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Abstract 

Planning in dynamic continuous environments 
requires reasoning about nonlinear continuous effects, 
which previous Hierarchical Task Network (HTN) 
planners do not support. In this paper, we extend an 
existing HTN planner with a new state projection 
algorithm. To our knowledge, this is the first HTN 
planner that can reason about nonlinear continuous 
effects. We use a wait action to instruct this planner to 
consider continuous effects in a given state. We also 
introduce a new planning domain to demonstrate the 
benefits of planning with nonlinear continuous 
effects. We compare our approach with a linear 
continuous effects planner and a discrete effects HTN 
planner on a benchmark domain, which reveals that 
its additional costs are largely mitigated by domain 
knowledge. Finally, we present an initial application 
of this algorithm in a practical domain, a Navy 
training simulation, illustrating the utility of this 
approach for planning in dynamic continuous 
environments. 

1 Introduction   

Hierarchical Task Network (HTN) planning is a 
proven technique for quickly generating large plans 
to solve problems in challenging environments (e.g., 
strategy simulations). These planners often represent 
changes to the environment as discrete and 
instantaneous, even though aspects of these 
environments change continuously over time, 
frequently as the result of exogenous events. We 
show that this limiting assumption can be 
problematic for HTN planners. Therefore, we 
developed SHOP2PDDL+, an extension of SHOP2 
(Nau et al. 2003) that can reason about nonlinear 
continuous effects. In particular, it reasons explicitly 
about fluents, which are values that change over time 
(e.g., the amount of fuel on a ship), processes, which 
describe when and how they change, and events, 
which describe instantaneous occurrences resulting 
from fluent changes. SHOP2PDDL+ uses a novel state 
projection algorithm to predict the continuous and 
discrete state of the environment at any arbitrary 
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point in the future, and a wait action to control the 
passage of time during planning. 
 In addition to extending SHOP2, we also: (1) 
introduce a motivating, paradigmatic stunt car 
planning domain that requires explicit reasoning 
about nonlinear continuous effects; (2) empirically 
compare (on benchmark tasks) the performance of 
SHOP2PDDL+ with SHOP2 and COLIN (Coles et al. 
2009), a planner that can reason about linear 
continuous effects; and (3) describe an application of 
SHOP2PDDL+ to tasks involving a Navy training 
simulation, which demonstrates that our algorithm 
can be applied to practical problems. 
 We begin by discussing this training simulation 
and our planning representation. Next, we introduce 
the wait action, the state projection algorithm, and its 
integration with SHOP2. Then we empirically assess 
our planner’s performance on a range of planning 
problems and close with a discussion of related and 
future work. 

2 TAO Sandbox and PDDL+ 

The TAO Sandbox is a strategy simulator used by the 
US Navy for training Tactical Action Officers in anti-
submarine warfare (Auslander et al. 2009). Using it, 
trainees accomplish their objectives by giving orders 
to naval ships, planes, and helicopters. Vessel 
positions, fuel levels, heading, and speed are 
important fluents in this domain. The trainee’s 
actions are orders, which occur instantaneously. The 
effects of these orders may be instantaneous (e.g., 
launch a helicopter), of fixed duration (e.g., move to 
a specific location), or of indefinite duration (e.g., 
follow another vessel). Therefore, agents interacting 
with the TAO Sandbox must reason about 
instantaneous changes and continuous effects. 
 The HTN extensions that we present are motivated 
by interest in applying a continuous planning 
(desJardins et al. 1999) agent in the TAO Sandbox 
domain. It must generate plans and monitor their 
execution for opportunities and failures. Because the 
TAO Sandbox is partially observable, this agent must 
monitor both the discrete and continuous state of the 
environment during plan execution. Frequently, 
knowing the value of fluents at individual time points 
is insufficient. Consider a vehicle that should have 



Molineaux, M., Klenk, M., & Aha, D. 2010. Planning in dynamic environments: Extending HTNS with nonlinear continuous 

effects. In Proceedings of Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10). Atlanta, GA. 

five gallons of fuel when reaching its destination. If 
the vehicle’s fuel level is changing more rapidly than 
expected, perhaps due to a leak, then the agent should 
detect this while the vehicle is moving and not wait 
until after the action completes. 
 PDDL+ (Fox and Long 2006) was designed to 
support representations of mixed discrete-continuous 
planning domains. In PDDL+, changes to the discrete 
state occur as the result of both the agent’s actions 
and events occurring in the environment. As 
mentioned in Section 1, processes describe changes 
to fluents occurring over time, while events describe 
discrete state changes occurring at an instantaneous 
point in time. Each PDDL+ planning domain 
includes definitions for its processes and events in 
terms of their participant types, conditions, and 
effects. A process is active for each set of objects that 
satisfies a process definition’s participant types and 
conditions at a given time. All of the effects of 
processes are continuous and represented using 
algebraic functions, which describe the values of 
fluents with respect to time. Similarly, an event 
occurs when a set of objects satisfy the participant 
types and conditions of an event definition. The 
effects of an event describe discrete changes to the 
state; as a result, the set of active processes may be 
altered. In Section 3, we present a method for 
projecting future states that is useful for HTN 
planning in environments described using PDDL+. 

3 Extensions for Continuous Effects 

SHOP2PDDL+’s extensions to SHOP2 (Nau et al. 
2003) include the addition of a wait action, which 
allows the planner to reason about continuous effects, 
and a state projection algorithm, which projects the 
effects of active processes and occurring events. 
Section 3.3 presents an example of this algorithm. 

3.1 Wait Action 

SHOP2 is a state space planner; at each step in its 
search, applicable actions are considered to extend an 
existing plan, and a new state is extrapolated. We 
introduce a special wait action that, for the purposes 
of search, appears to function as any other action. 
The wait action takes one argument, wait-time, 
representing the action’s duration.

1
 It is always 

applicable, and because time passes during this 
action, it is necessary to compute the effects of the 
active processes and events that occur. All other 
actions are instantaneous and added sequentially with 
any number of actions occurring between waits. 
Although this is similar to a mechanism described by 
McDermott (2003), our wait action gives an agent the 
ability to wait for any amount of time. However, this 

                                                 
1
This could easily be extended to include an arbitrary 

condition. In this case, the duration would be until the 

condition was satisfied in the environment. 

freedom requires the agent to reason about how much 
time is appropriate to wait.  

3.2 State Projection Algorithm 

Changes in the environment during the wait action 
are projected using the state projection algorithm 
summarized in Figure 1. It takes as inputs: the 
starting time (tinit) and ending time (tend = tinit + wait-
time) of the wait action, the current state, and the 
planning domain. This algorithm has three steps: 
building the fluent update table, determining eligible 
events, and updating the state until the time of the 
next event. This is repeated until no events are left to 
occur within the duration of the wait action. 
 The fluent update table F describes all continuous 
changes occurring after time tinit. To build it, the 
algorithm iterates over each process definition p from 
the planning domain. For each set of objects that 
satisfy p’s participant types and conditions, an active 
process pi is created. For each fluent f that is affected 
by a continuous effect of pi, a fluent update function 
uf(t) is created and added to F. (If there are multiple 
fluent update functions referring to the same fluent, 
they are combined through summation into a single 
function in F.) 
 In step 2, for each instantiation ei of each event 
definition e, this algorithm inserts ei into the set of 
eligible events (i.e., that may occur as a result of the 
active processes). Also, it uses F to create an event 
threshold function thc(t) for each continuous 
condition c of each ei, where thc(t)=0 when c is 
satisfied at time t. 
 Because thc(t) may be defined using other fluents, 
this algorithm (recursively) replaces them with their 

Legend: S=State P=Planning domain, ce=continuous effect, 

c=continuous condition, f=fluent, uf(t)F=fluent update 

functions, thc(t)E=event threshold functions, tee=earliest 

event time, tinit=start time, tend=wait end 

State ProjectState(tinit, tend, S, P) 
//Step 1: Build fluent-update-table F 

For each process definition pP 
For each pi in instantiations(p) 

For each ce in pi, add uf(t) to F  
//Step 2: Determine eligible-events 
For each event definition eP 

For each ei in instantiations(e) 
Add ei to eligible-events 
Add thc(t) to E for each c in ei 

//Step 3: Update state to after next event 
do until (∃ei , occurs(ei ) or tee=tend) 

For each thc(t) in E, tee=minRoot(tinit ,tend, thc(t))) 
For each uf(t) in F, S.f=uf(tee) 
For each ei in eligible-events  

if(occurs(ei)), S=updateState(ei,S) 
if(tee!=tend) 
   then ProjectState (tee, tend, S, P) 

      else return(S) 

Figure 1: State projection algorithm 
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fluent update functions uf(t) until only constants and 
the time variable t remain. 
 Step 3 determines when the next event will occur 
and updates the state accordingly. It begins by 
initializing the earliest potential event time tee to the 
latest time to be considered, tend. Then, for each event 
threshold function thc(t), it searches for a root (i.e., 
where thc(t)=0) in the range [tinit, tee). If one is found, 
the algorithm updates tee to the minimum root tminRoot 
in this range. That is, thc(tminRoot)=0 and ∀t thc(t)=0, t 
≥ tminRoot. Thus, tminRoot is the next time point at which 
event ei may potentially occur. To find the minimum 
root of thc(t), recursive searches are made for extrema 
(i.e., maxima and minima) using golden section 
search and roots using bisection (Press et al. 2007). 
When a root is found at time troot, search continues 
for the smaller range [tinit, troot) until all extrema in the 
search range are either all negative or all positive. At 
this point, we know tminRoot=troot for thc(t). After 
iterating through each event threshold function, the 
resulting tee is the next time point at which any event 
may occur. 
 Next, the algorithm updates the continuous state 
and determines if any events occur. For each fluent 
update function uf(t), the algorithm updates fluent f to 
uf(tee). Then, if the conditions of any of the eligible 
events ei are satisfied, the discrete state is updated 
accordingly. Otherwise, Step 3 is repeated. However, 
if an event did occur, then the set of active processes 
may have changed. Therefore, the entire procedure is 
repeated until no event occurs prior to tend, at which 
time all fluents are updated to uf(tend). We next 
present an example to illustrate this process. 

3.3 Example 

Table 1: Process for projecting a ship’s position, where #t 

is a special variable that denotes time in PDDL+ 

Process Name ShipMovement 

Participants ?ship type = NavalShip 

Conditions 
(Discrete Only) 

(movingTo ?ship ?x ?y) 
(speedOf ?ship ?speed) 

Effects 
(Continuous Only) 

(increase (atX ?ship)  
   (* (cos (headingOf ?ship)) 
      ?speed #t))  
(increase (atY ?ship)  
   (* (sin (headingOf ?ship)) 
      ?speed #t))  

 
Consider the following example of a ship moving in 
the TAO Sandbox environment. To represent a ship’s 
motion, we define the ship movement process shown 
in Table 1. This process has one participant of type 
NavalShip representing the moving ship. Its 
conditions include the ship’s destination and speed. 
The continuous effects define functions that update 
the ship’s location with respect to time. The update 
functions are defined in terms of the fluent 
headingOf, which could vary continuously at the 
same time as a result of another active process. 

Table 2: Event definition for the end of a ship's movement 

When the ship reaches its destination, its new 
position will trigger the end of movement event 
defined in Table 2. Like the ShipMovement process 
definition, the EndOfMovement event definition has 
one participant of type NavalShip. It has two discrete 
conditions and one continuous condition relating the 
fluents representing the ship’s coordinates to its 
destination. The effect of this event is that the ship is 
no longer moving toward its destination. 

Consider a situation in which the agent has just 
taken the action of ordering a ship, Ship1, to move to 
location (5.6, 7.8). Figure 2 shows the current state. 
The continuous state includes fluents describing the 
location and heading of the ship and the discrete state 
includes the ship’s speed and its current orders. 
 From this state, the planner applies the wait(2) 
action. To determine the state after 2 time units, the 
planner uses the state prediction algorithm with the 
above event and process definitions. There is only 
one possible set of participants for the ShipMovement 
process definition: ?ship = Ship1. The conditions are 
satisfied for this binding, resulting in one active 
process with two fluent update functions: 

(atX Ship1) , uf(#t) =  
   (+ 3.4 (*(cos (headingOf Ship1)) 20 #t)) 
(atY Ship1) , uf(#t) =  
   (+ 2.3 (*(sin (headingOf Ship1)) 20 #t)) 

The fluent update table F, consisting of these two 
functions, determines the ship’s location until the 
next event. To project the state forward, we generate 
a set of eligible events. In this situation, there is only 
one set of objects that satisfies the EndOfMovement 
event’s types and discrete conditions: {?ship = 

Ship1}. This event has one continuous condition: 

(<= (dist (atX Ship1) (atY Ship1) 5.6 7.8) 
     0.5) 

From this, the algorithm creates the following event 
threshold function: 

 thc(#t)=  
    (- (dist (+ 3.4 (* (cos 68.2) 20 #t))  
             (+ 2.3 (* (sin 68.2) 20 #t)) 
             5.6 7.8) 

Event Name EndOfMovement 

Participants ?ship type = NavalShip 

Conditions 
(Discrete and 

 Continuous) 

(movingTo ?ship ?x ?y) 
(speedOf ?ship ?speed) 
(<=(dist(atX ?ship)(atY ?ship) 
        ?x ?y) 
    0.5) 

Effects 
(Discrete and 
 Continuous) 

(not (movingTo ?ship ?x ?y)) 
(not (speedOf ?ship ?speed)) 
(speedOf ?ship 0) 

(atX Ship1) = 3.4 (Continuous) 
(atY Ship1) = 2.3 (Continuous) 
(headingOf Ship1) = 68.2 (Continuous) 
(speedOf Ship1 20) (Discrete) 
(isa Ship1 NavalShip) (Discrete) 
(movingTo Ship1 5.6 7.8) (Discrete) 

Figure 2: Initial TAO Sandbox state (simplified for clarity) 
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       0.5) 

Step 3 of the state projection algorithm begins by 
finding the minimum root for thc(#t).  In this case, 
thc(#t) = 0 when #t = .271. To determine if any events 
occur at this point, the algorithm updates each fluent 
fF to the value given by uf(.271). In this case, the 
values for (atX Ship1) and (atY Ship1) are found 
to be 5.41 and 7.34, respectively. These satisfy the 
continuous condition for the eligible EndOfMovement 
event. Therefore, this event occurs, which updates the 
discrete state by deleting the movement statement, 
(movingTo Ship1 5.6 7.8), and updating the ship’s 
speed, (speedOf Ship1 0). No other events are 
eligible to occur. Because .271 is less than 2, another 
iteration of the algorithm is performed. No processes 
are now active, as no set of objects satisfies the 
ShipMovement process definition conditions. 
Therefore, the state remains the same until wait 
action ends. 

3.4 Incorporation into HTN planning 

Our agent uses the SHOP2 (Nau et al. 2003) planner. 
SHOP2 takes as input a task to be performed and 
produces a sequence of actions. The task is 
decomposed into subtasks and actions using methods. 
We use this hierarchical structure to determine when 
to apply a wait action and for how long. Consider the 
ship movement example above. The method and 
action in Figure 3 decompose the 
movingShipAndWait method into a move action, 
which issues a move order to a single ship, and a wait 
action, which allows the movement process to update 
the state over time. The durationOfMovement 
precondition determines the predicted amount of time 
required for the ship to reach its destination. 
Therefore, the planner can predict the state after the 
ship’s movement and continue planning.  

4 Evaluation 

To evaluate the utility of our approach, we performed 
a series of case studies with the following objectives: 

 Illustrate the class of problems for which our 
method is capable of generating plans 

 Determine the comparative costs of our approach 
vs. existing methods on benchmark problems 

 Ascertain its applicability in strategy simulations 

4.1 Illustrative Domains 

First, we tested SHOP2PDDL+ on Howey and Long’s 
(2003) generator problem, which has linear 
continuous effects. This problem requires a generator 
to run for 100 time units. Its fuel tank has a 90 unit 
capacity, and it consumes one unit of fuel per unit of 
time. A refill action is available that adds two units of 
fuel per unit of time. We added an HTN method to 
the planning domain that determines when, after the 
generator starts running, to begin the refueling 
process. Our state prediction algorithm accurately 
projects the continuous effects of the refueling 
process, and the planner creates a successful plan. 
  To illustrate the importance of reasoning about 
nonlinear continuous effects, we introduce a stunt car 
domain inspired by Hollywood action movies. This 
domain includes a stunt car and a wall. Its two 
processes, acceleration and changing position, affect 
the car’s velocity and position using the following 
continuous effects:  

(increase (vel ?obj) (* (accel ?obj) #t)) 

(increase (pos ?car) (* (vel ?car) #t)) 

As a result, the position of the car is a nonlinear 
function of time. This domain’s only action is to 
apply the brake, which begins the acceleration 
process with an acceleration of -14m/s

2
. In this 

domain, a crash, described by an event definition, 
occurs when the positions for the car and wall are the 
same. If the crash occurs at over 13m/s, the driver 
dies. If the crash occurs below 9m/s, the crash is not 
spectacular enough. If the crash occurs between 9m/s 
and 13m/s, then there is spectacular crash and the 
driver survives, accomplishing the goal. In our simple 
test problem, the stunt car begins 100m away from 
the wall, traveling at a speed of 44m/s. Using an 
HTN method, SHOP2PDDL+ is able to generate a 
successful plan, indicating that it can reason about 
nonlinear continuous effects. 

4.2 Empirical Comparison: Rover Domain 

To assess the additional costs of SHOP2PDDL+, we 
compared its performance on a modified single rover 
domain

2
 that was used to test COLIN (Coles et al. 

2009), a linear continuous planner. Specifically, we 
compare SHOP2PDDL+’s plan generation times on 20 
planning problems from this domain to COLIN’s 
previously reported plan generation times. These 
problems were generated using the IPC3 parameters 
permitting a comparison to SHOP2’s performance in 
the competition (Long and Fox 2003). Given that the 
nature of these comparisons (i.e., domain-
independent versus HTN planners running on 
different hardware) prevents a quantitative analysis, 
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PDDL domain and planning files were downloaded 

from the COLIN website at: 
personal.cis.strath.ac.uk/~amanda/ContinuousPlanning/ 

(defMethod  
  (movingShipAndWait ?ship ?to-x ?to-y) 
 :preconditions 
 (durationOfMovement ?ship ?to-x ?to-y  
          ?duration) 
 :subtasks 
 (move ?ship ?to-x ?to-y) 
 (wait ?duration)) 
 
(defAction (move ?unit ?x ?y) 
  :preconditions  
  (not (movingTo ?unit ?x ?y)) 
  :effects (movingTo ?unit ?x ?y)) 
 

Figure 3: HTN method and action for moving a ship 
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we focus on a qualitative assessment of the additional 
costs of SHOP2PDDL+. 

The results, shown in Figure 4, compare the 
average planning time of SHOP2PDDL+ to the other 
two planners. To better illustrate scaling issues, we 
group the problems by their difficulty as determined 
by the IPC3 parameters. Both SHOP2 and 
SHOP2PDDL+ solved all the planning problems, while 
COLIN failed on three of the “challenging” and one 
of the “medium” problems.  

Our analysis of these results identifies two key 
observations. First, the expected large performance 
gains of HTN planning vs. domain-independent 
approaches occur. Second, our comparison with 
SHOP2 indicates that there is significant overhead in 
projecting all continuous values through all states. An 
important aspect of future work is to explore dynamic 
programming methods for improving efficiency, but 
this result establishes a baseline performance for an 
HTN planner reasoning about continuous effects. 

4.3 Application to the TAO Sandbox 

In the TAO Sandbox, our planner can generate plans 
for 6 distinct scenarios. Our domain model contains 7 
process definitions and 30 event definitions. We 
tested it in scenarios containing up to 12 distinct 
moving vessels. Typically, SHOP2PDDL+ generates 
solution plans of 50+ actions in about 1 second. Our 
future work will explore the quality of the generated 
plans and the utility of state projection by assessing 
results of plan execution in this environment. 

4.4 General Discussion 

The generator and stunt car problems demonstrate 
that our planner can reason about domains with linear 
and non-linear continuous effects. Furthermore, 
results on the rover domains indicate that, while there 
is a significant cost in plan generation time, it is 
largely mitigated by domain knowledge required for 
HTN planning. The results from the rover domain 

and TAO Sandbox indicate that the overhead of our 
approach for planning with nonlinear continuous 
effects is sufficiently low to encourage its further 
application to strategy simulation tasks. 

5 Related work 

Within the HTN planning community, several efforts 
have focused on reasoning about temporal domains. 
The majority of this work focused on using the 
structure of HTNs to propagate temporal constraints 
(e.g., Yorke-Smith 2005, Castillo et al. 2006). We are 
not aware of any HTN planner that reasons about the 
(linear or nonlinear) continuous effects of actions or 
exogenous events. 
 Work exploring planning with continuous 
processes began with Zeno (Penberthy and Weld 
1994), which modeled processes using differential 
equations. While an important first step, Zeno cannot 
reason about multiple processes that affect a single 
fluent. 
 More recently, a common approach to temporal 
planning problems has been to sidestep continuous 
reasoning by transforming each temporal action into 
an instantaneous action (Cushing et al. 2007).  
Unfortunately, this approach is insufficient for 
domains with rich temporal interactions between 
actions, processes, and events (e.g., domains in which 
concurrent actions are required to achieve a solution). 

Recognizing this limitation, several planners have 
been developed for temporal reasoning about 
continuous effects. The Optop estimated-regression 
planner (McDermott 2003) uses a similar strategy to 
ours for temporally projecting the continuous state at 
the time of a wait action. Unlike our approach, it 
requires the planner to plan after the next event 
occurs instead of from an arbitrary point in the future. 
As indicated previously, COLIN can represent the 
continuous effects of durative actions (Coles et al. 
2009). While useful in some environments, 
representations using durative actions, rather than 
processes, do not allow a planner to reason about the 
long-term consequences of exogenous events.  
 COLIN and Optop both focus solely on linear 
changes to fluents. SHOP2PDDL+ instead reasons 
about processes whose effects contain arbitrary 
continuous functions. Similar to our work, Kongming 
(Li and Williams 2008) can project nonlinear 
continuous effects of durative actions using 
flowtubes. It encodes undersea navigation problems 
in a mixed logic linear/non-linear program solvable 
using standard techniques. While a promising 
approach, there is considerable difficulty in extending 
Kongming’s approach to reason about actions with 
variable durations. However, actions with variable 
duration are common in strategy simulations (e.g., 
consider the ship-moving process for the TAO 
Sandbox). VAL (Howey et al. 2004) addresses 
polynomial continuous effects for plan validation and 
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repair in mixed-initiative planning with application to 
another practical domain (i.e., space missions). In 
contrast, our focus is on arbitrary continuous effects 
in the context of automated planning. 
 Baral et al. (2002) define a similar state projection 
algorithm using an alternative formalization for 
planning with continuous effects. By using the 
PDDL+ formalization, our approach considers 
exogenous changes in the environment. 

6 Conclusions 

We presented a novel state projection algorithm for 
use in continuous temporal environments and 
illustrated its implementation in SHOP2PDDL+, an 
HTN planner. Unlike previous approaches, our 
algorithm allows for continuous effects to contain 
arbitrary continuous functions, and our wait operator 
allows the planner to consider future actions at any 
time. 
 Our focus is on the projection of fluents within 
individual states with respect to time. Therefore, 
SHOP2PDDL+ needs to predict the duration of actions 
and their continuous effects. This is necessary for 
planning, as shown above, and for plan-monitoring 
agents. SHOP2PDDL+ was developed in the context of 
a continuous planning agent, which reasons about its 
goals while performing tasks in the TAO Sandbox 
simulation (Molineaux et al. 2010). 
 In future work, we intend to empirically evaluate 
SHOP2PDDL+ to determine the scalability and 
effectiveness of its state projection algorithm across a 
variety of challenging tasks. We expect this 
algorithm to allow agents to generate plans for these 
scenarios and quickly identify potential problems and 
opportunities. We believe that continuous planning 
will improve the performance of intelligent agents in 
these strategy simulations, resulting in more flexible 
opponents and intelligent teammates. 
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