion of the walker's centre
of mass both along the route and in vertical

direction, and the parameters of body rotati-
on (pitch, jaw, roll).
5. Route. The route planning level is

the highest one. Up to now the route of the
walker has been planned by an operator.

Pig. 2 shows interlevel information flow.
The complex of control algorithms is dash-
lined. Dotted lines indicate the flow of ter-
rain information to different levels.

It was reasonable to begin designing
the algorithms from lower levels and then
pass on to the higher ones. When testing the
algorithms the outputs of higher levels were
imitated.

The initial stage of investigation dealt
with the leg-control algorithm in the simple
case of regular gait of the walker moving
along the regular standpoint sequence. The
body moved with constant velocity. The imi-
tation of the levels higher to the leg-con-

trol level was, in this case, rather simple.



The leg-control algorithm provided vertical
legs adaptation to small-scale terrain rough-
ness.

A special block was designed for synthe-
sizing leg-tip motion during the swing phase
in the case of complicated small-scale re-
lief. The ordinates of the leg-tip trajecto-
r%/ (Fig. 3) were calculated as the sum of
the ordinates of the convex envelope of the
relief (dashed line in Fig. 3) and of the
ordinates of a parabola with vertical axis.
The parabola was chosen in such a way that
itB ordinates were equal to zero both in the
initial and final points. It was assumed
that the horizontal component of the leg-tip
Vﬁlocity was constant during the whole swing
phase.

For the second level of leg coordination
- the algorithm for support scheduling with
prescribed stability margin was designed in
a general case for irregular standpoint se-
quence .

Two types of gait were investigated:

1. Tripod %ait. Each of the two tripods
consists of foreleg and hind leg of one size
and of middle leg of another size. Three
legs of the tripod swing simultaneously.Two
tripods swing alternately. Fig. 4a illu -
strates the adopted logics of calculating
"up" and "down" times of the tripod in the
case when all legs of the same side use the
same standpoint sequence ("step-in-step”
type of locomotion). The swing phase of the
tripod coincides with the time iInterval when
the projection of the centre of mass of the
walker moves between two dashed lines inside
the supportln? triangle formed by the legs
of the other tripod (Fig. 4a). This logics
rovides stability margin of prescribed va-
ue.

2. Wave gait.'® The idea of this type
of gait was taken from one of the enthomolo-
gical papers by D. Wilson.14 The swing waves
propagate along the legs of each side of the
walker beginning from the hind legs. The
hind legs of both sides start alternately.

Support scheduling logics is shown in
Fig. 4b, The time interval between the start
of the hind leg and the standing of the fo-
releg (wave propagation time) was calculated
under condition of prescribed stability mar-
gin. Two equal intervals of simultaneous
support of hind and middle legs, and of mid-
dle and front legs were subtracted from the
wave propagation time. The rest of the time
was devided among three legs proportional
to their strides (the rule of constant leg-
tip horizontal velocity.

It should be noted that in special case
of regular standpoint sequence the gaits ge-
nerated both by wave and by tripod algo-
rithms may coincide. But in. general case of
irre%ular standpoint sequence algorithms
synthesize different gaits.

The designed algorithms of this level
generated support schedule for both cons-
tant and variable velocity of the body in
general case of curve route. The body rota-
tion and the vertical component of body ve-
locity might be taken into consideration.
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On the third level two versions of
standpoint planning algorithms were designed
which were able to generate standpoint se-
quences for arbitrary curve route on the sup-
port surface with small-scale roughness. It
was assumed that each point of the surface
might be used as a standpoint.

Some algorithms were designed for gene-
rating special irregular standpoint sequen-
ces in case of overcoming obstacles.

The fourth-level algorithms formed body
motion for curve route under the above men-
tioned condition relative to the support
surface. Some cased of overcoming obstacles
were considered.

Fig. 5 presents an example of the walk-
er's locomotion along the curve route. The
vehicle moved at first along the rectilinear
segment AB. Then, at point it changed its
route and began walking along the circle of
the prescribed radius around the object lo-
cated inside the circle gpart BOB). At point
B the walker continued its previous route
(segment BD).

The tproblem of overcoming isolated ob-
stacles of some types was investigated. An
obstacle may be considered as an isolated
one when it is located on the support sur-
face all points of which might be used as
standpoints. For some obstacles it appears
undesirable or impossible to use points of
the support surface in the vicinity of the
obstacle due to geometrical restrictions
a?solciated with the neighbourhood of the ob-
stacle.

Some_types of isolated obstacles are
shown in Fig. One-parameter obstacle
"cleft" (Fig. 6a) is functionally equivalent
to the domain forbidden for standing the legs.
There are no geometrical restrictions in the
vicinity of the "cleft".

Two-parameter obstacle "boulder" (Fig.
6b), on the contrary, creates two restricted
spots close to it. The spot before the boul-
der is undesirable because of the possibili-
ty of contacting the boulder in the support
phase. The body of the boulder may make it
impossible to stand leg tip in the spot be-
hind the obstacle. It is permissible to
stand legs of the walker on the boulder; it
is even desirable.

The bottom of the three-parameter ob-
stacle "pit" (Fig. 6¢c) may be used to stand
legs on it except two spots near the walls.

It should be noted that "cleft", "boul-
der" and "pit" from the geometrical point of
view may be regarded as a combination of
more simple obstacles of the types "step-
in" and "step-down" (Fig. 6d, e). If the
longitudinal dimensions of the upper part
of the boulder or these of the pit bottom
are large enough, the boulder and the pit
may be interpreted as two separate isolated
obstacles of the "step" type. If the "steps"
are positioned rather close one after ano-
ther, there exists interference between
them, and it is, apparently, more reasonable
to treat such a combination as a special
type of obstacle with its own special method
of overcoming.



Some algorithms were designed for deci-
sion-making concerning the reasonable acti-
ons of the walker overcoming the obstacle.
It was assumed that all necessary informati-
on about the type and geometrical parameters
of the obstacle are available and may be
used by decision-making algorithm.

As to the methods of overcoming obsta-
cles, the basic principle was assumed that
the higher level might be involved only in
case of real need. For instance, if adapta-
tion to email scale obstacles can be made by
means of level "leg", this must be done. If
this appears impossible, the special stand-
point sequence and appropriate support sche-
dule must be generated. If necessary, the
special body motion has to be used.

The algorithms for overcoming the cleft-
type obstacle were designed in greater details
A special classification block estimated the
situation: standpoint sequence parameters,
cleft width and its position relative to the
walker. Depending on the situation analysis
results the following decisions about the
regime could be made:

1. Nothing has to be changes.

2. It is necessary to make longer one
stride before the cleft by chan in%; the po-
sition of two standpoints and shifting them
in such a way that one of them, the nearest
to the cleft, would be positioned on the
brink. The further development of standpoint
sequence may be regular, as before the cleft.

3. It is necessary to position four
standpoints on the brinks of the cleft (two
on each brink) and to rearrange some other
standpoints.

4. To apply regime 3 but to shift
standpoints on the brink closer to the axis
of the standpoint sequence.

5. The body of the walker must be low-
ered, and regime 4 must be applied.

The standpoint sequences in Fig. 7 cor-
respond to regime 2, while those in Fig. 8
correspond to regimes 4 and 5.

The regimes 1-5 are listed in order of
growth of their complicacy and their feasi-
bilities. According to the basic principle
the classification block tried to find out
subsequently the possibility to use regimes
1-5, beginning from regime |, and adopted
the first of them which provided successful
overcoming the cleft.

Such an approach is evidentlh/ appli-
cable to de3|%n|ng reasonable methods of
overcoming other types of obstacles. It
should be noted that for a pit rather deeg,
or for a boulder rather_high, or for an ob-
stacle like the one in Fig. 10 it may be ne-
cessary to tilt the body of the walker and
change its pitch angle in an appropriate way
as a function of time (Fig. 9, 10). It is
evident that when analysing the obstacle,
this re%ime, as the most complicated one,
has to be tested in the last turn.

Some problems connected with measure-
ments were investigated: measurement data
processing, obstacle identification, measu-
rement control.
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It was assumed that the measurement sys-
tem was able to estimate the distance between
the fixed point of the vehicle and the point
of intersection of the measuring beam and the
support surface. The direction of the beam
may be constant. When the vehicle walkes, the
beam slides over the terrain and measures its
profile. But this may be insufficient. The
angle between the beam and horizon must be
small enough for the vehicle could get ter-
rain relief information beforehand and has
possibility of planning its actions in a rea-
sonable way. On the other hand, it is clear
that for small beam-horizon angle rather long
zones after obstacles are inaccessible to re-
lief measurements. The increasing of the
beam-horizon angle diminishes the inaccessible
zones but diminishes simultaneously the dis-
tance between the vehicle and the measured
points of the terrain.

Under the circumstances it was reaso-
nable to control the beam direction for more
effective use of measurement system. One of
the adopted rules was as follows. All the
time when it is possible, some "small" beam-
horizon constant angle is used. This regime
is used as long as the size of inaccessible
zones is no more than a given value and each
zone can be "overstepped", i.e. overcomed
without placin? any standpoint inside the
zone. If not, the additional measurements
must be carried out when approaching nearer
to the obstacle. The measuring beam must be
inclined steeper to horizon.

If measuring results indicate that it
is Impossible to place standpoints inside the
zone after the obstacle in an appropriate
way, the further locomotion is excluded. If
appropriate placing the standpoints is pos-
sible, the walker uses these points for stan-
ding its legs and walks on.

The investigation carried out confirmed
that observing on the display screen the mo-
ving image of the vehicle walking on the ter-

rain is a verY effective method for testing
the control algorithms and estlmatln? their
properties. The motion picture made from the

CRT screen of the display unit gives an idea
of the walker control algorithms effective-
ness.
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Fig. 4. Support scheduling logics:
a) tripod gait, b) wave gait.

B

Fig. 5. 4n example of locomotion along
the curve route.
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