
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 5, MAY 2008 737

Algorithmic and Architectural Optimizations for
Computationally Efficient Particle Filtering
Aswin C. Sankaranarayanan, Student Member, IEEE, Ankur Srivastava, Member, IEEE, and

Rama Chellappa, Fellow, IEEE

Abstract—In this paper, we analyze the computational chal-
lenges in implementing particle filtering, especially to video
sequences. Particle filtering is a technique used for filtering non-
linear dynamical systems driven by non-Gaussian noise processes.
It has found widespread applications in detection, navigation,
and tracking problems. Although, in general, particle filtering
methods yield improved results, it is difficult to achieve real time
performance. In this paper, we analyze the computational draw-
backs of traditional particle filtering algorithms, and present a
method for implementing the particle filter using the Independent
Metropolis Hastings sampler, that is highly amenable to pipelined
implementations and parallelization. We analyze the implemen-
tations of the proposed algorithm, and, in particular, concentrate
on implementations that have minimum processing times. It is
shown that the design parameters for the fastest implementation
can be chosen by solving a set of convex programs. The proposed
computational methodology was verified using a cluster of PCs
for the application of visual tracking. We demonstrate a linear
speedup of the algorithm using the methodology proposed in the
paper.

Index Terms—Auxillary variable, design methodologies, Monte
Carlo Markov chain (MCMC), particle filter, resampling, visual
tracking.

I. INTRODUCTION

F ILTERING is the problem of estimation of an unknown
quantity, usually referred to as state, from a set of observa-

tions corrupted by noise, and has applications in a broad spec-
trum of real-life problems including GPS navigation, tracking,
etc. The specific nature of the estimation/filtering problem de-
pends greatly on the state we need to estimate, the evolution
of the state with time (if any) and the relation of this state to
the observations and the sources of noise. Generally, analyt-
ical solutions for estimation are possible in constrained and spe-
cial scenarios. For example, Kalman filtering [1] is an optimal
analytic filter when the models are linear and the corrupting

Manuscript received September 29, 2006; revised January 4, 2008. This work
was supported in part by the National Science Foundation-ITR Grant 03-24313
and in part by a Task order from ARL monitored by Alion Science. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Dr. Magdy Bayoumi.

A. C. Sankaranarayanan and R. Chellappa are with the Center for Automation
Research and the Electrical and Computer Engineering Department, Univer-
sity of Maryland, College Park MD 20742 USA (e-mail: aswch@cfar.umd.edu;
rama@cfar.umd.edu).

A. Srivastava is with the Electrical and Computer Engineering Department,
University of Maryland, College Park, MD 20742 USA (e-mail: ankurs@glue.
umd.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2008.920760

noise processes are Gaussian. For nonlinear systems driven by
non-Gaussian processes, the extended Kalman filter or the iter-
ated extended Kalman filter are used as approximations to the
optimal filtering scheme. Another popular tool for solving the
inference problems for nonlinear systems is particle filtering [2],
[3].

Particle filtering has been applied to a wide variety of
problems such as tracking, navigation, detection [4], [5] and
video-based object recognition. This generality of particle
filters comes from a sample (or particle) based approximation
of the posterior density of the state vector. This allows the filter
to handle both the nonlinearity of the system, as well as the
non-Gaussian nature of noise processes. However, the resulting
algorithm is computationally intensive and, hence, the need for
efficient implementations of the algorithm, tuned specifically
towards hardware- or multiprocessor-based implementations.

Many methods for algorithmic and hardware implementa-
tions of particle filtering have been proposed in the literature.
The authors of [6] identify resampling algorithms as the main
computational step in the algorithm that is completely indepen-
dent of the underlying application. They also propose new re-
sampling algorithms that reduce the complexity of hardware im-
plementations. Architectures for efficient distributed pipelined
implementations using FPGAs have been proposed in [7]. A de-
tailed analysis of the basic problem, addressing many hardware
and software issues, can also be found in [8] and [9].

The resampling algorithms presented in the above references
are modifications of the basic systematic resampling algorithm
presented in [10], which, by itself, creates bottlenecks in a
streamlined implementation. In [11], the authors propose a
methodology to overcome this limitation by rederiving the
basic theory, with an alternate resampling algorithm which is
similar to the Monte Carlo Markov chain (MCMC) tracker for
interacting targets in video presented in [12]. There have been a
number of resampling schemes that have been proposed in the
literature. Liu and Chen [13] list and compare a number of such
schemes. Of sufficient interest and relevance are the so-called
local Monte Carlo methods that are described in [13].

A. Motivation

Specifically, this paper analyzes the computational challenges
in the implementations of particle filters, and provides a general
design methodology for particle filtering using pipelining and
parallelization; these are constructs that are commonly used in
both hardware and multiprocessor-based systems.

Particle filtering involves three main modules: proposition,
weight evaluation, and resampling modules. Standard imple-
mentations of particle filtering typically use what is commonly

1057-7149/$25.00 © 2008 IEEE

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 30, 2008 at 17:45 from IEEE Xplore. Restrictions apply.

738 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 5, MAY 2008

known as systematic resampling (SR). Systematic resampling
poses a significant challenge for pipelined implementations as it
can only begin when all the weights are computed at the weight
computation stage, and the cumulative sum of the weights is
available. This means that any pipelined implementation would
start the resampling only after all the weights are computed. This
increases the latency of the whole implementations.

In this paper, we present algorithmic and implementation
schemes for particle filters for speeding up the basic com-
putations, thereby making particle filtering-based solutions
amenable to real time constraints. We demonstrate a com-
putational methodology where the need for the knowledge
of cumulative sum of weights is removed. This implies that,
in contrast to traditional particle filtering implementation,
the proposed approach does not suffer any bottlenecks in
pipelining. Further, this allows us to speedup the filter and
reduce its latency through pipelining and parallelization. We
further demonstrate the performance of these implementations
using a cluster of PCs. This allows us to achieve speedups that
are linear in the number of cluster nodes.

B. Specific Contributions

This paper address the computational challenges in hardware
and multiprocessor implementations of particle filters. In this
regard, we make the following contributions.

1) Algorithmic Enhancements: In order to avoid the SR
step, we propose the use of the independent Metropolis
Hastings algorithm (MHA) [14] for resampling. We show
that this algorithmic modification is much more amenable
to pipelining and parallelization.

2) Auxiliary Particle filtering: Further, we show that many
of the problems associated with the proposed methodology
can be further reduced with the use of auxiliary particle
filters [15]. This allows for complete freedom in the choice
of proposal density, which could be an important design
issue.

3) Minimum Time Implementations: We present pipeline-
able and parallel architectures for implementing the pro-
posed algorithm. We formulate a set of convex programs
for obtaining the design specification of the fastest imple-
mentation of the algorithm. We also prove that given a con-
straint on the execution speed of the algorithm, the min-
imum resources required for the implementation can be
formulated as a convex program.

4) We analyze the pipelining and parallelizability of the pro-
posed implementation using a cluster of PCs for tracking a
vehicle in a video stream. We achieve speedups in compu-
tation that are linear in the number of cluster nodes.

The rest of the paper is organized as follows. We first present
the traditional particle filtering algorithm in Section II. In Sec-
tion III, we present the MCMC sampling theory and use it to
propose a computational methodology in Section IV. Section V
analyzes the implementations using the proposed methodology.
Finally, in Section VI, we demonstrate the performance of the
proposed implementations for the problem of tracking in videos
using a cluster of PCs.

II. PARTICLE FILTERING

In particle filtering, we address the problem of Bayesian in-
ference for dynamical systems. Let and denote
the state space and the observation space of the system respec-
tively. Let denote the state at time , and the
noisy observation at time . We model the state sequence
as a Markovian random process. Further we assume that the ob-
servations to be conditionally independent given the state
sequence. Under these assumptions, the system is completely
characterized by the following.

• : The state transition probability density func-
tion, describing the evolution of the system from time
to . Alternatively, the same could be described with a state
transition model of the form , where
is a noise process.

• : Observation likelihood density, describing the
conditional likelihood of observation given state. As be-
fore, this relationship could be in the form of an observa-
tion model where is a noise process in-
dependent of .

• : The prior state probability at .
Given statistical descriptions of the models and noisy obser-

vations, we are interested in making inferences about the state of
the system at current time. Specifically, given the observations
till time , we would like to estimate the
posterior density function . With the posterior,
we aim to make inferences of the form

(1)

where is some function of interest. An example of such an
inference could be the conditional mean, where .

Under Markovian assumption on the state space dynamics
and conditional independence assumption on the observation
model, the posterior probability is recursively estimated using
the Bayes Theorem

(2)

Note that there are no unknowns in (2) since all terms are ei-
ther specified or computable from the posterior at the previous
time step. The problem is that this computation (including the
integrations) need not have an analytical representation. How-
ever, foregoing the requirement for an analytic solution, particle
filtering approximates the posterior with a discrete set of par-

ticles or samples with associated weights

suitably normalized so that . The approximation
for the posterior density is given by

(3)

where is the Dirac Delta function centered at . The set

is the weighted particle set that represents

the posterior density at time , and is estimated recursively from
. The initial particle set is obtained from sampling the

prior density .

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 30, 2008 at 17:45 from IEEE Xplore. Restrictions apply.

SANKARANARAYANAN et al.: ALGORITHMIC AND ARCHITECTURAL OPTIMIZATIONS FOR COMPUTATIONALLY EFFICIENT PARTICLE FILTERING 739

We first discuss the so called importance function
, an easy to sample function whose support

encompasses that of . The estimation of , as defined in
(1) can be recast as follows:

(4)

where is defined as the so called importance weight

(5)

Particle filters sequentially generate from using the
following steps.

1) Importance Sampling: Sample ,
. This step is also called the proposal step

and is sometimes called the proposal density.
2) Computing Importance Weights: Compute the unnor-

malized importance weights

(6)

3) Normalize Weights: Obtain the normalized weights

(7)

4) Inference Estimation: An estimate of the inference
is given by

(8)

This sequence is performed for each time iteration to get the
posterior at each time step. A basic problem that the above algo-
rithm suffers from is that, after a few time steps, all importance
weights except a few go to zero. These weights will remain to
be zero for all future time instants [as a result of (6)], and do not
contribute to the estimation of . Practically, this degen-
eracy is undesirable and is a waste of computational resource.
This is avoided with the introduction of a resampling step. Re-
sampling essentially replicates particles with higher weights and
eliminates those with low weights. This can be done in many
ways; [2], [10], and [16] list many resampling algorithms. The
most popular one, originally proposed in [2], samples par-
ticles from the set (samples generated after proposal)

according to the multinomial distribution with parameters
to get a new set of particles . The next iteration uses this
new set for sequential estimation. We discuss some additional
sampling algorithms in Section II-B.

A. Choice of Importance Function

Crucial to the performance of the filter, is the choice of
the importance function . Ideally, the impor-

tance function should be close to the posterior. If we choose
, then we would obtain the

importance weights identically equal to 1 and the variance
of the weights would be zero. For most applications, this
density function is not easy to sample from. This is largely
due to the nonlinearities in the state transition and observation
models. One popular choice is to use the state transition den-
sity as the importance function. In this case, the
importance weights are given by

(9)

Other choices include using cleverly constructed approxima-
tions to the posterior density [17].

B. Resampling Algorithms

In the particle filtering algorithm, the resampling step was
introduced to address degeneracies resulting due to the impor-
tance weights getting skewed. Among resampling algorithms,
the SR technique is popularly used. The basic steps of SR [16]
are recounted as follows.

• For :

1) Sample , such that , for
some choice of .

2) The new particle and the associated weight is
.

• The resampled particle set is .

If , the resampling scheme is the one used in [2].
Other choices are discussed in [16].

Particle filtering algorithms that use sequential importance
sampling (SIS) and SR are collectively called SISR algorithms.
Computationally, SR is a tricky step, as it requires the knowl-
edge of the normalized weights. Resampling based on SR cannot
start until all the particles are generated and the value of the
cumulative sum is known. This is the basic limitation that we
overcome by proposing alternative techniques.

III. INDEPENDENT METROPOLIS HASTINGS ALGORITHM

In this section, we introduce Monte Carlo sampling tech-
niques, discuss in detail the MHA and its derivative, the inde-
pendent Metropolis Hastings algorithm (IMHA) [14]. Further,
we “redesign” the basic particle filtering algorithm using these
techniques for sampling.

Particle filtering is a special case of more general MCMC-
based density sampling techniques, specifically suited for dy-
namical systems. The MHA [18], [19] is considered the most
general MCMC-based sampling. Popular samplers such as the
Metropolis sampler [20] or the Gibbs sampler [21] are special
cases of this algorithm.

The MHA and the particle filter both address the issue of
generating samples from a distribution whose functional form
is known (upto a normalizing factor) and is difficult to sample.
In this section, we present a hybrid sampler that uses the sam-
pling methodologies adopted in MCMC samplers (specifically,

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 30, 2008 at 17:45 from IEEE Xplore. Restrictions apply.

740 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 5, MAY 2008

the MHA algorithm) for the problem of estimating posterior
density functions. We later show that such a scheme is com-
putationally more favorable than systematic resampling.

A. Metropolis Hastings Algorithm

We first present the general theory of MCMC sampling using
the MHA algorithm and then state the conditions under which
the general theory fits into the particle filtering algorithm pre-
sented before. The MHA generates samples from the desired
density (say) by generating samples from an easy
to sample proposal distribution, say , , .
MHA produces a sequence of states , which by
construction is Markovian in nature, through the following iter-
ations.

1) Initialize the chain with an arbitrary value . Here,
could be user specified.

2) Given , generate , where is the
sampling or proposal function.

3) Accept with probability as defined as follows:

(10)

That is, for a uniform random variable

if
otherwise.

(11)

Under mild regularity conditions, it can be shown that the
Markov chain as constructed by the MHA converges and
has as its invariant distribution, independent of the value

chosen to initialize the chain [14].
The MHA is used to generate a MCMC whose invariant dis-

tribution is the distribution . However, there is an initial
phase when the chain is said to be in a transient state, due to
the effects of the initial value chosen. However, after suf-
ficient samples, the effect of the starting value diminishes and
can be ignored. The time during which the chain is in a transient
state is referred to as burn-in period. This is usually dependent
on both the desired function , the proposal function
and most importantly, on the initial state . In most cases, an
estimation of this burn-in period is very difficult. It is usually
easier to make a conservative guess of what it could be. There
are heuristics that estimate the number of burn-in samples (say

). Samples that are in the burn-in period are discarded.

B. Independent Metropolis Hastings Algorithm

The IMHA is a special case of the general MHA where the
proposal function is set as . This makes the pro-
posal function independent of the previously accepted sample
in the chain. This would mean that the acceptance probability
(10) of a proposal with the chain at

(12)

The IMH algorithm has strong convergence properties. Under
mild regularity conditions, it has been shown to converge at a
uniform rate independent of the value used to initialize the
chain. A study of such convergence properties can be found in
[14] and [22].

Both IMHA and SISR are algorithms designed to generate
samples according to a probability density function, with the
SISR suited specifically to the sequential nature of dynamical
systems. In this regard, the key difference between the IMHA
and the SISR algorithm lies in the fact that the SISR algorithm
requires the knowledge of cumulative sum of weights [the term

in (7)]. This is important as the cumulative sum can
only be computed when the weights corresponding to the whole
particle set is known. Hence, SR can only begin after all parti-
cles are generated and their weights are computed. In contrast,
the IMHA poses no such bottlenecks. In Section IV, we exploit
this property to design a filter that does not suffer from the bot-
tlenecks introduced by SR.

IV. PROPOSED METHODOLOGY

The bottlenecks introduced by the SR technique can be over-
come by using the IMHA for resampling. However, there are
some basic issues that needs to be resolved before we achieve
this. To begin with, the generation of particles using importance
sampling works differently for the two algorithms. Particle
filtering allows for the importance function to be defined lo-
cally for each particle. Mathematically, the th particle at time

is generated from an importance function, represented as
, parametrized by . This poses a problem in

the application of IMHA to estimate the posterior, because the
concept of importance functions associated with each particle
does not extend to IMHA. In contrast, the MHA algorithm
requires the importance function to depend functionally only
on the last accepted sample in the chain, and in the case of the
IMHA, the importance function remains the same.

Given a set of unweighted samples sam-

pled from the posterior density at time , we
can approximate the posterior by

(13)

where is the Dirac delta function on . Using (2)
and (13), we can approximate the posterior at time

(14)

Sampling from this density can be performed using MHA
or IMHA. The issue of choice of importance function now
arises. The importance function typically reflects and exploits
the knowledge of application domain or could be a clever ap-
proximation to the posterior. For this reason, we would like to
reuse the importance function corresponding to the underlying
model.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 30, 2008 at 17:45 from IEEE Xplore. Restrictions apply.

SANKARANARAYANAN et al.: ALGORITHMIC AND ARCHITECTURAL OPTIMIZATIONS FOR COMPUTATIONALLY EFFICIENT PARTICLE FILTERING 741

Keeping this in mind, we propose a new importance function
of the form

(15)

Note that qualifies to be an importance function
for use in IMHA, given its dependence on only one state
variable. To sample from , we need to first sample

, and then sample from . The
sampling of can be done deterministically given the ease of
sampling from uniform densities over finite discrete spaces.
Finally, although the new importance function is functionally
different from the one used in the SISR algorithm, the generated
particles will be identical.

The overall algorithm proceeds similar to IMHA. We first
propose particles using the new importance function .
The acceptance probability now takes the form

(16)

(17)

Further, if the choice of the importance function were
the same as the state transition model, i.e,

, then the acceptance probability becomes a ratio of
likelihoods

(18)

We can now avoid the systematic resampling of traditional
particle filtering algorithms. The intuition is that we will use
IMHA to generate unweighted particle set/stream from the de-
sired posterior.

As before, we have an unweighted particle set , that
contains particles approximating the posterior at time ,

. We aim to estimate an approximation to the pos-
terior at time . As before, the algorithm is initialized with
containing samples from the prior . The main steps are
stated as follows.

• Importance Sampling (step 1): Generate
indices uniformly from the set

, where is an estimate of the burn in period
and is the number of particles required. between
with uniform density.

• Importance Sampling (step 2): From the particle set
at time , propose

particles to form the set
using the rule

(19)

• Compute Importance Weights: For each particle in ,
evaluate the importance weights , for each using (17).

• Inference: Estimate the expected value of functions of
interest. Compute

(20)

Note that samples discarded during burn-in can still be used
in the computation of (20) as the unnormalized particle set

is still properly weighted
(when normalized) [23].

• MCMC Sampler: Use the IMH sampler to parse through
the set , to generate a new unweighted set of particles using
the following steps.

1) Initialize the chain with the first particle
proposed.

2) For

with prob.

with prob.
(21)

where is the acceptance probability as defined in (10).

Discarding the first samples for burn in, the remaining
samples form , the

approximation of .

We can now compare the algorithm given above with the clas-
sical SISR discussed in Section II. Note that the SISR algorithm
involves a weight normalization step (7). However, the proposed
algorithm works with ratios of unnormalized weights and re-
quires no such normalization. This allows for the following ad-
vantages in the proposed methodology.

• The IMH sampler works with ratios of importance weights.
This obviates the need for knowledge of normalized impor-
tance weights, as we can work with unnormalized weights.
This allows the IMH sampler to start parsing through the
particles as they are generated, and not wait for the en-
tire particle set to be generated and the importance weights
computed.

• In contrast, in SISR, the resampling can begin only when
all particles are generated and the cumulative sum or nor-
malized weights are known.

The ability to resample particles as they are generated allows for
faster implementations. This is analyzed further in Section V.

A. Drawbacks of the Proposed Framework

The proposed framework overcomes the drawbacks of the
SISR algorithm by adopting an MCMC sampling strategy as op-
posed to the traditional SR technique. However, the new frame-
work does introduce extra computations that add to increased
overall complexity. We discuss these drawbacks and an alter-
nate formulation that can circumvent this issue.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 30, 2008 at 17:45 from IEEE Xplore. Restrictions apply.

742 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 5, MAY 2008

Consider the expression for weight computation, given
in (17). The expression involves computing the summations

and , which require ad-
ditional computation time. The computation of both terms does
not present a severe bottleneck, as it can be easily pipelined.
Further, when the proposal density matches the state transition
model, the terms cancel each other out.

Nonetheless, it is possible to circumvent this problem using
the auxiliary particle filtering paradigm [3], [15].

B. Auxiliary Particle Filters

Auxiliary particle filtering refers to techniques that extend the
state space of the problem to include a particle index. Consider
the new state space , where denotes the
particle index. The posterior is defined as

(22)

Marginalizing (22) over the state gives the expression in
(14) for .

Let us further assume that we sample the joint space using
a proposal , i.e, . The
unnormalized weights can be constructed as

(23)

As before, we can resample using an MCMC chain, and the
expression for acceptance probability equals the ratio of unnor-
malized weights as given in (10). At the inference step, we first
marginalize across the particle index state . However, it is easy
to see that the marginalization is identical to discarding the par-
ticle index information at each particle, given the nature of the
particle-based representation of the underlying density. In a nut-
shell, the use of auxiliary variable allows us to completely avoid
the summation of (17) and the associated computational cost.

Finally, there exist many choices for the proposal density in
the extended state space. A discussion on this can be found in
[15].

V. IMPLEMENTATION BASED ON PROPOSED METHODOLOGY

In this section, we present approaches for implementing the
theory presented in Section III. We assume that the basic compu-
tational blocks for importance sampling, computation of impor-
tance weight and parsing of particles as per the IMH algorithm
are available. We use these blocks to propose three implementa-
tions: a sequential implementation and two parallel implemen-
tations.

A. Sequential Implementation

Fig. 1 illustrates a straight-forward implementation of the
proposed algorithm. It consists of the following blocks.

Proposal Block: The proposal block takes , the parti-
cles from the previous time step and proposes new particles

Fig. 1. Sequential implementation.

(one particle at a time) by sampling the proposal func-
tion. For the IMHA-based algorithm, this amounts to gen-
erating a uniform number to ran-

domly pick one particle from , say . The par-

ticle is obtained from sampling . We as-
sume that this block proposes particle one at a time. When
we use the auxiliary variable framework, this involves sam-
pling both the state and the associated particle index
state from a proposal function .
Weight Calculator: This block is an implementation of
(17) [or (23) when we use auxiliary variables].
IMH Chain: This block implements (16) such that the
acceptance probability is calculated for the new par-
ticle and the previously accepted particle. Further, an uni-
form random-number is generated and if it
is smaller than then the new particle is retained in ,
else the last accepted particle in the chain is replicated once
more.
Inference Estimation Block: This block estimates the in-
ference function (1). The computation can be performed
in parallel with the IMH chain, and has no effect on the
overall computation.

The characteristics of this basic implementation are as fol-
lows.

• Sequential Processing of Particles: Each block in the
implementation processes one particle at a time. So, to
process particles, each block needs to run times. Note
that, if we need to generate particles to represent the pos-
terior density, then we will have to iterate times
where is the burn-in period. The last particles in the
IMH chain is the sample set .

• Pipelining: By pipelining the blocks, processing in each
block can be made to overlap in time, leading to an overall
increase in the throughput of the system.

• Computation Time: We now estimate the time required
to process particles under this implementa-
tion. Let us suppose that the target application is such that
the proposal block can generate one particle every time
units. The weight computation block generates the weight
of a particle in time units, and the IMH chain process
particles once in every time units. Further, we assume
that the overall time required to process is not constrained
by the inference block (and, therefore, ignored in this anal-
ysis). Under this setting, we can compute the total time re-
quired to process particles.

The implementation in Fig. 1 will take time
units to produce the first particle . Thereafter, it will be
able to produce one particle every time units.
The total latency for generating particles would be

time units.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 30, 2008 at 17:45 from IEEE Xplore. Restrictions apply.

SANKARANARAYANAN et al.: ALGORITHMIC AND ARCHITECTURAL OPTIMIZATIONS FOR COMPUTATIONALLY EFFICIENT PARTICLE FILTERING 743

Fig. 2. Parallel implementation with a single IMH chain.

This basic sequential implementation can be made faster by
replicating the proposal, weight computation and the IMH chain
blocks. In order to exploit the parallelism in processing of parti-
cles, we present a refinement of the sequential implementation.

B. Parallel Implementation: Single Chain

Fig. 2 illustrates the parallel implementation of the proposed
algorithm. We still retain a single IMH Chain, though the pro-
posal and the weight computation blocks are replicated. Having
multiple IMH chains introduces additional issues involving
burn-in in each chain. For this reason, we first restrict ourselves
to single chain implementations. We relax this restriction later
in Section V-C. Let the number of proposal blocks be and
the number of weight computation blocks be . We would
like to compute the total time required to process particles as
a function of and (and the latency of the blocks , ,
and). Further, we would like to choose specific values of
and to achieve the smallest total processing time.

The total computational time is determined by bottlenecks in
processing created due to differing rates of processing of parti-
cles at each stage. The rate at which the proposal blocks process
particles is , the weight computation blocks at
and the IMHA blocks at . The total computational time
is predominantly dependent on which of the three rates is the
smallest.

1) Case A: : In this scenario, the
proposal blocks have the smallest rate of processing, followed
by the weight computation blocks. Suppose we need to process

particles, then the proposal blocks by themselves will need
time units to process all particles. The weight com-

putation and IMHA processing happen in parallel. Given the
quicker processing rate at both weight computation and IMHA,
by the time the last set of particles is processed at the pro-
posal blocks, all earlier particles have already been processed
through the weight computation blocks. The amount of time re-
quired to process the last set of particles at the weight com-
putation blocks and the IMHA block is .
Allowing and to take values over the real line (and not
just positive integers) the total time for processing is

(24)

We are now interested in computing the values of and
that minimize , keeping in mind that such solutions must sat-
isfy the assumptions of Case A. To begin with, we note that both

and take positive values. This allows a natural change of

coordinate frames of the form

(25)

In terms of and , the expression for can be written as

(26)

The constraints for the minimization come from the assump-
tions made on the ordering of the rates in Case A

(27)

Finally, and are naturally bounded by the value of .
This leads a convex optimization problem with inequality con-
straints stated as

(28)

(29)

We now note that the expression for is convex in both
and . Further, the inequality constraint is also convex in
and . One can use a host of techniques [24] designed

specifically for convex optimization.
2) Case B: , : Using a line

of reasoning identical to Case A, we can derive an expression
for the amount of time needed to process particles, as a
function of and

(30)

We note that a value of greater than is impractical
leading to a constraint on of the form . As before,
we can recast the set of equations in terms of and [as
defined in (25)] to get the cost and constraint equations

(31)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 30, 2008 at 17:45 from IEEE Xplore. Restrictions apply.

744 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 5, MAY 2008

TABLE I
EXPRESSIONS FOR TOTAL TIME TAKEN TO PROCESS Q PARTICLES FOR BOTTLENECKS AT VARIOUS STAGES IN THE PIPELINE

(32)

Both the cost function and the inequality constraints are convex
in and .

3) Case C: : In Case C, the main
bottleneck is in the proposal block, followed by the IMH chain.
Accordingly, the total time for processing of particles is

(33)

Using the transformation of variables in (25), we can write down
expressions for both the cost and the constraints

(34)

(35)

As before, both the cost and the inequality constraints are
convex over and .

4) Case D: : The final
scenario is when the main bottleneck is at the IMH chain. The
expression for total time is given as

(36)

is not dependent on the choice of and . So, the whole
feasibility set forms the solution set when we optimize for min-
imum processing time. For completeness, we again formulate it
as a convex program with the following cost and constraints:

(37)

(38)

As stated above, in Case D, all points in the feasible set form
the solution set.

Depending on the exact location of the bottleneck, it is pos-
sible to have upto six different scenarios. However, some of

these scenarios collapse to identical expressions for the total
cost leading to the four cases A through D discussed above. The
expressions for the cost and the associated constraints are sum-
marized in Table I. We note that each case results in a convex
cost function and convex inequality constraints. This allows us
to design an algorithm for determining the global minima for
total computation time for processing particles given values
of , , and .

1) Given values of and , formulate FOUR convex
programs associated with the four cases illustrated in Table I.

2) Solve each convex program to obtain minimum times
and associated values of and .

3) Choose the configuration that gives the least total processing
time.

The above algorithm allows us to obtain design specifica-
tions with minimum processing time given values of , ,

, and . Note that the basic computation tools used are op-
timization techniques for convex programs. Convex optimiza-
tion is a well studied problem, and there are techniques that
solve convex programs very efficiently and reliably [24]. Fur-
ther, convex programs have very desirable properties with re-
spect to local minima. All local minima are also global minima,
and further the set of all local (global) minima form a convex
set themselves. Finally, we note that analytic solutions to the
convex program are highly dependent on the individual values
of , , , and .

It is possible that the four convex program may not have
unique solutions. Ambiguity in choice of and over the
solution set can be resolved, if we have additional considera-
tions such as resource or energy constraints. It is noted that the
set of all solutions to a convex program is also convex [24]. This
property could be effectively used to design alternate cost func-
tions to resolve the ambiguity in the choice of and .

C. Parallel Implementation: Multiple Chains

Fig. 3 shows a parallel implementation of the proposed al-
gorithm with multiple IMH chains. The implementation basi-
cally replicates the structure proposed in Fig. 2 multiple times.
This implementation gives speedup proportional to the number
of IMH chains.

Let be the number of IMH chains. Under this implemen-
tation, to generate a set with particles, each chain would

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 30, 2008 at 17:45 from IEEE Xplore. Restrictions apply.

SANKARANARAYANAN et al.: ALGORITHMIC AND ARCHITECTURAL OPTIMIZATIONS FOR COMPUTATIONALLY EFFICIENT PARTICLE FILTERING 745

Fig. 3. Parallel implementation with multiple IMH chains.

need to generate only particles, excluding that required for
burn in, leading to a total of particles at each IMH
chain. Hence, the time required for obtaining an -particle set
is equal to the time required to process particles
in the implementation as per Fig. 2. With this, we can easily
compute the total time required to generate for different sce-
narios using the same analysis as before, and restricting the total
number of particles per IMH chain to .

VI. EXPERIMENTAL VERIFICATION

The design methodologies proposed in this paper were ver-
ified for two applications: a synthetic example originally dis-
cussed in [2] and for the problem of visual tracking. The testbed
was the UMIACS red/blue cluster. The red cluster consists of 16
PII (400 MHz) PCs running Redhat 7.3, with each PC having a
RAM of 1GB. The blue cluster consists of 12 PIII (550 Mhz).
We used MPICH [25], [26], an implementation of the message
passing interface (MPI) for communication between threads.

We chose to implement over a multiprocessor cluster frame-
work as the underlying theory applies both to hardware-based
design as well as to clusters. In general, MPI has large over-
heads; however, such overheads are common and identical to
both SISR, as well as the MCMC-based schemes. The conclu-
sions from our experimental observations still remain the same.

Further, as mentioned earlier, computation of the burn-in pe-
riod is a hard problem by itself. However, in sequential estima-
tion, the proposal density is in general a good guess of the pos-
terior. In such cases, the adverse effects of burn-in period are
reduced. For the experiments below, we set .

A. Visual Tracking

We implemented the particle filter-based online tracking al-
gorithm presented in [27] using the red cluster. We discuss the
finer details of the filter and its implementation below.

1) Model Details: We first summarize the tracking algo-
rithm, detailing its computational aspects. A typical tracking
example in shown in Fig. 4. The models defining the dynam-
ical system is described as follows.

• State Space: The state is a 6-D vector
defining affine deformations of a rectangular template.

• State Transition Model: A simple random walk model
with Gaussian noise is used to model the state transition

(39)

• Observation Model: The frame of the video at time
forms the observation. The likelihood model in-
volves comparing the appearance model suitably de-
formed by the state with the observation . The appear-
ance model employs a mixtures of Gaussians with three
mixtures to model the appearance. Each value of de-
fines a patch (parallelogram shaped) on the image . Let

be the patch defined by over . Then

(40)

• Proposal Density: The algorithm uses the proposal den-
sity to be the same as the state transition model.

2) Implementation Details: An estimate of , , and
was first obtained by running each block over a single PC many
times over and averaging the individual runs.

• s, ms, s.
With this, we can see that the main computational bottleneck

for this particular application is the evaluation of weights. The
weight computation has an unusually large latency, primarily
because it involves retrieval from the memory. Given a par-
ticle, to compute the weight we need to first obtain the template

. This involves retrieval of elements from
the memory (containing the current frame). Further, the evalua-
tion involves evaluation of the mixture of Gaussian,
which is far more complicated than the simple proposal and
the IMHA blocks. For this reason, we fixed
and analyzed the performance of the architecture for various
values of . The implementation of the proposed method-
ology over the cluster was as follows. Each block (as shown
in Fig. 3) was assigned a cluster node for itself, i.e, a total of

cluster nodes were employed, with of them
performing particle proposal, of them computing weights
and , the IMH chains. Communication between these PCs
was performed using MPICH libraries. Holding the values of

and at unity , the tracker was tested for
varying number of weight computation blocks.

For comparison purposes, we also implemented traditional
SISR with the same specifications as the proposed methodology.
The main difference was that the node that performed resam-
pling would now wait till all particles are delivered from the
weight computation blocks before starting the SR algorithm.

3) Results: The algorithm was used to process 20 frames of
a video sequence, tracking a car. Fig. 4 shows typical tracking
results. The filter was run with 840 and 1680 particles, with the
number of cluster nodes for weight computation varying
from 1 to 6. corresponds to the sequential implemen-
tation, and corresponds to the parallel implementation
with a single chain. Under the same setup, we tried an imple-
mentation of SISR, replacing the IMH Chain with a systematic
resampler. The main difference between the algorithms is that
the systematic resampler could begin only when all particles
were processed and the normalized weights are known.

Fig. 5(a) shows the actual time taken (in seconds) to process
20 frames of video, with 840/1680 particles for the proposed
algorithm and SISR. Note the -like decay exhibited by
the time taken by the proposed algorithm. Fig. 5(b) shows
the speedup of each algorithm when we add more and more
computing nodes. The -like behavior now translates to

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 30, 2008 at 17:45 from IEEE Xplore. Restrictions apply.

746 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 5, MAY 2008

Fig. 4. Frames 1, 4, 8, 12, 16, and 20 of the tested set. The output of the tracker is inlaid on top.

a linear increase in speedup with the number of processing
nodes. The two plots demonstrate the pipelinability of the
proposed algorithm. It can be seen that the speedup tapers-off
as number of cluster nodes increases. This is attributed to
increasing communication delays between the nodes. There
are no standard models for communication delays when using
MPICH. As we use more and more processors, interprocessor
communication becomes the dominant source of delay, and
further parallelization does not help.

B. Synthetic Example

We applied the design methodology and implementation
strategies proposed in this paper for a synthetic example. The
problem specifications were first introduced in [2]. The system
has a scalar state space, i.e, . The state transition model
is defined by

(41)
The observation model is given by the equation

(42)

We could then estimate the times to be in the
proportion 19.2:1:7. For filtering with particles, we
can now formulate and solve the four convex programs. The
convex programs were solved using the Matlab’s optimization
toolbox. The constraints that are active (the constraints that are
satisfied with equality at a feasible point are called active) at
the minima were noted to give a qualitative interpretation to the
result.

Case A: Minimum is achieved with the following two ac-
tive constraints:

(43)

Note that this is the rate balancing condition. The corre-
sponding minimum time is

(44)

Case B: Again, the minimum is achieved at the boundary
with the same active constraints

(45)

This gives us a minimum time of

(46)

Case C: Note that the cost function is independent of
. The minimum is achieved at the following active

constraint:

(47)

giving a minimum time

(48)

Case D: The cost function is constant over the feasible set.
Hence, the minimum time is

(49)

It turns out that all four convex program give the same min-
imum time, and this also corresponds to the solution given when
the rates are balanced as in (43). This is interesting as balanced
rates have an intuitive appeal.

We implemented three filters and tested them on the Red and
Blue clusters. The first two filters were those using SISR and
IMH for resampling, with the proposal density, being same as
the state transition model. The third filter was based on auxil-
iary particles, with a complicated proposal density defined as
follows:

where

(50)

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 30, 2008 at 17:45 from IEEE Xplore. Restrictions apply.

SANKARANARAYANAN et al.: ALGORITHMIC AND ARCHITECTURAL OPTIMIZATIONS FOR COMPUTATIONALLY EFFICIENT PARTICLE FILTERING 747

Fig. 5. (Left) Actual time (in seconds) taken to process 20 frames, with a filter of 840 particles, with varying number ofR . (Right) Speedup obtained by replication
of the weight computation node. Note the linear speedup obtained with the proposed algorithm. (a) Timing. (b) Speedup.

Fig. 6. Timing and speedup over the synthetic example. Saturation occurs afterR = 3 because of the shift of the bottleneck from the proposal block to the IMH
sampler. (a) Timing (red cluster). (b) Timing (blue cluster). (c) Speedup.

This particular proposal density samples the auxiliary state
randomly, and mixes the observation with the predicted state to
concentrate more particles near the posterior modes.

Fig. 6 shows the actual time for computation and the achieved
speedup with parallelization for the three filters, tested on both
clusters. We tested the algorithm for varying as the bottleneck
is initially in the proposal stage. However, for

, the bottleneck shifts to the IMH sampler and further increase
in the value of does not produce any significant gains in the
overall processing time. This is reflected in the saturation of the
plots associated with the proposed algorithm (IMH) in Fig. 6. In
contrast, inSISRtheresamplingbeginsonlywhenall theparticles
are generated. The overall time for processing does not scale as
well. Finally, auxiliary particle filtering scales linearly with the
number of processing nodes, and offers the best speedup.

The resampling method and the associated implementation
schemes proposed in the paper allows for a pipeline that is free
of bottlenecks. Further, implementations using the proposed
methodologies show a speedups that increases linearly with
the number of processing nodes utilized. This allows for us to
parallelize the algorithm to achieve the desired runtime rate.
In contrast, implementations based on SISR do not scale that
easily with the number of the processing nodes used.

VII. CONCLUSION

In this paper, we address the computational challenges in im-
plementing particle filters. We provide a methodology that uses

the Independent Metropolis Hastings sampler. It is shown that
the traditional bottleneck introduced by the systematic resam-
pler is removed. This allows for a bottleneck-free pipelined im-
plementation. The proposed algorithm works independent of the
underlying application. Further, by using the auxiliary filter par-
adigm, we obtain an alternate design that does not suffer (in
complexity) in the presence of arbitrary proposal function. Fi-
nally, a set of convex programs is used to compute the design
specifications in terms of resources employed in each stage of
processing to achieve the minimum time required to process a
certain number of particles. We validate our propositions using
a cluster of PCs for the problem of visual tracking and show that
implementations of the proposed methodology achieve speedup
that is linear with the number of processing elements.

REFERENCES

[1] R. E. Kalman, “A new approach to linear filtering and prediction prob-
lems,” Trans. ASME J. Basic Eng., vol. 82, 1960.

[2] N. Gordon, D. Salmon, and A. Smith, “Novel approach to non-
linear/non-Gaussian Bayesian state estimation,” Proc. Inst. Elect. Eng.
F, Radar Signal Process., vol. 140, pp. 107–113, 1993.

[3] A. Doucet, N. Freitas, and N. Gordon, Sequential Monte Carlo Methods
in Practice. New York: Springer-Verlag, 2001.

[4] M. Isard and A. Blake, “Contour tracking by stochastic propagation of
conditional density,” in Proc. Eur. Conf. Computer Vision, 1996, pp.
343–356.

[5] Q. Gang and R. Chellappa, “Structure from motion using sequential
Monte Carlo methods,” Int. J. Comput. Vis., vol. 50, no. 1, pp. 5–31,
2004.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 30, 2008 at 17:45 from IEEE Xplore. Restrictions apply.

748 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 5, MAY 2008

[6] M. Bolic, P. M. Djuric, and S. Hong, “Resampling algorithms for
particle filters: A computational complexity perspective,” EURASIP J.
Appl. Signal Process., no. 15, pp. 2267–2277, 2004.

[7] M. Bolic, P. M. Djuric, and S. Hong, “Resampling algorithms and ar-
chitectures for distributed particle filters,” IEEE Trans. Signal Process.,
vol. 53, no. 7, pp. 2442–2450, Jul. 2005.

[8] M. Bolic, “Architectures for efficient implementation of particle
filters,” Ph.D. dissertation, Dept. Elect. Eng., State Univ. New York,
Stony Brook, 2004.

[9] A. Athalye, M. Bolic, S. Hong, and P. M. Djuric, “Generic hardware
architectures for sampling and resampling in particle filters,” EURASIP
J. Appl. Signal Process., vol. 17, pp. 2888–2902, 2005.

[10] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo
sampling methods for Bayesian filtering,” Statist. Comput., vol. 10, pp.
197–208, 2000.

[11] A. C. Sankaranarayanan, R. Chellappa, and A. Srivastava, “Algo-
rithmic and architectural design methodology for particle filters in
hardware,” in Proc. Int. Conf. Computer Design, 2005, pp. 275–280.

[12] Z. Khan, T. Balch, and F. Dellaert, “MCMC-based particle filtering for
tracking a variable number of interacting targets,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 27, no. 11, pp. 1805–1819, Nov. 2005.

[13] J. S. Liu and R. Chen, “Sequential Monte Carlo methods for dynamic
systems,” J. Amer. Statist. Assoc., vol. 93, pp. 1032–1044, 1998.

[14] C. P. Robert and G. Casella, Monte Carlo Statistical Methods. New
York: Springer-Verlag, 1999.

[15] M. K. Pitt and N. Shephard, “Filtering via simulation: Auxiliary par-
ticle filters,” J. Amer. Statist. Assoc., vol. 94, no. 446, pp. 590–591,
1999.

[16] J. S. Liu, R. Chen, and T. Logvinenko, “A theoretical framework for
sequential importance sampling with resampling,” in Sequential Monte
Carlo Methods in Practice, A. Doucet, N. de Freitas, and N. Gordon,
Eds. New York: Springer-Verlag, 2001.

[17] A. Doucet, “On sequential simulation-based methods for Bayesian fil-
tering,” Tech. Rep., Dept. Eng., Univ. Cambridge, Cambridge, U.K.,
1998.

[18] S. Chib and E. Greenberg, “Understanding the Metropolis Hastings
algorithm,” Amer. Statist., vol. 49, pp. 327–335, 1995.

[19] W. K. Hastings, “Monte Carlo sampling methods using Markov chains
and their applications,” Biometrika, vol. 57, pp. 97–109, 1970.

[20] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, “Equations of state calculations by fast computing machines,”
J. Chem. Phys., vol. 21, pp. 1087–1091, 1953.

[21] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions
and Bayesian restoration of images,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. PAMI-6, no. 6, pp. 721–741, Nov. 1984.

[22] K. L. Mengerson and R. L. Tweedie, “Rates of convergence of the
Hastings and Metropolis algorithms,” Ann. Statist., vol. 24, no. 1, pp.
101–121, Feb. 1996.

[23] H. Tjelmeland, “Using all Metropolis-Hastings proposals to estimate
mean values,” Tech. Rep., Dept. Math. Sci., Norwegian Univ. Sci.
Technol., 2004.

[24] S. Boyd and L. Vandenberghe, Convex Optimization. New York:
Cambridge Univ. Press, 2004.

[25] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,
portable implementation of the MPI message passing interface stan-
dard,” Parallel Comput., vol. 22, no. 6, pp. 789–828, Sep. 1996.

[26] W. D. Gropp and E. Lusk, User’s Guide for mpich, a Portable Imple-
mentation of MPI, ANL-96/6, Math. Comput. Sci. Div., Argonne Nat.
Lab., 1996.

[27] S. Zhou, R. Chellappa, and B. Moghaddam, “Visual tracking and
recognition using appearance-adaptive models in particle filters,”
Trans. Image Process., vol. 13, no. 11, pp. 1434–1456, Nov. 2004.

Aswin C. Sankaranarayanan (S’04) received the
B.Tech. degree from the Indian Institute of Tech-
nology, Madras, in 2003. He is currently pursuing
the Ph.D. degree at the Department of Electrical
and Computer Engineering, University of Maryland,
College Park.

His research interests are in computer vision, sta-
tistics, geometry, and signal processing.

Mr. Sankaranarayanan was selected as a Future
Faculty Fellow in the A. J. Clarke School of Engi-
neering in Spring 2007. He was also a participant in

IBM’s Emerging Leaders in Multimedia Workshop held at the T. J. Watson
Research Center in October 2007.

Ankur Srivastava (M’02) received the B.S. degree
from the Indian Institute of Technology, Delhi,
the M.S. degree from Northwestern University,
Evanston, IL, and the Ph.D. degree from the Uni-
versity of California, Los Angeles (UCLA), in 1998,
2000, and 2002, respectively.

Since Fall 2002, he has been an Assistant Pro-
fessor with the University of Maryland, College
Park. His research interests include many aspects
of design automation including logic and high-level
synthesis, low-power issues, fabrication variability,

and low-power issues pertaining to sensor networks and computer vision.
Dr. Srivastava received the outstanding Ph.D. Award from the Computer Sci-

ence Department of UCLA in 2002. He is a Member of ACM.

Rama Chellappa (S’78–M’79–SM’83–F’92) re-
ceived the B.E. (Hons.) degree from the University
of Madras, Madras, India, in 1975 and the M.E.
(Distinction) degree from the Indian Institute of Sci-
ence, Bangalore, in 1977. He received the M.S.E.E.
and Ph.D. degrees in electrical engineering from
Purdue University, West Lafayette, IN, in 1978 and
1981, respectively.

Since 1991, he has been a Professor of electrical
engineering and an affiliate Professor of Computer
Science at the University of Maryland, College Park.

Recently, he was named the Minta Martin Professor of Engineering. He is also
affiliated with the Center for Automation Research (Director) and the Institute
for Advanced Computer Studies (permanent member). Prior to joining the Uni-
versity of Maryland, he was an Assistant Professor (1981 to 1986) and an Asso-
ciate Professor (1986 to 1991) and Director of the Signal and Image Processing
Institute (1988 to 1990) with the University of Southern California (USC), Los
Angeles. Over the last 27 years, he has published numerous book chapters and
peer-reviewed journal and conference papers. He has also coedited and coau-
thored many research monographs. His current research interests are face and
gait analysis, 3-D modeling from video, automatic target recognition from sta-
tionary and moving platforms, surveillance and monitoring, hyperspectral pro-
cessing, image understanding, and commercial applications of image processing
and understanding.

Dr. Chellappa has served as an Associate Editor of four IEEE journals. He was
a co-Editor-in-Chief of Graphical Models and Image Processing. He also served
as the Editor-in-Chief of the IEEE TRANSACTIONS ON PATTERN ANALYSIS AND

MACHINE INTELLIGENCE. He served as a member of the IEEE Signal Processing
Society Board of Governors and as its Vice President of Awards and Member-
ship. He has received several awards, including the National Science Founda-
tion Presidential Young Investigator Award in 1985, three IBM Faculty Devel-
opment Awards, the 1990 Excellence in Teaching Award from the School of
Engineering at USC, the 1992 Best Industry Related Paper Award from the In-
ternational Association of Pattern Recognition (with Q. Zheng), and the 2000
Technical Achievement Award from the IEEE Signal Processing Society. He
was elected as a Distinguished Faculty Research Fellow (1996 to 1998), and as
a Distinguished Scholar-Teacher (2003) at University of Maryland. He co-au-
thored a paper that received the Best Student Paper in the Computer Vision Track
at the International Association of Pattern Recognition in 2006. He is a co-recip-
ient of the 2007 Outstanding Innovator of the Year Award (with A. Sundaresan)
from the Office of Technology Commercialization at University of Maryland
and received the A. J. Clark School of Engineering Faculty Outstanding Re-
search Award. He was recently elected to serve as a Distinguished Lecturer of
the Signal Processing Society and recevied its Meritorious Service Award. He is
a Golden Core Member of the IEEE Computer Society and received its Merito-
rious Service Award in 2004. He is a Fellow of the International Association for
Pattern Recognition. He has served as a General Chair and the Technical Pro-
gram Chair for several IEEE international and national conferences and work-
shops.

Authorized licensed use limited to: University of Maryland College Park. Downloaded on December 30, 2008 at 17:45 from IEEE Xplore. Restrictions apply.

