
Molineaux, M., Klenk, M., & Aha, D. 2010. Planning in dynamic environments: Extending HTNS with nonlinear continuous

effects. In Proceedings of Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10). Atlanta, GA.

Planning in Dynamic Environments:

Extending HTNs with Nonlinear Continuous Effects

Matt Molineaux
1
, Matthew Klenk

2
,

and

David W. Aha

2

1
Knexus Research Corporation; Springfield, VA 22153

2
Navy Center for Applied Research in Artificial Intelligence;

Naval Research Laboratory (Code 5514); Washington, DC 20375

matthew.molineaux@knexusresearch.com | {matthew.klenk.ctr,david.aha}@nrl.navy.mil

Abstract

Planning in dynamic continuous environments
requires reasoning about nonlinear continuous effects,
which previous Hierarchical Task Network (HTN)
planners do not support. In this paper, we extend an
existing HTN planner with a new state projection
algorithm. To our knowledge, this is the first HTN
planner that can reason about nonlinear continuous
effects. We use a wait action to instruct this planner to
consider continuous effects in a given state. We also
introduce a new planning domain to demonstrate the
benefits of planning with nonlinear continuous
effects. We compare our approach with a linear
continuous effects planner and a discrete effects HTN
planner on a benchmark domain, which reveals that
its additional costs are largely mitigated by domain
knowledge. Finally, we present an initial application
of this algorithm in a practical domain, a Navy
training simulation, illustrating the utility of this
approach for planning in dynamic continuous
environments.

1 Introduction

Hierarchical Task Network (HTN) planning is a
proven technique for quickly generating large plans
to solve problems in challenging environments (e.g.,
strategy simulations). These planners often represent
changes to the environment as discrete and
instantaneous, even though aspects of these
environments change continuously over time,
frequently as the result of exogenous events. We
show that this limiting assumption can be
problematic for HTN planners. Therefore, we
developed SHOP2PDDL+, an extension of SHOP2
(Nau et al. 2003) that can reason about nonlinear
continuous effects. In particular, it reasons explicitly
about fluents, which are values that change over time
(e.g., the amount of fuel on a ship), processes, which
describe when and how they change, and events,
which describe instantaneous occurrences resulting
from fluent changes. SHOP2PDDL+ uses a novel state
projection algorithm to predict the continuous and
discrete state of the environment at any arbitrary

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

point in the future, and a wait action to control the
passage of time during planning.
 In addition to extending SHOP2, we also: (1)
introduce a motivating, paradigmatic stunt car
planning domain that requires explicit reasoning
about nonlinear continuous effects; (2) empirically
compare (on benchmark tasks) the performance of
SHOP2PDDL+ with SHOP2 and COLIN (Coles et al.
2009), a planner that can reason about linear
continuous effects; and (3) describe an application of
SHOP2PDDL+ to tasks involving a Navy training
simulation, which demonstrates that our algorithm
can be applied to practical problems.
 We begin by discussing this training simulation
and our planning representation. Next, we introduce
the wait action, the state projection algorithm, and its
integration with SHOP2. Then we empirically assess
our planner’s performance on a range of planning
problems and close with a discussion of related and
future work.

2 TAO Sandbox and PDDL+

The TAO Sandbox is a strategy simulator used by the
US Navy for training Tactical Action Officers in anti-
submarine warfare (Auslander et al. 2009). Using it,
trainees accomplish their objectives by giving orders
to naval ships, planes, and helicopters. Vessel
positions, fuel levels, heading, and speed are
important fluents in this domain. The trainee’s
actions are orders, which occur instantaneously. The
effects of these orders may be instantaneous (e.g.,
launch a helicopter), of fixed duration (e.g., move to
a specific location), or of indefinite duration (e.g.,
follow another vessel). Therefore, agents interacting
with the TAO Sandbox must reason about
instantaneous changes and continuous effects.
 The HTN extensions that we present are motivated
by interest in applying a continuous planning
(desJardins et al. 1999) agent in the TAO Sandbox
domain. It must generate plans and monitor their
execution for opportunities and failures. Because the
TAO Sandbox is partially observable, this agent must
monitor both the discrete and continuous state of the
environment during plan execution. Frequently,
knowing the value of fluents at individual time points
is insufficient. Consider a vehicle that should have

Molineaux, M., Klenk, M., & Aha, D. 2010. Planning in dynamic environments: Extending HTNS with nonlinear continuous

effects. In Proceedings of Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10). Atlanta, GA.

five gallons of fuel when reaching its destination. If
the vehicle’s fuel level is changing more rapidly than
expected, perhaps due to a leak, then the agent should
detect this while the vehicle is moving and not wait
until after the action completes.
 PDDL+ (Fox and Long 2006) was designed to
support representations of mixed discrete-continuous
planning domains. In PDDL+, changes to the discrete
state occur as the result of both the agent’s actions
and events occurring in the environment. As
mentioned in Section 1, processes describe changes
to fluents occurring over time, while events describe
discrete state changes occurring at an instantaneous
point in time. Each PDDL+ planning domain
includes definitions for its processes and events in
terms of their participant types, conditions, and
effects. A process is active for each set of objects that
satisfies a process definition’s participant types and
conditions at a given time. All of the effects of
processes are continuous and represented using
algebraic functions, which describe the values of
fluents with respect to time. Similarly, an event
occurs when a set of objects satisfy the participant
types and conditions of an event definition. The
effects of an event describe discrete changes to the
state; as a result, the set of active processes may be
altered. In Section 3, we present a method for
projecting future states that is useful for HTN
planning in environments described using PDDL+.

3 Extensions for Continuous Effects

SHOP2PDDL+’s extensions to SHOP2 (Nau et al.
2003) include the addition of a wait action, which
allows the planner to reason about continuous effects,
and a state projection algorithm, which projects the
effects of active processes and occurring events.
Section 3.3 presents an example of this algorithm.

3.1 Wait Action

SHOP2 is a state space planner; at each step in its
search, applicable actions are considered to extend an
existing plan, and a new state is extrapolated. We
introduce a special wait action that, for the purposes
of search, appears to function as any other action.
The wait action takes one argument, wait-time,
representing the action’s duration.

1
 It is always

applicable, and because time passes during this
action, it is necessary to compute the effects of the
active processes and events that occur. All other
actions are instantaneous and added sequentially with
any number of actions occurring between waits.
Although this is similar to a mechanism described by
McDermott (2003), our wait action gives an agent the
ability to wait for any amount of time. However, this

1
This could easily be extended to include an arbitrary

condition. In this case, the duration would be until the

condition was satisfied in the environment.

freedom requires the agent to reason about how much
time is appropriate to wait.

3.2 State Projection Algorithm

Changes in the environment during the wait action
are projected using the state projection algorithm
summarized in Figure 1. It takes as inputs: the
starting time (tinit) and ending time (tend = tinit + wait-
time) of the wait action, the current state, and the
planning domain. This algorithm has three steps:
building the fluent update table, determining eligible
events, and updating the state until the time of the
next event. This is repeated until no events are left to
occur within the duration of the wait action.
 The fluent update table F describes all continuous
changes occurring after time tinit. To build it, the
algorithm iterates over each process definition p from
the planning domain. For each set of objects that
satisfy p’s participant types and conditions, an active
process pi is created. For each fluent f that is affected
by a continuous effect of pi, a fluent update function
uf(t) is created and added to F. (If there are multiple
fluent update functions referring to the same fluent,
they are combined through summation into a single
function in F.)
 In step 2, for each instantiation ei of each event
definition e, this algorithm inserts ei into the set of
eligible events (i.e., that may occur as a result of the
active processes). Also, it uses F to create an event
threshold function thc(t) for each continuous
condition c of each ei, where thc(t)=0 when c is
satisfied at time t.
 Because thc(t) may be defined using other fluents,
this algorithm (recursively) replaces them with their

Legend: S=State P=Planning domain, ce=continuous effect,

c=continuous condition, f=fluent, uf(t)F=fluent update

functions, thc(t)E=event threshold functions, tee=earliest

event time, tinit=start time, tend=wait end

State ProjectState(tinit, tend, S, P)
//Step 1: Build fluent-update-table F

For each process definition pP
For each pi in instantiations(p)

For each ce in pi, add uf(t) to F
//Step 2: Determine eligible-events
For each event definition eP

For each ei in instantiations(e)
Add ei to eligible-events
Add thc(t) to E for each c in ei

//Step 3: Update state to after next event
do until (∃ei , occurs(ei) or tee=tend)

For each thc(t) in E, tee=minRoot(tinit ,tend, thc(t)))
For each uf(t) in F, S.f=uf(tee)
For each ei in eligible-events

if(occurs(ei)), S=updateState(ei,S)
if(tee!=tend)
 then ProjectState (tee, tend, S, P)

 else return(S)

Figure 1: State projection algorithm

Molineaux, M., Klenk, M., & Aha, D. 2010. Planning in dynamic environments: Extending HTNS with nonlinear continuous

effects. In Proceedings of Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10). Atlanta, GA.

fluent update functions uf(t) until only constants and
the time variable t remain.
 Step 3 determines when the next event will occur
and updates the state accordingly. It begins by
initializing the earliest potential event time tee to the
latest time to be considered, tend. Then, for each event
threshold function thc(t), it searches for a root (i.e.,
where thc(t)=0) in the range [tinit, tee). If one is found,
the algorithm updates tee to the minimum root tminRoot
in this range. That is, thc(tminRoot)=0 and ∀t thc(t)=0, t
≥ tminRoot. Thus, tminRoot is the next time point at which
event ei may potentially occur. To find the minimum
root of thc(t), recursive searches are made for extrema
(i.e., maxima and minima) using golden section
search and roots using bisection (Press et al. 2007).
When a root is found at time troot, search continues
for the smaller range [tinit, troot) until all extrema in the
search range are either all negative or all positive. At
this point, we know tminRoot=troot for thc(t). After
iterating through each event threshold function, the
resulting tee is the next time point at which any event
may occur.
 Next, the algorithm updates the continuous state
and determines if any events occur. For each fluent
update function uf(t), the algorithm updates fluent f to
uf(tee). Then, if the conditions of any of the eligible
events ei are satisfied, the discrete state is updated
accordingly. Otherwise, Step 3 is repeated. However,
if an event did occur, then the set of active processes
may have changed. Therefore, the entire procedure is
repeated until no event occurs prior to tend, at which
time all fluents are updated to uf(tend). We next
present an example to illustrate this process.

3.3 Example

Table 1: Process for projecting a ship’s position, where #t

is a special variable that denotes time in PDDL+

Process Name ShipMovement

Participants ?ship type = NavalShip

Conditions
(Discrete Only)

(movingTo ?ship ?x ?y)
(speedOf ?ship ?speed)

Effects
(Continuous Only)

(increase (atX ?ship)
 (* (cos (headingOf ?ship))
 ?speed #t))
(increase (atY ?ship)
 (* (sin (headingOf ?ship))
 ?speed #t))

Consider the following example of a ship moving in
the TAO Sandbox environment. To represent a ship’s
motion, we define the ship movement process shown
in Table 1. This process has one participant of type
NavalShip representing the moving ship. Its
conditions include the ship’s destination and speed.
The continuous effects define functions that update
the ship’s location with respect to time. The update
functions are defined in terms of the fluent
headingOf, which could vary continuously at the
same time as a result of another active process.

Table 2: Event definition for the end of a ship's movement

When the ship reaches its destination, its new
position will trigger the end of movement event
defined in Table 2. Like the ShipMovement process
definition, the EndOfMovement event definition has
one participant of type NavalShip. It has two discrete
conditions and one continuous condition relating the
fluents representing the ship’s coordinates to its
destination. The effect of this event is that the ship is
no longer moving toward its destination.

Consider a situation in which the agent has just
taken the action of ordering a ship, Ship1, to move to
location (5.6, 7.8). Figure 2 shows the current state.
The continuous state includes fluents describing the
location and heading of the ship and the discrete state
includes the ship’s speed and its current orders.
 From this state, the planner applies the wait(2)
action. To determine the state after 2 time units, the
planner uses the state prediction algorithm with the
above event and process definitions. There is only
one possible set of participants for the ShipMovement
process definition: ?ship = Ship1. The conditions are
satisfied for this binding, resulting in one active
process with two fluent update functions:

(atX Ship1) , uf(#t) =
 (+ 3.4 (*(cos (headingOf Ship1)) 20 #t))
(atY Ship1) , uf(#t) =
 (+ 2.3 (*(sin (headingOf Ship1)) 20 #t))

The fluent update table F, consisting of these two
functions, determines the ship’s location until the
next event. To project the state forward, we generate
a set of eligible events. In this situation, there is only
one set of objects that satisfies the EndOfMovement
event’s types and discrete conditions: {?ship =

Ship1}. This event has one continuous condition:

(<= (dist (atX Ship1) (atY Ship1) 5.6 7.8)
 0.5)

From this, the algorithm creates the following event
threshold function:

 thc(#t)=
 (- (dist (+ 3.4 (* (cos 68.2) 20 #t))
 (+ 2.3 (* (sin 68.2) 20 #t))
 5.6 7.8)

Event Name EndOfMovement

Participants ?ship type = NavalShip

Conditions
(Discrete and

 Continuous)

(movingTo ?ship ?x ?y)
(speedOf ?ship ?speed)
(<=(dist(atX ?ship)(atY ?ship)
 ?x ?y)
 0.5)

Effects
(Discrete and
 Continuous)

(not (movingTo ?ship ?x ?y))
(not (speedOf ?ship ?speed))
(speedOf ?ship 0)

(atX Ship1) = 3.4 (Continuous)
(atY Ship1) = 2.3 (Continuous)
(headingOf Ship1) = 68.2 (Continuous)
(speedOf Ship1 20) (Discrete)
(isa Ship1 NavalShip) (Discrete)
(movingTo Ship1 5.6 7.8) (Discrete)

Figure 2: Initial TAO Sandbox state (simplified for clarity)

Molineaux, M., Klenk, M., & Aha, D. 2010. Planning in dynamic environments: Extending HTNS with nonlinear continuous

effects. In Proceedings of Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10). Atlanta, GA.

 0.5)

Step 3 of the state projection algorithm begins by
finding the minimum root for thc(#t). In this case,
thc(#t) = 0 when #t = .271. To determine if any events
occur at this point, the algorithm updates each fluent
fF to the value given by uf(.271). In this case, the
values for (atX Ship1) and (atY Ship1) are found
to be 5.41 and 7.34, respectively. These satisfy the
continuous condition for the eligible EndOfMovement
event. Therefore, this event occurs, which updates the
discrete state by deleting the movement statement,
(movingTo Ship1 5.6 7.8), and updating the ship’s
speed, (speedOf Ship1 0). No other events are
eligible to occur. Because .271 is less than 2, another
iteration of the algorithm is performed. No processes
are now active, as no set of objects satisfies the
ShipMovement process definition conditions.
Therefore, the state remains the same until wait
action ends.

3.4 Incorporation into HTN planning

Our agent uses the SHOP2 (Nau et al. 2003) planner.
SHOP2 takes as input a task to be performed and
produces a sequence of actions. The task is
decomposed into subtasks and actions using methods.
We use this hierarchical structure to determine when
to apply a wait action and for how long. Consider the
ship movement example above. The method and
action in Figure 3 decompose the
movingShipAndWait method into a move action,
which issues a move order to a single ship, and a wait
action, which allows the movement process to update
the state over time. The durationOfMovement
precondition determines the predicted amount of time
required for the ship to reach its destination.
Therefore, the planner can predict the state after the
ship’s movement and continue planning.

4 Evaluation

To evaluate the utility of our approach, we performed
a series of case studies with the following objectives:

 Illustrate the class of problems for which our
method is capable of generating plans

 Determine the comparative costs of our approach
vs. existing methods on benchmark problems

 Ascertain its applicability in strategy simulations

4.1 Illustrative Domains

First, we tested SHOP2PDDL+ on Howey and Long’s
(2003) generator problem, which has linear
continuous effects. This problem requires a generator
to run for 100 time units. Its fuel tank has a 90 unit
capacity, and it consumes one unit of fuel per unit of
time. A refill action is available that adds two units of
fuel per unit of time. We added an HTN method to
the planning domain that determines when, after the
generator starts running, to begin the refueling
process. Our state prediction algorithm accurately
projects the continuous effects of the refueling
process, and the planner creates a successful plan.
 To illustrate the importance of reasoning about
nonlinear continuous effects, we introduce a stunt car
domain inspired by Hollywood action movies. This
domain includes a stunt car and a wall. Its two
processes, acceleration and changing position, affect
the car’s velocity and position using the following
continuous effects:

(increase (vel ?obj) (* (accel ?obj) #t))

(increase (pos ?car) (* (vel ?car) #t))

As a result, the position of the car is a nonlinear
function of time. This domain’s only action is to
apply the brake, which begins the acceleration
process with an acceleration of -14m/s

2
. In this

domain, a crash, described by an event definition,
occurs when the positions for the car and wall are the
same. If the crash occurs at over 13m/s, the driver
dies. If the crash occurs below 9m/s, the crash is not
spectacular enough. If the crash occurs between 9m/s
and 13m/s, then there is spectacular crash and the
driver survives, accomplishing the goal. In our simple
test problem, the stunt car begins 100m away from
the wall, traveling at a speed of 44m/s. Using an
HTN method, SHOP2PDDL+ is able to generate a
successful plan, indicating that it can reason about
nonlinear continuous effects.

4.2 Empirical Comparison: Rover Domain

To assess the additional costs of SHOP2PDDL+, we
compared its performance on a modified single rover
domain

2
 that was used to test COLIN (Coles et al.

2009), a linear continuous planner. Specifically, we
compare SHOP2PDDL+’s plan generation times on 20
planning problems from this domain to COLIN’s
previously reported plan generation times. These
problems were generated using the IPC3 parameters
permitting a comparison to SHOP2’s performance in
the competition (Long and Fox 2003). Given that the
nature of these comparisons (i.e., domain-
independent versus HTN planners running on
different hardware) prevents a quantitative analysis,

2
PDDL domain and planning files were downloaded

from the COLIN website at:
personal.cis.strath.ac.uk/~amanda/ContinuousPlanning/

(defMethod
 (movingShipAndWait ?ship ?to-x ?to-y)
 :preconditions
 (durationOfMovement ?ship ?to-x ?to-y
 ?duration)
 :subtasks
 (move ?ship ?to-x ?to-y)
 (wait ?duration))

(defAction (move ?unit ?x ?y)
 :preconditions
 (not (movingTo ?unit ?x ?y))
 :effects (movingTo ?unit ?x ?y))

Figure 3: HTN method and action for moving a ship

Molineaux, M., Klenk, M., & Aha, D. 2010. Planning in dynamic environments: Extending HTNS with nonlinear continuous

effects. In Proceedings of Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10). Atlanta, GA.

we focus on a qualitative assessment of the additional
costs of SHOP2PDDL+.

The results, shown in Figure 4, compare the
average planning time of SHOP2PDDL+ to the other
two planners. To better illustrate scaling issues, we
group the problems by their difficulty as determined
by the IPC3 parameters. Both SHOP2 and
SHOP2PDDL+ solved all the planning problems, while
COLIN failed on three of the “challenging” and one
of the “medium” problems.

Our analysis of these results identifies two key
observations. First, the expected large performance
gains of HTN planning vs. domain-independent
approaches occur. Second, our comparison with
SHOP2 indicates that there is significant overhead in
projecting all continuous values through all states. An
important aspect of future work is to explore dynamic
programming methods for improving efficiency, but
this result establishes a baseline performance for an
HTN planner reasoning about continuous effects.

4.3 Application to the TAO Sandbox

In the TAO Sandbox, our planner can generate plans
for 6 distinct scenarios. Our domain model contains 7
process definitions and 30 event definitions. We
tested it in scenarios containing up to 12 distinct
moving vessels. Typically, SHOP2PDDL+ generates
solution plans of 50+ actions in about 1 second. Our
future work will explore the quality of the generated
plans and the utility of state projection by assessing
results of plan execution in this environment.

4.4 General Discussion

The generator and stunt car problems demonstrate
that our planner can reason about domains with linear
and non-linear continuous effects. Furthermore,
results on the rover domains indicate that, while there
is a significant cost in plan generation time, it is
largely mitigated by domain knowledge required for
HTN planning. The results from the rover domain

and TAO Sandbox indicate that the overhead of our
approach for planning with nonlinear continuous
effects is sufficiently low to encourage its further
application to strategy simulation tasks.

5 Related work

Within the HTN planning community, several efforts
have focused on reasoning about temporal domains.
The majority of this work focused on using the
structure of HTNs to propagate temporal constraints
(e.g., Yorke-Smith 2005, Castillo et al. 2006). We are
not aware of any HTN planner that reasons about the
(linear or nonlinear) continuous effects of actions or
exogenous events.
 Work exploring planning with continuous
processes began with Zeno (Penberthy and Weld
1994), which modeled processes using differential
equations. While an important first step, Zeno cannot
reason about multiple processes that affect a single
fluent.
 More recently, a common approach to temporal
planning problems has been to sidestep continuous
reasoning by transforming each temporal action into
an instantaneous action (Cushing et al. 2007).
Unfortunately, this approach is insufficient for
domains with rich temporal interactions between
actions, processes, and events (e.g., domains in which
concurrent actions are required to achieve a solution).

Recognizing this limitation, several planners have
been developed for temporal reasoning about
continuous effects. The Optop estimated-regression
planner (McDermott 2003) uses a similar strategy to
ours for temporally projecting the continuous state at
the time of a wait action. Unlike our approach, it
requires the planner to plan after the next event
occurs instead of from an arbitrary point in the future.
As indicated previously, COLIN can represent the
continuous effects of durative actions (Coles et al.
2009). While useful in some environments,
representations using durative actions, rather than
processes, do not allow a planner to reason about the
long-term consequences of exogenous events.
 COLIN and Optop both focus solely on linear
changes to fluents. SHOP2PDDL+ instead reasons
about processes whose effects contain arbitrary
continuous functions. Similar to our work, Kongming
(Li and Williams 2008) can project nonlinear
continuous effects of durative actions using
flowtubes. It encodes undersea navigation problems
in a mixed logic linear/non-linear program solvable
using standard techniques. While a promising
approach, there is considerable difficulty in extending
Kongming’s approach to reason about actions with
variable durations. However, actions with variable
duration are common in strategy simulations (e.g.,
consider the ship-moving process for the TAO
Sandbox). VAL (Howey et al. 2004) addresses
polynomial continuous effects for plan validation and

0.01

0.1

1

10

100

1000

Easy Medium Hard Challenging

Ti
m

e
 (

se
co

n
d

s)

Problem Difficulty

SHOP2_PDDL+

SHOP2 (IPC3)

COLIN

Figure 4: Comparison of plan generation times for

SHOP2PDDL+, SHOP2, and COLIN on rover problems,

sorted by problem difficulty

Molineaux, M., Klenk, M., & Aha, D. 2010. Planning in dynamic environments: Extending HTNS with nonlinear continuous

effects. In Proceedings of Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10). Atlanta, GA.

repair in mixed-initiative planning with application to
another practical domain (i.e., space missions). In
contrast, our focus is on arbitrary continuous effects
in the context of automated planning.
 Baral et al. (2002) define a similar state projection
algorithm using an alternative formalization for
planning with continuous effects. By using the
PDDL+ formalization, our approach considers
exogenous changes in the environment.

6 Conclusions

We presented a novel state projection algorithm for
use in continuous temporal environments and
illustrated its implementation in SHOP2PDDL+, an
HTN planner. Unlike previous approaches, our
algorithm allows for continuous effects to contain
arbitrary continuous functions, and our wait operator
allows the planner to consider future actions at any
time.
 Our focus is on the projection of fluents within
individual states with respect to time. Therefore,
SHOP2PDDL+ needs to predict the duration of actions
and their continuous effects. This is necessary for
planning, as shown above, and for plan-monitoring
agents. SHOP2PDDL+ was developed in the context of
a continuous planning agent, which reasons about its
goals while performing tasks in the TAO Sandbox
simulation (Molineaux et al. 2010).
 In future work, we intend to empirically evaluate
SHOP2PDDL+ to determine the scalability and
effectiveness of its state projection algorithm across a
variety of challenging tasks. We expect this
algorithm to allow agents to generate plans for these
scenarios and quickly identify potential problems and
opportunities. We believe that continuous planning
will improve the performance of intelligent agents in
these strategy simulations, resulting in more flexible
opponents and intelligent teammates.

Acknowledgements

This research was supported by DARPA IPTO
(MIPRs 09-Y213 and 09-Y214). Matthew Klenk is
supported by an NRC postdoctoral fellowship.

References

Auslander, B., Molineaux, M., Aha, D.W., Munro, A., &

Pizzini, Q. (2009). Towards research on goal reasoning

with the TAO Sandbox (Technical Report AIC-09-155).

Washington, DC: Naval Research Laboratory, Navy Center

for Applied Research on AI.

Baral, C., Son, T., and Tuan, L. (2002). A transition

function based characterization of actions with delayed and

continuous effects. In Proceedings of KR-02. p. 291-302

Castillo, L.; Fdez-Olivares, J.; Garcıa-Perez, O.; and Palao,

F. (2006). Efficiently handling temporal knowledge in an

HTN planner. In Sixteenth International Conference on

Automated Planning and Scheduling.

Coles, A., Coles, A., Fox, M., and Long, D. (2009).

Temporal planning in domains with linear processes. In

Proceedings of the International Joint Conference on

Artificial Intelligence (IJCAI). Pasadena, CA.

Cushing, W., Kambhampati, S., Mausam, and Weld, D.

(2007). When is temporal planning really temporal

planning. In Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI). p. 1852-

1859. Hyderabad, India.

desJardins, M., Durfee, E., Ortiz, C., & Wolverton, M.

(1999). A survey of research in distributed, continual

planning. AI Magazine, 20(4), 13–22.

Fox, M. & Long, D. (2006). Modelling mixed discrete-

continuous domains for planning. Journal of Artificial

Intelligence Research, 27:235-297.

R. Howey and D. Long. (2003). Validating plans with

continuous effects. In Proc. of the 22nd Workshop of the

UK Planning and Scheduling Special Interest Group.

Howey, R., Long, D., and Fox., M. (2004). VAL:

Automatic Plan Validation, Continuous Effects and Mixed

Initiative Planning using PDDL. The 16th IEEE

International Conference on Tools with Artificial

Intelligence. pp. 294-301.

Li, H. & Williams, B. (2008). Generative systems for

hybrid planning based on flowtubes. In Proceedings of the

18th International Conference on Automated Planning and

Scheduling (ICAPS).

Long, D. & Fox, M. (2003). The 3rd International Planning

Competition: Results and analysis. Journal of Artificial

Intelligence Research. 20: 1-59.

McDermott, D. (2003). Reasoning about autonomous

processes in an estimated regression planner. In

Proceedings of the 13th International Conference on

Automated Planning and Scheduling (ICAPS).

Molineaux, M., Klenk, M. & Aha, D. (2010). Goal-driven

autonomy in a navy strategy simulation. In Twenty-Fourth

AAAI Conference on Artificial Intelligence (AAAI-10).

Atlanta, Georgia.

Nau, D., Au, T.-C., Ilghami, O., Kuter, U., Murdock, J. W.,

Wu, D., & Yaman, F. (2003). SHOP2: An HTN planning

system. Journal of Artificial Intelligence Research. 20:379–

404.

Penberthy, J. & Weld, D. (1994). Temporal Planning with

Continuous Change. Proceedings of AAAI-94. Seattle, WA.

Press, W., Teukolsky, S., Vetterling, W., and Flannery, B.

(2007). Numerical Recipes 3rd Edition: the Art of Scientific

Computing. Cambridge University Press.

Yorke-Smith, N. (2005). Exploiting the structure of

hierarchical plans in temporal constraint propagation. In

Proceedings of the 20th National Conference on Artificial

Intelligence. pp. 1223-1228. Pittsburgh, PA.

