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Abstract—We propose and analyze an online algorithm for
reconstructing a sequence of signals from a limited number
of linear measurements. The signals are assumed sparse, with
unknown support, and evolve over time according to a generic
nonlinear dynamical model. Our algorithm, based on recent
theoretical results for `1-`1 minimization, is recursive and com-
putes the number of measurements to be taken at each time
on-the-fly. As an example, we apply the algorithm to online
compressive video foreground extraction, a problem stated as
follows: given a set of measurements of a sequence of images with
a static background, simultaneously reconstruct each image while
separating its foreground from the background. The performance
of our method is illustrated on sequences of real images. We
observe that it allows a dramatic reduction in the number of
measurements or reconstruction error with respect to state-of-
the-art compressive background subtraction schemes.

Index Terms—State estimation, compressive video, background
subtraction, sparsity, `1 minimization, motion estimation.

I. INTRODUCTION

CONSIDER the problem of reconstructing a sequence of
sparse signals from a limited number of measurements.

Let x[k] ∈ Rn be the signal at time k and y[k] ∈ Rmk be
the vector of signal measurements at time k, where mk � n.
Assume the signals evolve according to the dynamical model
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x[k] = fk
(
{x[i]}k−1

i=1

)
+ ε[k] (1a)

y[k] = Ak x[k] , (1b)

where ε[k] ∈ Rn is modeling noise and Ak ∈ Rmk×n is a
sensing matrix. In (1a), fk : (Rn)k−1 −→ Rn is a known, but
otherwise arbitrary, map that describes x[k] as a function of
past signals. We assume that each x[k] and ε[k] is sparse, i.e.,
they have a small number of nonzero entries. Our goal is to
reconstruct the signal sequence {x[k]} from the measurement
sequence {y[k]}. We require the reconstruction scheme to
be recursive (or online), i.e., x[k] is reconstructed before
acquiring measurements of any future signal x[i], i > k, and
also to use a minimal number of measurements. We formalize
the problem as follows.

Problem statement. Given two unknown sparse se-
quences {x[k]} and {ε[k]} satisfying (1), design an online
algorithm that 1) uses a minimal number of measurements mk

at time k, and 2) perfectly reconstructs each x[k] from y[k]
acquired as in (1b), and possibly x[i], i < k.

Note that our setting immediately generalizes from the case
where each x[k] is sparse to the case where x[k] has a sparse
representation in a linear, invertible transform.1 An aspect
that distinguishes our problem from other recursive signal
reconstruction problems, such as the ones addressed in [2]–
[9], is that the number of measurements mk varies at each
iteration and has to be computed recursively.

A. Applications

Many problems require estimating a sequence of signals
from a sequence of measurements satisfying the model in (1).
These include classification and tracking in computer vision
systems [10], [11], radar tracking [12], dynamic MRI [13],
[14] and several tasks in wireless sensor networks [15].

Our application focus, however, is compressive background
subtraction [16] (a.k.a. foreground subtraction). Background
subtraction is a key task for detecting and tracking objects
in a video sequence and it has been applied, for example, in
video surveillance [17], [18], traffic monitoring [19], [20], and
medical imaging [21], [22]. Although there are many back-
ground subtraction techniques, e.g., [11], [23], [24], most of

1If x[k] is not sparse but z[k] := Ψx[k] is, where Ψ is an invertible
matrix, then redefine fk as the composition fzk = Ψ−1 ◦ fk ◦Ψ and Ak as
Az

k := AkΨ−1. The signal z[k] satisfies (1) with fzk and Az
k .
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them assume access to full frames and, thus, are inapplicable
in compressive video sensing [25]–[30], a technology used
in cameras where sensing is expensive. In particular, devices
such as the single-pixel camera [25]–[30] acquire compressive
measurements from images using few sensors, as in (1b);
this allows expensive sensors that capture images in non-
conventional wavelengths, such as infrared or UV, and also
allows high-speed imaging [30]. Performing these tasks with
conventional camera technology is expensive due to the large
number of required sensors/pixels. Medical imaging [13], [14],
[21] is another application where measurements are expensive
and are acquired as in (1b). Although we do not explore this
application, we believe our work can have significant impact
in dynamic MRI [13], [14].

In compressive video sensing, one has access not to full
frames as in conventional video, but only to a small set of
linear measurements of each frame, as in (1b). Cevher et
al. [16] noticed that background subtraction is possible in this
context if the foreground pixels, i.e., those associated to a
moving object, occupy a small area in each frame. Assuming
the background image is known beforehand, compressed sens-
ing techniques [31], [32] such as `1-norm minimization allow
reconstructing each foreground. This not only reconstructs the
original frame (if we add the reconstructed foreground to the
known background), but also performs background subtraction
as a by-product [16].

With the exception of [33], [34], most approaches to
compressive video sensing and compressive background sub-
traction assume a fixed number of measurements for all
frames [16], [25], [27]–[30], [35]. If this number is too small,
reconstruction fails. If it is too large, reconstruction succeeds,
but at the cost of unnecessary measurements in some or
all frames. The work in [33], [34] addresses this problem
with an online scheme that uses cross-validation to compute
the number of required measurements. Given a reconstructed
foreground, [33], [34] estimates the area of the true foreground
using extra cross-validation measurements. Then, assuming
that consecutive frames have equal foreground areas, the phase
diagram of the sensing matrix, computed beforehand, gives the
number of measurements for the next frame. This approach,
however, fails to use information from past frames in the
reconstruction process, information that, as we will see, can
be used to significantly reduce the number of measurements.

B. Overview of our approach and contributions

Overview. Our approach to adaptive-rate signal reconstruc-
tion is based on the recent theoretical results of [36], [37].
These characterize the performance of sparse reconstruction
schemes in the presence of side information. The scheme we
are most interested in is `1-`1 minimization:

minimize
x

‖x‖1 + β‖x− w‖1
subject to Ax = y ,

(2)

where x ∈ Rn is the optimization variable and ‖x‖1 :=∑n
i=1 |xi| is the `1-norm. In (2), y ∈ Rm is a vector of

measurements, β a positive parameter. The vector w ∈ Rn is
assumed known and is the so-called prior or side information:

a vector similar to the vector that we want to reconstruct,
say x?. Note that if we set β = 0 in (2), we obtain basis pursuit
(BP) [38], a well-known sparse reconstruction problem at the
core of compressed sensing [31], [32]. Problem (2) generalizes
BP by integrating the side information w. The work in [36],
[37] shows that, if w has reasonable quality (in a precise
sense defined below) and the entries of A are drawn from
an i.i.d. Gaussian distribution, the number of measurements
required by (2) to reconstruct x? is much smaller than the
number of measurements required by BP. Furthermore, the
theory in [36], [37] establishes that β = 1 is an optimal
choice, irrespective of any problem parameter. This makes the
reconstruction problem (2) parameter-free.

We address the problem of recursively reconstructing a
sequence of sparse signals satisfying (1) as follows. Assuming
the measurement matrix is Gaussian,2 we propose an algorithm
that uses (2) with w = fk

(
{x[i]}k−1

i=1

)
to reconstruct each

signal x[k]. And, building upon the results of [36], [37], we
equip our algorithm with a mechanism to automatically com-
pute an estimate on the number of required measurements. As
application, we consider compressive background subtraction
and show how to generate side information from past frames.

Contributions. We summarize our contributions as follows:

i) We propose an adaptive-rate algorithm for reconstruct-
ing sparse sequences satisfying the model in (1).

ii) We establish conditions under which our algorithm
reconstructs a finite sparse sequence {x[i]}ki=1 with large
probability.

iii) We describe how to apply the algorithm to com-
pressive background subtraction problems, using motion-
compensated extrapolation to predict the next image to
be acquired. In other words, we show how to generate
side information.

iv) Given that images predicted by motion-compensated
extrapolation are known to exhibit Laplacian noise, we
then characterize the performance of (2) under this model.

v) Finally, we show the impressive performance of our
algorithm for performing compressive background sub-
traction on several sequences of real images.

Besides the incorporation of a scheme to compute a minimal
number of measurements on-the-fly, there is another aspect
that makes our algorithm fundamentally different from prior
work. As overviewed in Section II, most prior algorithms
for reconstructing dynamical sparse signals work well only
when the sparsity pattern of x[k] varies slowly with time. Our
algorithm, in contrast, operates well even when the sparsity
pattern of x[k] varies arbitrarily between consecutive time
instants, as shown by our theory and experiments. What is
required to vary slowly is the “quality” of the prediction given
by each fk (i.e., the quality of the side information) and, to
a lesser extent, not the sparsity pattern of x[k] but only its
sparsity, i.e., the number of nonzero entries.

2Although Gaussian matrices are hard to implement in practical systems,
they have optimal performance. There are, however, other more practical
matrices with a similar performance, e.g., [39], [40].
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C. Organization

Section II overviews related work. In Section III, we state
the results from [36], [37] that are used by our algorithm. Sec-
tion IV describes the algorithm and establishes reconstruction
guarantees. Section V concerns the application to compressive
background subtraction. Experimental results illustrating the
performance of our algorithm are shown in section VI; and
section VII concludes the paper. The appendix contains the
proofs of our results.

II. RELATED WORK

There is extensive literature on reconstructing time-varying
signals from limited measurements. Here, we provide an
overview by referring a few landmark papers.

The Kalman filter. The classical solution to estimate a se-
quence of signals satisfying (1) or, in the control terminology,
the state of a dynamical system, is the Kalman filter [41]. The
Kalman filter is an online algorithm that is least-squares opti-
mal when the model is linear, i.e., fk

(
{x[i]}k−1

i=0

)
= Fx[k−1],

and the sequence {ε[k]} is Gaussian and independent across
time. Several extensions are available when these assumptions
do not hold [42]–[44]. The Kalman filter and its extensions,
however, are inapplicable to our scenario, as they do not easily
integrate the additional knowledge that the state is sparse.

Dynamical sparse signal reconstruction. Some prior work
incorporates signal structure, such as sparsity, into online
sparse reconstruction procedures. For example, [3]–[5] adapts
a Kalman filter to estimate a sequence of sparse signals.
Roughly, we have an estimate of the signal’s support at each
time instant and use the Kalman filter to compute the (nonzero)
signal values. When a change in the support is detected, the
estimate of the support is updated using compressed sensing
techniques. The work in [3]–[5], however, assumes that the
support varies very slowly and does not provide any strategy to
update (or compute) the number of measurements; indeed, the
number of measurements is assumed constant along time. Also
assuming the support varies slowly and using a fixed number
of measurements, the work in [45]–[47] addresses the same
problem using a different approach: it integrates an estimate
of the signal’s support into the sparse reconstruction scheme
using a technique known as Modified-CS [48]. Note that the
methods in [3]–[5], [45]–[47] come with stability guarantees,
in the sense that if the number of (fixed) measurements is large
enough and consecutive signals have approximately the same
support, then these methods have smaller restricted isometry
constants (and thereby milder reconstruction guarantees) than
simple sparse reconstruction methods.

Related work that also assumes a fixed number of mea-
surements includes [49], which uses approximate belief prop-
agation, and [50], which integrates sparsity knowledge into
a Kalman filter via a pseudo-measurement technique. The
works in [6], [7] and [8] propose online algorithms named
GROUSE and PETRELS, respectively, for estimating signals
that lie on a low-dimensional subspace. Their model can be
seen as a particular case of (1), where each map fk is linear
and depends only on the previous signal. Akin to most prior
work, both GROUSE and PETRELS assume that the rank

of the underlying subspace (i.e., the sparsity of x[k]) varies
slowly with time, and fail to provide a scheme to compute the
number of measurements.

We briefly overview the work in [9], which is close to
ours, since it uses a related reconstruction problem. However,
perhaps due to lack of theory for that problem, it assumes a
fixed number of measurements for all signals (as most prior
work) and, thus, does not solve the problem we consider in
this paper. Three dynamical reconstruction schemes are studied
in [9]. The one with the best performance is

minimize
x

‖x‖1 + β‖x− w‖1 + β2‖Ax− y‖22 , (3)

where β2 > 0 and ‖·‖2 is the Euclidean `2-norm. Problem (3)
is the Lagrangian version of the noise-robust version of (2):

minimize
x

‖x‖1 + β‖x− w‖1
subject to ‖Ax− y‖2 ≤ σ ,

(4)

where σ is a bound on the measurement noise. For β2 in a
given range, the solutions of (3) and (4) coincide. This makes
the approach in [9] related to ours. Nevertheless, using (4)
has two important advantages: first, in practice, it is easier
to obtain bounds on the measurement noise σ than it is to
tune β2; second, and more importantly, the problem in (4) has
well-characterized reconstruction guarantees [36], [37]. It is
exactly those guarantees that enable our scheme for computing
of the number of measurements online.

Robust PCA. A technique that has been successfully
applied to perform background subtraction is Robust PCA
(RPCA) [24], [51], [52]. RPCA decomposes a data matrix
into the sum of a sparse and a low-rank matrix. In the
context of background subtraction, a column of the data matrix
corresponds to a video frame, which is decomposed into
foreground (sparse matrix) and background (low-rank matrix).
In RPCA, both the foreground and background are unknown,
and the latter may vary slowly across time. Also, it either
requires access to full frames or, in the case of compressive
RPCA [53], each measurement may contain information from
several different frames, e.g., the first and last frames, making
it a batch algorithm: all frames are processed together, not
online as in our algorithm.

There are, however, online extensions of RPCA, for ex-
ample, the stochastic optimization approach of [54], and an
algorithm called Prac-ReProCS [55]. The online algorithm
in [54] is shown to converge to the same solution as the batch
RPCA, but it requires access to full frames. Prac-ReProCS [55]
is also backed up by theory [56] and can handle compressive
measurements. It requires a training sequence of background
images, which is akin to our assumption of knowing the
background image, and works under the assumption that
the foreground objects move slowly. The version of Prac-
ReProCS that handles compressive measurements, however,
allows to reconstruct only the foreground sequence and not the
(slow-changing) background and, in addition, assumes that the
measurement matrix is the same for all frames. This implies,
in particular, that the number of measurements is fixed, which
is the reason why Prac-ReProCS fails to solve our problem.
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III. PRELIMINARIES: STATIC SIGNAL
RECONSTRUCTION USING `1-`1 MINIMIZATION

This section reviews some results from [36], namely recon-
struction guarantees for (2) in a static scenario, i.e., when we
estimate just one signal, not a sequence. As mentioned before,
β = 1 is an optimal choice: it not only minimizes the bounds
in [36], but also leads to the best results in practice. This is
the reason why we use β = 1 henceforth.
`1-`1 minimization. Let x? ∈ Rn be a sparse vector, and

assume we have m linear measurements of x?: y = Ax?,
where A ∈ Rm×n. Denote the sparsity of x? with s := |{i :
x?i 6= 0}|, where | · | is the cardinality of a set. Assume we
have access to a signal w ∈ Rn similar to x? (in the sense that
‖x?−w‖1 is small) and suppose we attempt to reconstruct x?

by solving the `1-`1 minimization problem (2) with β = 1:

minimize
x

‖x‖1 + ‖x− w‖1
subject to Ax = y .

(5)

The number of measurements that problem (5) requires to
reconstruct x? is a function of the “quality” of the side
information w. Quality in [36] is measured in terms of the
following parameters:

ξ :=
∣∣{i : wi 6= x?i = 0}

∣∣− ∣∣{i : wi = x?i 6= 0}
∣∣ , (6a)

h :=
∣∣{i : x?i > 0, x?i > wi} ∪ {i : x?i < 0, x?i < wi}

∣∣ .
(6b)

Note that the number of components of w that contribute to h
are the ones defined on the support of x?; thus, 0 ≤ h ≤ s.

Theorem 1 (Th. 1 in [36]). Let x?, w ∈ Rn be the vector to
reconstruct and the side information, respectively. Assume h >
0 and that there exists at least one index i for which x?i =
wi = 0. Let the entries of A ∈ Rm×n be i.i.d. Gaussian with
zero mean and variance 1/m. If

m ≥ 2h log
( n

s+ ξ/2

)
+

7

5

(
s+

ξ

2

)
+ 1 , (7)

then, with probability at least 1− exp
(
− 1

2 (m−
√
m)2

)
, x?

is the unique solution of (5).

Theorem 1 establishes that if the number of measurements is
larger than (7) then, with high probability, (5) reconstructs x?

perfectly. The bound in (7) is a function of the signal dimen-
sion n and sparsity s, and of the quantities ξ and h, which
depend on the signs of the entries of x? and w−x?, but not on
their magnitudes. When w is such that h is small, the bound
in (7) is much smaller than the one for BP3 in [57]:

m ≥ 2s log
(n
s

)
+

7

5
s+ 1 . (8)

Namely, [57] establishes that if (8) holds and if A ∈ Rm×n has
i.i.d. Gaussian entries with zero mean and variance 1/m then,
with probability similar to the one in Theorem 1, x? is the
unique solution to BP. Indeed, if h� s and ξ is larger than a
small negative constant, then (7) is much smaller than (8). Note
that, in practice, the quantities s, ξ, and h are unknown, since

3Recall that Basis Pursuit (BP) is (2) with β = 0.

they depend on the unknown signal x?. In the next section, we
propose an online scheme to estimate them using past signals.

Noisy case. Theorem 1 has a counterpart for noisy mea-
surements, which we state informally; see [36] for details.
Let y = Ax? + η, where ‖η‖2 ≤ σ. Let also A ∈ Rm×n be
as in Theorem 1 with

m ≥ 1

(1− τ)2

[
2h log

( n

s+ ξ/2

)
+

7

5

(
s+

ξ

2

)
+

3

2

]
, (9)

where 0 < τ < 1. Let x̂noisy be any solution of (4). Then,
with overwhelming probability, ‖x̂noisy − x?‖2 ≤ 2σ/τ , i.e.,
(4) reconstructs x? stably. Our algorithm, described in the next
section, adapts easily to the noisy scenario, but we provide
reconstruction guarantees only for the noiseless case.

Algorithm 1 Adaptive-Rate Sparse Signal Reconstruction
Input: 0 ≤ α ≤ 1, a positive sequence {δk}, and estimates ŝ1 and

ŝ2 of the sparsity of x[1] and x[2], respectively.

Part I: Initialization
1: for the first two time instants k = 1, 2 do
2: Set mk = 2ŝk log(n/ŝk) + (7/5)ŝk + 1
3: Generate Gaussian matrix Ak ∈ Rmk×n

4: Acquire mk measurements of x[k]: y[k] = Ak x[k]
5: Find x̂[k] such that

x̂[k] ∈ argmin
x

‖x‖1
s.t. Ak x = y[k]

6: end for
7: Set w[2] = f2(x̂[1]) and compute

ξ̂2 :=
∣∣{i : wi[2] 6= x̂i[2] = 0}

∣∣− ∣∣{i : wi[2] = x̂i[2] 6= 0}
∣∣

ĥ2 :=
∣∣{i : x̂i[2] > 0, x̂i[2] > wi[2]} ∪ {i : x̂i[2] < 0,

x̂i[2] < wi[2]}
∣∣ .

8: Set m̂2 = 2ĥ2 log
(
n/(ŝ2 + ξ̂2/2)

)
+ (7/5)

(
ŝ2 + ξ̂2/2

)
+ 1

9: Set φ3 = m̂2

Part II: Online estimation
10: for each time instant k = 3, 4, 5, . . . do
11: Set mk = (1 + δk)φk

12: Generate Gaussian matrix Ak ∈ Rmk×n

13: Acquire mk measurements of x[k]: y[k] = Ak x[k]
14: Set w[k] = fk({x̂[i]}k−1

i=1 ) and find x̂[k] such that

x̂[k] ∈ argmin
x

‖x‖1 +
∥∥x− w[k]∥∥

1

s.t. Ak x = y[k]

15: Compute

ŝk = |{i : x̂[k] 6= 0}|
ξ̂k =

∣∣{i : wi[k] 6= x̂i[k] = 0}
∣∣− ∣∣{i : wi[k] = x̂i[k] 6= 0}

∣∣
ĥk =

∣∣{i : x̂i[k] > 0, x̂i[k] > wi[k]} ∪ {i : x̂i[k] < 0,

x̂i[k] < wi[k]}
∣∣ .

16: Set m̂k = 2ĥk log
(
n/(ŝk + ξ̂k/2)

)
+(7/5)

(
ŝk + ξ̂k/2

)
+1

17: Update φk+1 = (1− α)φk + α m̂k

18: end for
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IV. ONLINE SPARSE SIGNAL ESTIMATION

Algorithm 1 describes our online scheme for reconstructing
a sparse sequence {x[k]} satisfying (1), i.e.,

x[k] = fk
(
{x[i]}k−1

i=1

)
+ ε[k]

y[k] = Ak x[k] .

Intuitively, given estimates x̂[i], i < k, of all the signals
prior to time k, Algorithm 1 reconstructs x[k] by solving (5)
with A = Ak, y = y[k], and w = fk

(
{x[i]}k−1

i=1

)
. Although

described for a noiseless scenario, the algorithm easily adapts
to the noisy scenario, as discussed later. Such adaptation is
essential on a real system, e.g., a single-pixel camera [26].

A. Algorithm description

The algorithm consists of two parts: the initialization, where
the first two signals x[1] and x[2] are reconstructed using BP,
and the online estimation, where the remaining signals are
reconstructed using `1-`1 minimization.

Part I: Initialization. Steps 1-6 compute the number of
measurements m1 and m2 according to the bound in (8), and
then reconstruct x[1] and x[2] via BP. The expressions for m1

and m2 in step 2 require estimates ŝ1 and ŝ2 of the sparsity
of x[1] and x[2], which are given as input to the algorithm.
Henceforth, variables with hats refer to estimates. Steps 7-9
initialize the estimator φk: during Part II of the algorithm, φk
should approximate the right-hand side of (7) for x[k], i.e.,
with s = sk, h = hk, and ξ = ξk, where the subscript k
indicates that these are parameters associated with x[k].

Part II: Online estimation. The loop in Part II starts by
computing the number of measurements as mk = (1 + δk)φk,
where δk, an input to the algorithm, is a (positive) safeguard
parameter. We take more measurements from x[k] than the
ones prescribed by φk, because φk is only an approxima-
tion to the bound in (7), as explained next. After acquiring
measurements from x[k], we reconstruct it as x̂[k] via `1-`1
minimization with w[k] = fk({x̂[i]}k−1

i=1 ) (step 14). Next, in
step 15, we compute the sparsity ŝk and the quantities in (6),
ξ̂k and ĥk, for x̂[k]. If the reconstruction of x[k] is perfect, i.e.,
x̂[k] = x[k], then all these quantities match their true values.
In that case, m̂k in step 16 will also match the true value of
the bound in (7). Note, however, that the bound for x[k], m̂k,
is computed only after x[k] is reconstructed. Consequently,
the number of measurements used in the acquisition of x[k],
k > 2, is a function of the bound (7) for x[k − 1]. Since
the bounds for x[k] and x[k − 1] might differ, we take more
measurements than the ones specified by φk by a factor δk, as
in step 11. Also, we mitigate the effect of failed reconstructions
by filtering m̂k with an exponential moving average filter,
in step 17. Indeed, if reconstruction fails for some x[k], the
resulting m̂k might differ significantly from the true bound
in (7). The role of the filter is to smooth out such variations.

Extension to the noisy case. Algorithm 1 can be easily
extended to the scenario where the acquisition process is noisy,
i.e., y[k] = Akx[k]+ηk. Assume ηk is arbitrary noise, but has
bounded magnitude, i.e., we know σk such that ‖ηk‖2 ≤ σk.
In that case, the constraint in the reconstruction problems in

steps 5 and 14 should be replaced by ‖Akx − y[k]‖2 ≤ σk.
The other modification is in steps 8 and 16, whose expressions
for m̂k are multiplied by 1/(1−τ)2 as in (9). Our reconstruc-
tion guarantees, however, hold only for the noiseless case.

Remarks. We will see in the next section that Algorithm 1
works well when each δk is chosen according to the prediction
quality of fk: the worse the prediction quality, the larger δk
should be. In practice, it may be more convenient to make δk
constant, as we do in our experiments in Section VI. Note that
the conditions under which our algorithm performs well differ
from the majority of prior work. For example, the algorithms
in [3], [4], [6]–[8], [16], [33], [34], [49], [50], [58] work well
when the sparsity pattern of x[k] varies slowly between con-
secutive time instants. Our algorithm, in contrast, works well
when the quality parameters ξk and hk and also the sparsity sk
vary slowly; in other words, when the quality of the prediction
of fk varies slowly. On the other hand, if fk gives a bad
quality prediction at iteration k, the number of measurements
taken at iteration k+ 1 will approach (8), for BP. To see that,
assume x[k] and x̂[k] have the same support (i.e., x̂[k] was
reconstructed successfully), which is disjoint from the support
of w[k]. In that case, ĥk = sk and, when n is large enough,
the dominant terms in (7) and (8) both equal 2sk log n. We
finally remark that Algorithm 1 can possibly be adapted to
reconstruction problems that integrate prior information in a
different way (e.g., modified-CS, modified-BPDN [48], and
`1-`2 minimization [36]); the only requirement is that sample
complexity bounds as in Theorem 1 are available.

B. Reconstruction guarantees

The following result bounds the probability with which
Algorithm 1 with α = 1 perfectly reconstructs a finite-length
sequence {x[i]}ki=1. The idea is to rewrite the condition that (7)
applied to x[i − 1] is (1 + δi) times larger than (7) applied
to x[i]. If that condition holds for the entire sequence then,
using Theorem 1 and assuming that the matrices Ak are drawn
independently, we can bound the probability of successful
reconstruction. The proof is in Appendix A.

Lemma 2. Let α = 1, m := min
{
m1,m2,mini=3,...,k m̂i

}
,

and fix k ≥ 3. Let also, for all i = 3, . . . , k,

δi ≥
2
[
hi log( n

ui
)− hi−1 log( n

ui−1
)
]

+ 7
5 (ui − ui−1)

2hi−1 log( n
ui−1

) + 7
5ui−1 + 1

, (10)

where ui := si + ξi/2. Assume ŝq ≥ sq := |{j : xj [q] 6= 0}|,
for q = 1, 2, i.e., that the initial sparsity estimates ŝ1 and ŝ2

are not smaller than the true sparsity of x[1] and x[2]. Assume
also that the matrices {Ai}ki=1 are drawn independently.
Finally, assume that the estimates w[i] produced by fi are such
that, for all i = 3, . . . , k, hi > 0 and xj [i] = wj [i] = 0 for at
least one index j. Then, the probability (over the sequence of
matrices {Ai}ki=1) that Algorithm 1 reconstructs x[i] perfectly
in all time instants 1 ≤ i ≤ k is at least(

1− exp
[
− 1

2
(m−√m)2

])k
. (11)

When the conditions of Lemma 2 hold, the probability
of perfect reconstruction decreases with the length k of the
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sequence, albeit at a very slow rate: for example, if m is as
small as 8, then (11) equals 0.9998 for k = 102, and 0.9845
for k = 104. If m is larger, these numbers are even closer
to 1.

Interpretation of (10). As shown in the proof, condi-
tion (10) is equivalent to (1 + δi)mi−1 ≥ mi, where mi

is (7) applied to x[i]. To get more insight about this condition,
rewrite it as

δi ≥
hi − hi−1 + c1(n)

hi−1 + c2(n)
, (12)

where

c1(n) :=
2hi−1 log ui−1 − 2hi log ui + 7

5 (ui − ui−1)

2 log n

c2(n) :=
7
5ui−1 + 1− 2hi−1 log ui−1

2 log n
.

Suppose {x[i]} and {ε[i]} are signals for which n � ui, hi.
In that case, c1(n), c2(n) ' 0, and condition (12) tells us that
the oversampling factor δi should be larger than the relative
variation of hi from time i − 1 to time i. In general, the
magnitude of c1(n) and c2(n) can be significant, since they
approach zero at a relatively slow rate, o(1/ log n). Hence,
those terms should not be ignored.

Remarks on the noisy case. There is an inherent difficulty
in establishing a counterpart of Lemma 2 for the noisy
measurement scenario: namely, the quality parameters ξ and h
in (6) are not continuous functions of x. So, no matter
how close a reconstructed signal is from the original one,
their quality parameters can differ arbitrarily. And, for the
noisy measurement case, we can never guarantee that the
reconstructed and the original signals are equal; at most, if (9)
holds, they are within a distance 2σ/τ , for 0 < τ < 1.

So far, we have considered {x[k]} and {ε[k]} to be deter-
ministic sequences. In the next section, we will model {ε[k]}
(and thus {x[k]}) as a Laplacian stochastic process.

V. COMPRESSIVE VIDEO BACKGROUND SUBTRACTION

We now consider the application of our algorithm to com-
pressive video background subtraction. We start by modeling
the problem of compressive background subtraction as the
estimation of a sequence of sparse signals satisfying (1). Our
background subtraction system, based on Algorithm 1, is then
introduced. Finally, we establish reconstruction guarantees for
our scheme when ε[k] in (1a) is Laplacian noise.

A. Model

Let {Z[k]}k≥1 be a sequence of images with resolu-
tion N1 × N2, and let z[k] ∈ Rn with n := N1 · N2 be
the column-major vectorization of the kth image. At time k,
we collect mk linear measurements of Z[k]: u[k] = Akz[k],
where Ak ∈ Rmk×n is a measurement matrix. We decompose
each image Z[k] as Z[k] = X[k] + B, where X[k] is the
kth foreground image, typically sparse, and B is the back-
ground image, assumed known and the same in all images.
Let x[k] and b be vectorizations of X[k] and B. Because
the background image is known, we take measurements from

it using Ak: ub[k] = Akb. Then, as suggested in [16], we
subtract ub[k] from u[k]:

y[k] := u[k]− ub[k] = Ak(z[k]− b) = Akx[k] . (13)

This equation tells us that, although we cannot measure the
foreground image x[k] directly, we can still construct a vector
measurements, y[k], as if we would. Given that x[k] is usually
sparse, the theory of compressed sensing tells us that it can
be reconstructed by solving, for example, BP [31], [32].
Specifically, if x[k] has sparsity sk and the entries of Ak are
realizations of i.i.d. zero-mean Gaussian random variables with
variance 1/mk, then 2sk log(n/sk) + (7/5)sk + 1 measure-
ments suffice to reconstruct x[k] perfectly [57] [cf. (8)].

Notice that (13) is exactly the equation of measurements
in (1b). Regarding equation (1a), we will use it to model the
estimation of the foreground of each frame, x[k], from pre-
vious foregrounds, {x[i]}k−1

i=1 . We use a motion-compensated
extrapolation technique, as explained in Subsection V-C. This
technique is known to produce image estimates with an error
well modeled as Laplacian and, thus, each ‖ε[k]‖1 is expected
to be small. This perfectly aligns with the way we integrate
side information in our reconstruction scheme: namely, the
second term in the objective of the optimization problem in
step 14 of Algorithm 1 is exactly ‖ε[k]‖1.

B. Our background subtraction scheme
Fig. 1 shows the block diagram of our compressive back-

ground subtraction scheme and, essentially, translates Algo-
rithm 1 into a diagram. The scheme does not apply to the
reconstruction of the first two frames, which are reconstructed
as in [16], i.e., by solving BP. This corresponds to Part I
of Algorithm 1. The scheme in Fig. 1 depicts Part II of
Algorithm 1. The motion extrapolation module constructs
a motion-compensated prediction e[k] of the current frame,
z[k], by using the two past (reconstructed) frames, ẑ[k − 2]
and ẑ[k − 1]. Motion estimation is performed in the image
domain (z[k]) rather than in the foreground domain (x[k]),
as the former contains more texture, thereby yielding a more
accurate motion field. Next, the background frame b is sub-
tracted from e[k] to obtain a prediction of the foreground x[k],
i.e., the side information w[k]. These two operations are
modeled in Algorithm 1 with the function fk, which takes
a set of past reconstructed signals (in our case, x̂[k − 2]
and x̂[k−1], to which we add b, obtaining ẑ[k−2] and ẑ[k−1],
respectively), and outputs the side information w[k]. This
is one of the inputs of the `1-`1 block, which solves the
optimization problem (5). To obtain the other input, i.e., the
set of foreground measurements y[k], we proceed as specified
in equation (13): we take measurements u[k] = Akz[k]
of the current frame and, using the same matrix, we take
measurements of the background u[k] = Akb. Subtracting
them we obtain y[k] = u[k] − ub[k]. The output of the `1-
`1 module is the estimated foreground x̂[k], from which we
obtain the estimate of the current frame as ẑ[k] = x̂[k] + b.

C. Motion-compensated extrapolation
To obtain an accurate predition e[k], we use a motion-

compensated extrapolation technique similar to what is used
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Figure 1. Block diagram of Algorithm 1 when applied to background
subtraction. The main blocks are highlighted.

Figure 2. Scheme of motion-compensated extrapolation. We use the motion
between matching blocks in ẑ[k− 2] and ẑ[k− 1] to create an estimate e[k]
of frame z[k].

in distributed video coding for generating decoder-based
motion-compensated predictions [59]–[61]. Our technique is
illustrated in Fig. 2. In the first stage, we perform for-
ward block-based motion estimation between the reconstructed
frames ẑ[k−2] and ẑ[k−1]. The block matching algorithm is
performed with half-pel accuracy and considers a block size
of γ × γ pixels and a search range of ρ pixels. The required
interpolation for half-pel motion estimation is performed using
the 6-tap filter of H.264/AVC [62]. In addition, we use the `1-
norm (or sum of absolute differences, SAD) as error metric.
The resulting motion vectors are then spatially smoothed by
applying a weighted vector-median filter [63]. The filtering
improves the spatial coherence of the resulting motion field
by removing outliers (i.e., motion vectors that are far from the
true motion field). Assuming linear motion between ẑ[k − 2]
and ẑ[k − 1], and ẑ[k − 1] and ẑ[k], we linearly project the
motion vectors between ẑ[k − 2] and ẑ[k − 1] to obtain e[k],
our estimate of z[k]; see Fig. 2. During motion compensation,
pixels in e[k] that belong to overlapping prediction blocks
are estimated as the average of their corresponding motion-
compensated pixel predictors in ẑ[k− 1]. Pixels in uncovered
areas (i.e., no motion-compensated predictor is available) are
estimated by averaging the three neighbor pixel values in e[k]
(up, left and up-left pixel positions, following a raster scan of
the frame) and the corresponding pixel in ẑ[k − 1].

Remarks. In the above scheme, the motion extrapolation
block creates an estimate e[k] of the current frame z[k] by
assuming linear motion between the past two frames, z[k− 2]
and z[k−1]. Hence, it gives good predictions when foreground
objects move linearly. This is the case of small displacements,

since nonlinear motion is locally well approximated by linear
motion. When displacements are large (i.e., objects move fast),
the above scheme still gives good predictions if the motion is
linear. This contrasts with prior methods for background sub-
traction and dynamical sparse signal estimation, such as [3],
[4], [6]–[8], [16], [33], [34], [49], [50], [58], which work well
only in the slow-motion case, i.e., when the foreground area
between consecutive frames is approximately constant.

In practice, the background may change during the operation
of the algorithm due to, for example, illumination change or
camera movement. As in video coding [60]–[62], this indicates
a scene cut, which can be detected by our algorithm via a
dramatic increase in the measurement rate. In that case, the
algorithm should take enough measurements to reconstruct an
entire frame, the new background.

D. Reconstruction guarantees for Laplacian modeling noise

It is well known that the noise produced by a motion-
compensated prediction module, as the one just described,
is Laplacian [59], [64]. In our model, that corresponds to
each ε[k] in (1a) being Laplacian. We assume each ε[k] is
independent from the matrix of measurements Ak.

Model for ε[k]. As in [59], [64], [65] (and references
therein), we assume that ε[k] is independent from ε[l], for
k 6= l, and that the entries of each ε[k] are independent and
have zero-mean. The probability distribution of ε[k] is then

P(ε[k] ≤ u) = P(ε1[k] ≤ u1, ε2[k] ≤ u2, . . . , εn[k] ≤ un)

=

n∏
j=1

P(εj [k] ≤ uj)

=

n∏
j=1

∫ uj

−∞

λj
2

exp
[
− λj |εj |

]
dεj , (14)

where u ∈ Rn and λj ≥ 0. In words, each εj [k] has Laplace
distribution with parameter λj . The entries of ε[k], although
independent, are not identically distributed, since they have
possibly different parameters λj . The variance σ2

j of each
component εj [k] is given by σ2

j = 2/λ2
j .

Resulting model for x[k]. The sequence {ε[k]} being
stochastic implies that {x[k]} is also stochastic. Indeed, if
each fk in (1) is measurable, then {x[k]}k≥2 is a sequence
of random variables. Given the independence across time and
across components of the sequence {ε[k]}, the distribution
of x[k] given {x[i]}k−1

i=1 is also Laplacian, yet not necessarily
with zero-mean. That is, for u ∈ Rn and k ≥ 2,

P
(
x[k] ≤ u

∣∣ {x[i]}k−1
i=1

)
= P

(
fk({x[i]}k−1

i=1 ) + ε[k] ≤ u
∣∣ {x[i]}k−1

i=1

)
= P

(
ε[k] ≤ u− fk({x[i]}k−1

i=1 )
∣∣ {x[i]}k−1

i=1

)
=

n∏
j=1

∫ uj−[fk({x[i]}k−1
i=1 )]j

−∞

λj
2

exp
[
− λj |εj |

]
dεj

=

n∏
j=1

∫ uj

−∞

λj
2

exp
[
− λj

∣∣zj − [fk({x[i]}k−1
i=1 )]j

∣∣] dzj (15)
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where [fk({x[i]}k−1
i=1 )]j is the jth component of fk({x[i]}k−1

i=1 ).
In words, the distribution of each component of x[k] condi-
tioned on all past realizations x[i], 1 ≤ i < k, is Laplacian
with mean [fk({x[i]}k−1

i=1 )]j and parameter λj . Furthermore, it
is independent from the other components.

Reconstruction guarantees. Note that {x[k]} and {ε[k]}
being stochastic processes implies that the quantities in (6),
which we will denote by ξk and hk for signal x[k], are random
variables. Hence, at each time k, the conditions of Theorem 1,
namely that hk > 0 and that there is at least one index i such
that xi[k] = wi[k] = 0, become events, and may or may
not hold. We now impose conditions on the variances σ2

j =
2/λj that guarantee the conditions of Theorem 1 are satisfied
and, thus, that `1-`1 minimization reconstructs x[k] perfectly,
with high probability. Given S ∈ {1, . . . , n}, Sc denotes its
complement in {1, . . . , n}.

Theorem 3. Let w ∈ Rn be given. Let ε have distribu-
tion (14), where the variance of component εj is σ2

j = 2/λ2
j .

Define x? := w + ε, and the sets Σ := {j : σ2
j 6= 0} and

W := {j : wj 6= 0}. Assume Σc ∩ Wc 6= ∅, that is, there
exists j such that σ2

j = 0 and wj = 0. Assume A ∈ Rm×n is
generated as in Theorem 1 with a number of measurements

m ≥ 2(µ+ t) log

(
n∣∣Σ∣∣+ 1

2

∣∣Σc ∩W
∣∣
)

+
7

5

(∣∣Σ∣∣+
1

2

∣∣Σc ∩W
∣∣)+ 1 , (16)

for some t > 1, where µ := 1
2

∑
j∈Σ

[
1+exp

(
−
√

2|wj |/σj
)]

.
Let x̂ denote the solution of `1-`1 minimization (5). Then,

P
(
x̂ = x?

)
≥
[
1− exp

(
− (m−

√
m)2

2

)]
×

×
[
1− exp

(
− 2µ2

|Σ|

)
− exp

(
− 2(t− 1)2

|Σ|

)]
. (17)

The proof is in Appendix B. By assuming each compo-
nent εj is Laplacian with parameter λj =

√
2/σj (independent

from the other components), Theorem 3 establishes a lower
bound on the number of measurements that guarantee perfect
reconstruction of x? with probability as in (17). Note that all
the quantities in (16) are deterministic. This contrasts with
the direct application of Theorem 1 to the problem, since the
right-hand side of (7) is a function of the random variables s,
h, and ξ. The assumption Σc ∩ Wc 6= ∅ implies Σc 6= ∅,
which means that some components of ε have zero variance
and, hence, are equal to zero with probability 1. Note that,
provided the variances σ2

j are known, all the quantities in (16),
and consequently in (17), are known.

The proof of Theorem 3 uses the fact that the sparsity of x?

is s = |Σ|+ |Σc ∩W|/2 with probability 1. This implies that
the bound in (16) is always smaller than the one for BP in (8)
whenever µ + t < s = |Σ| + |Σc ∩ W|. Since µ ≤ |Σ|, this
holds if t < |Σc ∩W|/2.

We state without proof a consequence of Theorem 3 that is
obtained by reasoning as in Lemma 2:

Corollary 4. Let {ε[k]} be a stochastic process where ε[k]
has distribution (14) and each ε[k] is independent from ε[l],

k 6= l. Assume that {x[k]} is generated as in (1a) and consider
Algorithm 1 with α = 1 at iteration k > 2. Assume that ε[k]
and Ak are independent. Assume also, for i = 3, . . . , k, that

δi ≥
{

2
[
(µi + ti) log

( n
ui

)
− (µi−1 + ti−1) log

( n

ui−1

)]
+

7

5
(ui−ui−1)

}/{
2(µi−1+ti−1) log

( n

ui−1

)
+

7

5
ui−1+1

}
,

(18)

where ui := |Σi|+ |Σc
i ∩Wi|/2, and the quantities µi, ti, Σi,

and Wi are defined as in Theorem 3 for signal x[i]. Assume
the initial sparsity estimates satisfy ŝ1 ≥ s1 and ŝ2 ≥ s2

with probability 1, where s1 and s2 are the sparsity of x[1]
and x[2]. Then, the probability over the sequences {Ai}ki=1

and {ε[i]}ki=1 that Algorithm 1 reconstructs x[i] perfectly in
all time instants 1 ≤ i ≤ k is at least

k∏
i=1

[
1− exp

(
−

(mi −
√
mi)

2

2

)][
1− exp

(
− 2µ2

i

|Σi|

)
− exp

(
− 2(ti − 1)2

|Σi|

)]
.

Corollary 4 establishes reconstruction guarantees of Algo-
rithm 1 when the modeling noise ε[k] in (1a) is Laplacian.
In contrast with Lemma 2, the bound in (18) is a function
of known parameters, but it requires the variances σ2

j [i] of
each εj [i], which can be estimated from the past frame in
a block-based way [60], [64]. For some insight on (18),
assume ui ' ui−1, ti = ti−1, and that n is large enough
so that terms not depending on it are negligible. Then, (18)
becomes δi & (µi − µi−1)/(µi−1 + ti−1), and we can select

δi = 2κ− 1 '
κ− 1

2
1

|Σi−1| + 1
2

=
|Σi| − 1

2 |Σi−1|
1 + 1

2 |Σi−1|
≥ µi − µi−1

µi−1 + ti−1
,

(19)

where κ := |Σi|/|Σi−1|, and the inequality is due to |Σi|/2 ≤
µi ≤ |Σi|. The approximation in (19) holds if |Σi−1| � 2,
which is often the case in practice. The expression in (19) tells
us that, for large n, δi is mostly determined by the ratio κ:
if κ > 1 (resp. < 1), then we should select δi > 1 (resp. < 1).
We observe that, in practice, (18) and (19) give conservative
estimates for δi. We will see in the next section that selecting
a small, constant δi (namely 0.1 and 0.01) leads to excellent
results without compromising perfect reconstruction.

VI. EXPERIMENTAL RESULTS

We applied the scheme described in the previous section
to several video sequences.4 The sequences are described in
Table I and were obtained from [66]5, [34]6, [67]7, [18]8, and

4The code to reproduce these experiments is available in http://www.ee.ucl.
ac.uk/~jmota/AdaptiveRateBackSubtrCode.zip.

5http://trace.eas.asu.edu/yuv/hall_monitor/hall_qcif.7z
6http://garrettwarnell.com/ARCS-1.0.zip; for the original, see view 5 of

ftp://ftp.cs.rdg.ac.uk/pub/PETS2009/Crowd_PETS09_dataset/a_data/Crowd_
PETS09/S2_L1.tar.bz2

7http://www.changedetection.net/
8http://www.vis.uni-stuttgart.de/~hoeferbn/bse/dataset/SABS-Basic.rar
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Table I
VIDEO SEQUENCES USED IN THE EXPERIMENTS.

Acronym Ref. Frames Resolution Sample image

Hall [66] 18-300 128× 128

PETS2009 [34] 1-171 116× 116

Highway [67] 1-500 120× 160

PETS2006 [67] 1-1200 144× 180

Canoe [67] 820-1100 160× 120

Stuttgart [68] 11-310 144× 192

Park [67] 20-600 144× 176

Caviar [69] 344-1235 144× 192

Traffic [67] 1-250 120× 160

[69]9. The table shows the acronyms we refer each sequence
by, their source, the frame numbers and resolution we used,
and a sample image from each sequence. We performed
two types of experiments, Type I and Type II, each with
a different purpose. The Type I experiments validate our
algorithm, which was designed for Gaussian measurement
matrices. Note that Gaussian matrices require explicit storage
and their multiplication with vectors is expensive; therefore,
in Type I experiments, we use only the first two sequences of
Table I, Hall and PETS2009. The goal of Type II experiments
is, in turn, to compare our algorithm with the state-of-the-art in
compressive background subtraction [34], using all sequences

9http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/

in Table I. Here, instead of Gaussian matrices, we use partial
DFT matrices, which do not require explicit storage and use
the efficient FFT algorithm for matrix-vector multiplication.
Our algorithm still works extremely well for DFT matrices,
reconstructing video frames with a very small error, but it may
require more measurements with respect to Gaussian matrices.

Recall that we address the problem of online compressive
background subtraction, not classical background subtraction
as in RPCA. In particular, we have no access to full frames,
only to a limited number of measurements (decided by the
algorithm), which are processed in an online fashion; also,
the background image is known. In all experiments, the
background image is always the first frame of the sequence,
that is, the frame corresponding to the leftmost number in the
third column of Table I.

A. Type I experiments

The goal of these experiments is to validate Algorithm 1.
Hence, we generated measurements matrices as in Theorem 1
and Lemma 2: each entry of Ak ∈ Rmk×n is i.i.d. Gaussian
with zero mean and variance 1/mk, and Ak and Aj are
independent for j 6= k.

Experimental setup. As mentioned before, in Type I ex-
periments, we use only the Hall and PETS2009 sequences.
We set the oversampling parameters as δ := δk = 0.1,
for all k, and the filter parameter as α = 0.5. While for
the Hall sequence we used the true sparsity of the first two
foregrounds, i.e., ŝ1 = s1 = 417 and ŝ2 = s2 = 446, for
the PETS2009 sequence we set these parameters to values
much smaller than their true values: 10 = ŝ1 � s1 = 194
and 10 = ŝ2 � s2 = 211. In spite of this poor initialization,
the algorithm was able to quickly adapt, as we will see. We
removed isolated pixels from each frame by preprocessing the
full sequences. For motion estimation, we used γ× γ = 8× 8
blocks, and a search limit of ρ = 6. Finally, we mention
that after computing the side information w[k] for frame k,
we amplified the magnitude of its components by 30%. This,
according to the theory in [36], improves the quality of the
side information. To solve BP in the reconstruction of the
first two frames we used SPGL1 [70], [71].10 To solve the
`1-`1 minimization problem (5) in the reconstruction of the
remaining frames we used DECOPT [72], [73].11

Recall that Algorithm 1 assumes noiseless measurements.
To illustrate its extension to noisy measurements, i.e., y[k] =
Akx[k] + ηk, with ‖ηk‖2 ≤ σk, we also applied it to the case
where the Hall sequence is acquired with noise. Specifically,
we generated ηk as a vector of i.i.d. Gaussian entries with zero
mean and variance 4/mk, and used σk = 2 in all frames. The
number of measurements was computed as in (9) with τ = 0.1.

For reference, in the noiseless case of the Hall sequence, we
compared our algorithm with time-adapted Modified-CS [47],
[48], a method for reconstructing a sparse sequence that uses a
fixed number of measurements m. In these experiments, we set
m = 2000, as it was the smallest (round) number that allowed
reconstructing most of the frames without being too wasteful.

10Available at http://www.math.ucdavis.edu/~mpf/spgl1/
11Available at http://lions.epfl.ch/decopt/
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(a) Hall: Number of measurements. (b) Hall: Relative errors of estimation and reconstruction.

(c) Hall (noisy case): Number of measurements. (d) Hall (noisy case): Relative errors of estimation and reconstruction.

(e) PETS2009: Number of measurements. (f) PETS2009: Relative errors of estimation and reconstruction.

Figure 3. Results of Type I experiments. The left-hand side plots show the number of measurements mk taken from each frame (solid red line), the estimate φk
(dashed blue line), and the right-hand side of (7) and (8) (dotted green and black lines, respectively). The right-hand plots side show the relative errors of
estimation ‖e[k]−z[k]‖2/‖z[k]‖2 and reconstruction ‖ẑ[k]−z[k]‖2/‖z[k]‖2. (a) and (b) Hall sequence with noiseless acquisition; (c) and (d) Hall sequence
with noisy acquisition; (e) and (f) PETS2009 sequence with noiseless acquisition.

Time-adapted Modified-CS [47] reconstructs each frame using
the support of the previously reconstructed frame as an aid.
In our implementation, the support of a signal was computed
as the set of indices containing at least 90% of its energy.

Results. Fig. 3 shows the results of Type I experiments.
The plots on the left-hand side show the number of mea-
surements mk Algorithm 1 took from each frame and the
corresponding estimate φk of (7); the same plots also show
the bounds (7) and (8) as if an oracle told us the true
values of sk, hk, and ξk. The plots on the right-hand side

show the relative errors of the estimated image e[k] and
the reconstruction image ẑ[k], i.e., ‖e[k] − z[k]‖2/‖z[k]‖2
and ‖ẑ[k]− z[k]‖2/‖z[k]‖2.

We observe that in all the left-hand side plots, mk and φk
are always below the CS bound (8), except at a few frames
in Fig. 3(e) (PETS2009 sequence). In those frames, there is
no foreground and thus the number of required measurements
approaches zero. Since there are no such frames in the Hall
sequence, all quantities in Figs. 3(a) and 3(c) do not exhibit
such large fluctuations. In all the right-hand side plots, the
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estimation errors were approximately constant, around 0.01
for the Hall sequence (both in the noisy and noiseless cases)
and around 0.93 for the PETS sequence. The reconstruction
error varied between 3.8 × 10−9 and 3.5 × 10−6 for the
noiseless Hall sequence [Fig. 3(b)] and between 2.4 × 10−5

and 8.3×10−5 for the noisy Hall sequence [Fig. 3(d)]. For the
PETS sequence [Fig. 3(f)], it was always below 10−5 except
at three instances, where the reconstruction error approached
the estimation error. These correspond to the frames with no
foreground [making the bounds in (7) and (8) approach zero]
and to the initial frames, where the number of measurements
was much smaller than (7). In spite of these “ill-conditioned”
frames, our algorithm was able to quickly adapt in the next
frames and follow the `1-`1 bound curve closely. In Figs. 3(a)
and 3(b), we can also see that Modified-CS [47], which took
2000 measurements from each frame, failed to reconstruct the
first 34 frames for lack of measurements. Algorithm 1, in
contrast, reconstructed all the frames perfectly and used 25%
less measurements than Modified-CS did.

These experiments show three key features of Algorithm 1.
The first and most important is that the estimate φk of the
bound (7) is always very close to the true value of the bound.
The second one is that the algorithm uses significantly less
measurements than if we were using BP [16], [34], even if
we knew the true foreground sparsity, and than Modified-
CS. The third feature is that there is not much difference
between the noiseless and noisy cases in terms of the number
of measurements; the most noticeable difference is in the
reconstruction error: in Fig. 3(d), the reconstruction error
is about three orders of magnitude larger than the one in
Fig. 3(b).

B. Type II experiments

The goal of Type II experiments is comparing Algorithm 1
(Alg. 1) with the state-of-the-art in adaptive-rate background
subtraction, the ARCS-CS algorithm in [34]. For memory and
time constraints, we obtained measurements from each frame
using partial DFT matrices instead of Gaussian matrices, a
modification that, as we will see, causes Alg. 1 to take more
measurements without compromising reconstruction.

Experimental setup. In these experiments, we set δ to
an even smaller value, 0.01, and the search range ρ to 4.
Furthermore, the sparsity of the first two frames, ŝ1 and ŝ2,
was set to 150 in all sequences, independently of their true
value. We used a simpler solver for (5), based on ADMM.
All the other parameters were the same as in the Type I
experiments. We compared Alg. 1 with the algorithm ARCS-
CV in [34].12 Its parameters were set as in [34]: τ = 0.1 and
σb = 0.0157. The sparsity estimator ŝ1 was initialized with
150 in all sequences (as in Alg. 1), and we modified the code
so that its internal solver, SPGL1, had no constraints on the
number of iterations. Recall that [34] presented experimental
results for DFT matrices as well.

Results. Fig. 4 shows the results of these experiments for all
the sequences of Table I. The results are presented as boxplots.
In a boxplot, the data points are divided into four equal-sized

12We used the implementation in http://garrettwarnell.com/ARCS-1.0.zip.

groups, the quartiles. The median is represented with a hori-
zontal line, and the second and third quartiles are enclosed in a
box. The smallest (resp. largest) data point that is at a distance
of the lower (resp. upper) quartile smaller than 3/2 times the
box height is marked with the extremity of a “whisker.” Data
points at farther distances, the outliers, are represented with
dots. This type of plot provides a compact representation of
data with large variability, which is the case of the data we
are presenting: the number of measurements taken by Alg. 1
and ARCS-CV [34], and the respective reconstruction errors.
Each subfigure of Fig. 4 contains two plots; the left-hand side
plot depicts the number of measurements, the right-hand plot
the relative error ‖ẑ[k]−z[k]‖2/‖z[k]‖2. Within each plot, the
left boxplot corresponds to Alg. 1 (in red), the right boxplot
to ARCS-CV [34] (in blue).

For example, in the Hall sequence [Fig. 4(a)], we see
that the number of measurements taken by Alg. 1 had a
median of 1976, an increase of 45% with respect to the
Gaussian case [Fig. 3(a)]. In spite of this increase, Alg. 1
was slightly more efficient than ARCS-CV [34] in terms of
the number of measurements, but much more efficient in terms
of the reconstruction error (right-hand side plot of Fig. 4(a)).
In fact, except for the PETS2009 sequence [Fig. 4(b)], the
median of the reconstruction error of ARCS-CV was always
larger than 10−3. Given that the internal solver of ARCS-CV,
SPGL1 [70], [71], is a high-precision solver, this indicates
that the number of measurements taken by ARCS-CV was
not enough for reconstruction, in most frames and for all
sequences (except PETS2009). Taking this into account, it is
then surprising that Alg. 1 required less measurements than
ARCS-CV for some sequences. For example, the median of
the number of measurements of Alg. 1 was smaller than
the median of ARCS-CV in the Hall [Fig. 4(a)], PETS2006
[Fig. 4(d)], and Caviar [Fig. 4(h)] sequences; note that for
these sequences the reconstruction error of Alg 1 was also
much smaller. In the remaining sequences, Alg. 1 took more
measurements than ARCS-CV, but its reconstruction error was
significantly smaller than the reconstruction error of ARCS-
CV. We remark that the Traffic sequence exhibits jittering,
causing some frames to have practically no background: all
pixels comprise the foreground. As a consequence, Alg. 1 re-
quired n = 19200 measurements from most frames [Fig. 4(i)],
that is, as many measurements as the image dimension. This,
in turn, caused the reconstruction error to be extremely small.
Overall, these experiments show that Alg. 1 outperforms the
prior state-of-the-art algorithm ARCS-CV in [34] in terms
of the number of measurements for perfect reconstruction.
Still, despite the fact that the background is not constant or
that the motion is rapid, our algorithm performs extremely
well, often surpassing the state of the art in terms of number
of measurements, while always reconstructing with a smaller
error.

VII. CONCLUSIONS

We proposed and analyzed an online algorithm for recon-
structing sparse sequences of signals from a limited number
of measurements. The signals vary across time according to a
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(a) Hall (b) PETS2009 (c) Highway

(d) PETS2006 (e) Canoe (f) Stuttgart

(g) Park (h) Caviar (i) Traffic

Figure 4. Results of Type II experiments. Each subfigure corresponds to a line of Table I and contains two boxplots: one for the number of measurements
and another for the reconstruction error. In a boxplot, the horizontal line is the median, the box extremes are the Q1 and Q3 quartiles, and the whiskers are
the minimum and maximum of data that is within 3/2 of the interquartile range of Q1 and Q3; points outside this range (outliers) are represented with dots.

nonlinear dynamical model, and the measurements are linear.
Our algorithm is based on `1-`1 minimization and, assuming
Gaussian measurement matrices, it estimates the required
number of measurements to perfectly reconstruct each signal,
automatically and on-the-fly. We also explored the application
of our algorithm to compressive video background subtraction
and tested its performance on sequences of real images. Our
experiments show that it also works for DFT matrices and
that it reduces the number of required measurements with
respect to prior compressive video background subtraction
schemes by a large margin. Interesting research directions
include extending the algorithm to handle more complex
priors, such as block sparsity and spatial foreground contiguity,

adapting the algorithm to perform background subtraction in
uncompressed videos, and exploring applications in medical
imaging.

APPENDIX A
PROOF OF LEMMA 2

First, note that condition (10) is a function only of the
parameters of the sequences {x[k]} and {ε[k]} and, therefore,
is a deterministic condition. Simple algebraic manipulation
shows that it is equivalent to

(1 + δi)

[
2hi−1 log

( n

ui−1

)
+

7

5
ui−1 + 1

]
≥ 2hi log

( n
ui

)
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+
7

5
ui + 1 ,

or

(1 + δi)mi−1 ≥ mi , (20)

where mi is the right-hand side of (7) applied to x[i], that is,

mi := 2hi log
( n

si + ξi/2

)
+

7

5

(
si +

ξi
2

)
+ 1 . (21)

Notice that the source of randomness in Algorithm 1 is the set
of matrices (random variables) Ak, generated in steps 3 and 12.
Define the event Si as “perfect reconstruction at time i.” Since
we assume that ŝ1 and ŝ2 are larger than the true sparsity
of x[1] and x[2], there holds [57]

P(Si) ≥ 1− exp
[
− 1

2
(mi −

√
mi)

2
]

≥ 1− exp
[
− 1

2
(m−√m)2

]
, (22)

for i = 1, 2, where the second inequality is due to mi ≥ m
and 1− exp(−(1/2)(x−

√
x)2) being an increasing function.

Next, we compute the probability of the event “perfect
reconstruction at time i” given that there was “perfect re-
construction at all previous time instants l < i,” i.e.,
P(Si|

∧
l<i Sl), for all i = 3, . . . , k. Since we assume α = 1,

we have φi = m̂i−1 and step 11 of Algorithm 1 becomes mi =
(1 + δi)m̂i−1, for all i ≥ 3. Under the event Si−1, i.e.,
x̂[i − 1] = x[i − 1], we have ĥi−1 = hi−1, ξ̂i−1 = ξi−1,
and m̂i−1 = mi−1, where mi−1 is defined in (21). (The
hat variables are random variables.) Consequently, due to
our assumption (20), step 11 can be written as mi = (1 +
δi)m̂i−1 = (1+δi)mi−1 ≥ mi. This means (7) is satisfied. By
assumption, all the other conditions of Theorem 1 are satisfied
and, hence, for i ≥ 3,

P
(
Si

∣∣ ∧
l<i

Sl

)
≥ 1− exp

[
− 1

2
(mi −

√
mi)

2
]

≥ 1− exp
[
− 1

2
(m−√m)2

]
, (23)

where, again, we used the fact that mi ≥ m and that 1 −
exp(−(1/2)(x−

√
x)2) is an increasing function.

Finally, we bound the probability that there is perfect
reconstruction at all time instants 1 ≤ i ≤ k:

P(S1 ∧ S2 ∧ · · · ∧ Sk)

= P(S1)P(S2|S1)

k∏
i=3

P(Si|S1 ∧ · · · ∧ Si−1) (24)

= P(S1)P(S2)

k∏
i=3

P
(
Si

∣∣ ∧
l<i

Sl

)
(25)

≥
(

1− exp
[
− 1

2
(m−√m)2

])k

. (26)

From (24) to (25) we used the independence between S1

and S2. From (25) to (26), we used (22) and (23).

APPENDIX B
PROOF OF THEOREM 3

Recall the definitions of ξ and h in (6):

ξ =
∣∣{j : wj 6= x?j = 0}

∣∣− ∣∣{j : wj = x?j 6= 0}
∣∣

h =
∣∣{j : x?j > 0, εj > 0} ∪ {j : x?j < 0, εj < 0}

∣∣ ,
where we rewrote h using x? = w + ε. Define the events
A := “ ∃j : xj = wj = 0 ”, B := “h > 0 ”, and

C := “m ≥ 2h log
( n

s+ ξ/2

)
+

7

5

(
s+

ξ

2

)
+ 1 ,”

which are the assumptions of Theorem 1. In C, m and n are
deterministic, whereas s, h, and ξ are random variables. Then,

P
(
x̂ = x?

)
≥ P

(
x̂ = x?

∣∣∣A ∧ B ∧ C) · P(A ∧ B ∧ C)
≥
[
1− exp

(
− (m−

√
m)2

2

)]
· P
(
A ∧ B ∧ C

)
, (27)

where we used Theorem 1. The rest of the proof consists of
lower bounding P

(
A ∧ B ∧ C

)
.

Lower bound on P
(
A∧B∧C

)
. Recall that w is fixed and

that each component x?j is determined by x?j = wj + εj . Due
to the continuity of the distribution of ε, with probability 1, no
component j ∈ Σ (i.e., σ2

j 6= 0) contributes to ξ. When j ∈ Σc,
we have two cases:
• j ∈ Σc ∩ W (i.e., σ2

j = 0 and wj 6= 0): in this
case, we have x?j = wj with probability 1. Hence, these
components contribute to the second term of ξ.

• j ∈ Σc ∩ Wc (i.e., σ2
j = 0 and wj = 0): in this case,

we also have x?j = wj with probability 1. However, these
components do not contribute to ξ.

We conclude P
(
D
)

= P
(
ξ = −

∣∣Σc ∩ W
∣∣) = 1, where D

is the event “ξ = −
∣∣Σc ∩ W

∣∣.” From the second case above
we also conclude that our assumption Σc ∩ Wc 6= ∅ implies
P
(
A
)

= 1. We can then write

P
(
A ∧ B ∧ C

)
= P

(
A
)
· P
(
B ∧ C

∣∣A) = P
(
B ∧ C

∣∣A)
≥ P

(
B ∧ C

∣∣A, D) · P(D ∣∣A) (28)

= P
(
B ∧ C

∣∣A, D) · P(D) (29)

= P
(
B ∧ C

∣∣A, D) (30)

= P
(
0 < h ≤ µ+ t

∣∣A, D) . (31)

From (28) to (29), we used the fact that the events A = “Σc∩
Wc 6= ∅” and D = “ξ = −|Σc ∩ W|” are independent. This
follows from the independence of the components of ε and the
disjointness of Σc ∩Wc and Σc ∩W . From (30) to (31), we
used the fact that event C conditioned on D is equivalent to
h ≤ µ + t. To see why, note that the sparsity of x? is given
by s = |Σ|+ |Σc ∩W|; thus, given D, s+ ξ/2 equals |Σ|+
|Σc ∩W|/2; now, subtract the expression in assumption (16)
from the expression that defines event C:

0 ≥ 2(h− µ− t) log

[
n

|Σ|+ 1
2 |Σc ∩W|

]
.

Using the fact that n = |Σ| + |Σc| ≥ |Σ| + |Σc ∩ W| ≥
|Σ| + |Σc ∩ W|/2, we conclude that C is equivalent to the
event “h ≤ µ+ t.” We now bound (31) as follows:

P
(
0 < h ≤ µ+ t

∣∣A, D)
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≥ P
(
0 < h < µ+ t− 1

∣∣A, D)
= 1− P

(
h ≤ 0

∣∣A, D)− P
(
h ≥ µ+ t− 1

∣∣A, D)
= 1− P

(
h− µ ≤ −µ

∣∣A, D)− P
(
h− µ ≥ t− 1

∣∣A, D)
(32)

≥ 1− exp

[
− 2µ2∣∣Σ∣∣

]
− exp

[
− 2(t− 1)2∣∣Σ∣∣

]
, (33)

where the last step, explained below, is due to Hoeffding’s
inequality [74]. Note that once this step is proven, (33)
together with (27) and (31) give (17), proving the theorem.

Proof of step (32)-(33). Hoeffding’s inequality states that
if {Zj}Lj=1 is a sequence of independent random variables and
P(0 ≤ Zj ≤ 1) = 1 for all j, then [74, Th.4]:

P
( L∑

j=1

Zj −
L∑

j=1

E
[
Zj

]
≥ τ

)
≤ exp

[
− 2τ2

L

]
(34)

P
( L∑

j=1

Zj −
L∑

j=1

E
[
Zj

]
≤ −τ

)
≤ exp

[
− 2τ2

L

]
, (35)

for any τ > 0. We apply (35) to the second term in (32)
and (34) to the third term. This is done by showing that h is
the sum of |Σ| independent random variables, taking values
in [0, 1] with probability 1, and whose expected values sum
to µ. Note that µ > 0 by definition, and t > 1 by assumption.

We start by noticing that the components of ε that contribute
to h are the ones for which σ2

j 6= 0, i.e., j ∈ Σ (otherwise,
εj = 0 with probability 1). Using x?j = wj + εj [cf. (1a)], we
have h =

∑
j∈Σ Zj , where Zj is the indicator of the event

εj > max
{

0, −wj

}
or εj < min

{
0, −wj

}
, (36)

that is, Zj = 1 if (36) holds, and Zj = 0 otherwise. By
construction, 0 ≤ Zj ≤ 1 for all j. Furthermore, because
the components of ε are independent, so are the random
variables Zj . All we have left to do is to show that the sum of
the expected values of Zj conditioned on A and D equals µ.
This involves just simple integration. Let j ∈ Σ. Then,

E
[
Zj

∣∣A, D] = P
(
Zj = 1

∣∣A, D) (37)

= P
(
εj > max

{
0, −wj

})
+ P

(
εj < min

{
0, −wj

})
(38)

=
1 + exp

(
− λj

∣∣wj

∣∣)
2

(39)

=
1 + exp

(
−
√

2
∣∣wj

∣∣/σj)
2

. (40)

From (37) to (38), we used the fact that the events in (36)
are disjoint for any wj . From (38) to (39), we used the fact
that λj is finite for j ∈ Σ, and

P
(
εj > max

{
0, −wj

})
=

∫ +∞

max{−wj ,0}

λj
2

exp(−λj |u|) du

=

{ 1
2 , wj > 0

1
2 exp

(
λjwj

)
, wj < 0

P
(
εj < min

{
0, −wj

})
=

∫ min{−wj ,0}

−∞

λj
2

exp(λj |u|) du

=

{ 1
2 exp

(
− λiwj

)
, wj > 0

1
2 , wj < 0 .

And from (39) to (40) we simply replaced λj =
√

2/σj . The
expected value of h conditioned on A and D is then

E
[
h
∣∣A, D] = E

[∑
j∈Σ

Zj

∣∣A, D] =
∑
j∈Σ

E
[
Zj

∣∣A, D]
=

1

2

∑
j∈Σ

[
1 + exp

(
−
√

2
∣∣wj

∣∣/σj)] =: µ ,

where we used (40).
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