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MOMENT/SUM-OF-SQUARES HIERARCHY FOR COMPLEX
POLYNOMIAL OPTIMIZATION

CÉDRIC JOSZ†§ AND DANIEL K. MOLZAHN‡

Abstract. We consider the problem of finding the global optimum of a real-valued complex
polynomial on a compact set defined by real-valued complex polynomial inequalities. It reduces to
solving a sequence of complex semidefinite programming relaxations that grow tighter and tighter
thanks to D’Angelo’s and Putinar’s Positivstellenstatz discovered in 2008. In other words, the
Lasserre hierarchy may be transposed to complex numbers. We propose an algorithm for exploiting
sparsity and apply the complex hierarchy to problems with several thousand complex variables. They
consist in computing optimal power flows in the European high-voltage transmission network.

Key words. Quillen property, Lasserre hierarchy, Shor relaxation, complex moment problem,
sparse semidefinite programming, optimal power flow.
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1. Introduction. Multivariate polynomial optimization where variables and data
are complex numbers is a non-deterministic polynomial-time hard problem that arises
in various applications such as electric power systems (Section 4), imaging science [8,
13, 29, 66], signal processing [1, 6, 18, 45, 48, 49], automatic control [70], and quantum
mechanics [33]. Complex numbers are typically used to model oscillatory phenomena
which are omnipresent in physical systems. Although complex polynomial optimiza-
tion problems can readily be converted into real polynomial optimization problems,
efforts have been made to find ad hoc solutions [35, 36, 67]. We observe that relaxing
non-convex constraints and converting from complex to real numbers are two non-
commutative operations. This leads us to transpose to complex numbers Lasserre’s
moment/sum-of-squares hierarchy [41] for real polynomial optimization.

In 1968, Quillen [61] showed that a real-valued bihomogenous complex polyno-
mial that is positive away from the origin can be decomposed as a sum of squared
moduli of holomorphic polynomials when it is multiplied by (|z1|2+ . . .+ |zn|2)r for
some r ∈ N. The result was rediscovered by Catlin and D’Angelo [17] and ignited a
search for complex analogues of Hilbert’s seventeenth problem [23, 24] and the ensu-
ing Positivstellensätze [26,58–60]. Notably, D’Angelo and Putinar [25] proved in 2008
that a positive complex polynomial on a sphere intersected by a finite number of poly-
nomial inequality constraints can be decomposed as a weighted sum of the constraints
where the weights are sums of squared moduli of holomorphic polynomials. Similar
to Lasserre [41] and Parrilo [56], we use D’Angelo’s and Putinar’s Positivstellensatz
to construct a complex moment/sum-of-squares hierarchy of semidefinite programs
to solve complex polynomial optimization problems with compact feasible sets. To
satisfy the assumption in the Positivstellensatz, we propose to add a slack variable
zn+1 ∈ C and a redundant constraint |z1|2+. . .+|zn+1|2=R2 to the description of the
feasible set when it is in a ball of radius R. The complex hierarchy is more tractable
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2 CÉDRIC JOSZ AND DANIEL K. MOLZAHN

than the real hierarchy yet produces potentially weaker bounds. Computational ad-
vantages are shown using the optimal power flow problem in electrical engineering.
In addition to global convergence of the bounds, the complex hierarchy is endowed
with sufficient conditions for extracting feasible points that are globally optimal.

The theoretical contributions of this paper regarding the complex hierarchy are:

1. its construction using real-valued Radon measures (Section 3) leading to a
new notion of complex moment matrix and localization matrix (Remark 3.1)
different from existing literature [21]; the Lasserre hierarchy [41] can thus be
viewed as a special case of the proposed complex hierarchy (Figure 2);

2. a proof of global convergence (Proposition 3.2, Corollary 3.4); a sufficient con-
dition for strong duality (Proposition 3.10); Karush-Kuhn-Tucker conditions
involving complex sums-of-squares (Corollary 3.12); a multi-ordered hierarchy
to exploit sparsity while preserving global convergence (Section 3.7);

3. a solution to a newly defined truncated complex moment problem (Theo-
rem 3.8) different from existing literature [21, Theorem 5.1] which implies
Curto and Fialkow’s solution of the real truncated moment problem (Corol-
lary 3.9); as a result, sufficient conditions for extracting global solutions from
the complex hierarchy (Proposition 3.5);

4. an invariant complex hierarchy whose convergence can be deduced from an
invariant version of D’Angelo’s and Putinar’s Positivstellensatz (Proposi-
tion 3.13); in particular, an action of the torus in the complex plane (Propo-
sition 3.14) and a subgroup of it (Proposition 3.15) are considered.

The paper is organized as follows. Section 2 uses Shor and second-order conic
relaxations to motivate the complex moment/sum-of-squares hierarchy in Section 3.
Using a sparsity-exploiting algorithm, numerical experiments on the optimal power
flow problem are presented in Section 4. Section 5 concludes our work.

2. Motivation. Let N, N∗, R, R+ and C denote the set of natural, positive
natural, real, non-negative real, and complex numbers respectively. Also, let “i”
denote the imaginary unit and Hn denote the set of Hermitian matrices of order
n ∈ N

∗. Consider the subclass of complex polynomial optimization

(2.1) QCQP-C : inf
z∈Cn

zHH0z s.t. zHHiz 6 hi, i = 1, . . . ,m,

where m ∈ N∗, H0, . . . , Hm ∈ Hn, h0, . . . , hm ∈ R, (·)H denotes the conjugate trans-
pose. The Shor [65] and second-order conic relaxations of QCQP-C share the following
property: it is better to relax non-convex constraints before converting from complex
to real numbers rather than to do the two operations in the opposite order.

2.1. Shor Relaxation. For H ∈ Hn and z ∈ Cn, the relationship zHHz =
Tr(HzzH) holds where Tr (·) denotes the trace 1 of a complex square matrix. Let < 0
indicate positive semidefiniteness. Relaxing the rank of Z = zzH in (2.1) yields

SDP-C : inf
Z∈Hn

Tr(H0Z)(2.2a)

s.t. Tr(HiZ) 6 hi, i = 1, . . . ,m,(2.2b)

Z < 0,(2.2c)

1For all matrices A,B ∈ Cn×n, Tr(AB) =
∑

16i,j6n AijBji.
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Let ReZ and ImZ denote the real and imaginary parts of the matrix Z ∈ Cn×n

respectively. Consider the ring homomorphism Λ : (Cn×n,+,×) −→ (R2n×2n,+,×)

(2.3) Λ(Z) :=

(

ReZ −ImZ
ImZ ReZ

)

.

To convert SDP-C into real numbers, real and imaginary parts of the complex ma-
trix variable are identified using two properties: (1) a complex matrix Z is positive
semidefinite if and only if the real matrix Λ(Z) is positive semidefinite, and (2) if
Z1, Z2 ∈ Hn, then Tr [Λ(Z1)Λ(Z2)] = Tr [Λ(Z1Z2)] = 2Tr(Z1Z2). This yields

CSDP-R : inf
X∈S2n

Tr(Λ(H0)X)(2.4a)

s.t. Tr(Λ(Hi)X) 6 hi, i = 1, . . . ,m,(2.4b)

X < 0,(2.4c)

X =

(

A BT

B C

)

&
A = C,
BT = −B,

(2.4d)

where S2n denotes the set of real symmetric matrices of order 2n and (·)T indicates
the transpose. Note that the set of matrices satisfying (2.4d) is isomorphic to Cn×n.
A global solution to QCQP-C can be retrieved from CSDP-R if and only if rank(X) ∈
{0, 2} at optimality (proof in Appendix A). In order to convert QCQP-C into real
numbers, real and imaginary parts of the complex vector variable are identified. This

is done by considering a new variable x =
(

(Rez)T (Imz)T
)T

and observing that
if H ∈ Hn, then zHHz = xTΛ(H)x = Tr(Λ(H)xxT ). This gives rise to a problem
which we will call QCQP-R. Relaxing the rank of X = xxT yields

SDP-R : inf
X∈S2n

Tr(Λ(H0)X)(2.5a)

s.t. Tr(Λ(Hi)X) 6 hi, i = 1, . . . ,m,(2.5b)

X < 0.(2.5c)

A global solution to QCQP-C can be retrieved from SDP-R if and only if rank(X) ∈
{0, 1} or rank(X) = 2 and (2.4d) holds at optimality. We have val(SDP-C) =
val(CSDP-R) = val(SDP-R) where “val” is the optimal value of a problem (proof
in Appendix B). The number of scalar variables of CSDP-R is half that of SDP-R
due to constraint (2.4d). This constraint also halves the possible ranks of the matrix
variable, which must be an even integer in CSDP-R whereas it can be any integer
between 0 and 2n in SDP-R. The number of variables in SDP-R can be reduced by a
small fraction ( 2

2n+1 to be exact) by setting a diagonal element of X to 0. This does
not affect the optimal value (proof in Appendix C). See Figure 1 for a summary.

2.2. Second-Order Conic Relaxation. In SDP-C of Section 2.1, assume that
the semidefinite constraint (2.2c) is relaxed to the second-order cones

(2.6)

(

Zii Zij

ZH
ij Zjj

)

< 0 , 1 6 i 6= j 6 n.

Equation (2.6) is equivalent to constraining the determinant ZiiZjj − ZijZ
H
ij and

diagonal elements Zii to be non-negative. This yields SOCP-C : infZ∈Hn
Tr(H0Z) s.t.

(2.2b), |Zij |2 6 ZiiZjj for 1 6 i 6= j 6 n, and Zii > 0 for i = 1, . . . , n where |·| denotes
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QCQP-C SDP-C

QCQP-R SDP-R 6= CSDP-R

Z = zzH

Relax rank Z = 1

X = xxT

Relax rank X = 1

Identify real and
imaginary parts:

x =

(

Rez
Imz

)

Identify real and
imaginary parts:

X =

(

ReZ
2

−
ImZ
2

ImZ
2

ReZ
2

)

Global
solution if
rank X = 1

Global
solution if
rank X = 2

Fig. 1. Non-Commutativity of Complex-to-Real Conversion and Relaxation

the complex modulus. Identifying real and imaginary parts of the matrix variable Z
leads to CSOCP-R : infX∈S2n Tr(Λ(H0)X) s.t. (2.4b), (2.4d), X2

ij +X2
n+i,j 6 XiiXjj

for 1 6 i 6= j 6 n, and Xii > 0 for i = 1, . . . , n. In SDP-R of Section 2.1, assume that
the semidefinite constraint (2.5c) is relaxed to the second-order cones

(2.7)

(

Xii Xij

Xij Xjj

)

< 0 , 1 6 i 6= j 6 2n.

This leads to SOCP-R : infX∈S2n Tr(Λ(H0)X) s.t. (2.5b), X2
ij 6 XiiXjj for 1 6 i 6=

j 6 2n, and Xii > 0 for i = 1, . . . , 2n. We have val(SOCP-C) = val(CSOCP-R) >

val(SOCP-R) (proof in Appendix D). The number of variables of CSOCP-R is half that
of SOCP-R due to constraint (2.4d). The number of second-order conic constraints in

CSOCP-R, equal to n(n−1)
2 , is roughly a fourth of that in SOCP-R, equal to 2n(2n−1)

2 .

2.3. Exploiting Sparsity. The properties of chordal graphs enable sparsity
exploitation for the Shor relaxation [73]. Given an undirected graph (V , E) where
V ⊂ {1, . . . , n} and E ⊂ V × V , define for all Z ∈ Hn

(2.8) Ψ(V,E)(Z)ij :=

{

Zij if (i, j) ∈ E or i = j ∈ V ,
0 else.

We associate an undirected graph G to QCQP-C whose nodes are {1, . . . , n} and
that satisfies Hi = ΨG(Hi) for i = 0, . . . ,m. Let H+

n denote the set of positive
semidefinite Hermitian matrices of size n and let “Ker” denote the kernel of a linear
application. Given the definition of G, constraint (2.2c) of SDP-C can be relaxed to
Z ∈ H+

n + Ker ΨG̃ without changing its optimal value for any graph G̃ whose nodes

are {1, . . . , n} and where G ⊂ G̃. Consider a chordal extension G ⊂ Gch, that is
to say that all cycles of length four or more have a chord (edge between two non-
consecutive nodes of the cycle). Let C1, . . . , Cp ⊂ Gch denote the maximal cliques of
Gch. (A clique is a subgraph where all nodes are linked to one another. The set of
maximally sized cliques of a chordal graph can be computed in linear time [68]). A
chordal extension has a useful property for exploiting sparsity [32]: for all Z ∈ Hn,
we have that Z ∈ H+

n +Ker ΨGch if and only if ΨCi
(Z) < 0 for i = 1, . . . , p. Note that

ΨCi
(Z) < 0 if and only if Λ ◦ΨCi

(Z) < 0, where “◦” is the composition of functions.
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Given a graph (V , E), define for X ∈ S2n

(2.9) Ψ̃(V,E)(X) :=

(

Ψ(V,E)(A) Ψ(V,E)(B
T )

Ψ(V,E)(B) Ψ(V,E)(C)

)

,

using the block decomposition in the left hand part of (2.4d). Notice that Λ◦Ψ(V,E) =

Ψ̃(V,E) ◦Λ. As a result, (2.4c) can be replaced by Ψ̃Ci
(X) < 0 for i = 1, . . . , p without

changing the optimal value of CSDP-R, with an analogous replacement for constraint
(2.5c) in SDP-R. If in SDP-R we exploit the sparsity of matrices Λ(Hi) instead
of that of Hi, the resulting graph has twice as many nodes. Computing a chordal
extension and maximal cliques is hence more costly. Sparsity in the second-order
conic relaxations is exploited using the fact that applying constraints only for (i, j)
that are edges of G does not change the optimal values of CSOCP-R and SOCP-R.

3. Complex Moment/Sum-of-Squares Hierarchy. We transpose [41] from
real to complex numbers. Let zα denote the monomial zα1

1 · · · zαn
n where z ∈ Cn and

α ∈ Nn for some integer n ∈ N∗. Let |α| := α1+ . . .+αn and define w as the conjugate
of w ∈ C. Define z̄ := (z̄1, . . . , z̄n)

T where z ∈ Cn. Consider the sets where d ∈ N

(3.1)

C[z] := { p : Cn → C | p(z) =∑|α|6l pαz
α, l ∈ N, pα ∈ C },

C[z̄, z] := { f : Cn → C | f(z) =∑|α|,|β|6l fα,β z̄
αzβ, l ∈ N, fα,β ∈ C },

R[z̄, z] := { f ∈ C[z̄, z] | f(z) = f(z), ∀z ∈ Cn },
Σ[z] := { σ : Cn → C | σ =

∑r
j=1 |pj |2, r ∈ N

∗, pj ∈ C[z] },

(3.2)

Cd[z] := { p : Cn → C | p(z) =∑|α|6d pαz
α, pα ∈ C },

Cd[z̄, z] := { f : Cn → C | f(z) =∑|α|,|β|6d fα,β z̄
αzβ, fα,β ∈ C },

Rd[z̄, z] := { f ∈ Cd[z̄, z] | f(z) = f(z), ∀z ∈ Cn },
Σd[z] := { σ : Cn → C | σ =

∑r
j=1 |pj |2, r ∈ N∗, pj ∈ Cd[z] }.

Note that the coefficients of a function f ∈ R[z̄, z] satisfy fα,β = fβ,α for all |α|, |β| 6 l
for some l ∈ N. The set of complex polynomials C[z̄, z] is a C-algebra (i.e. commuta-
tive ring and vector space over C) and the set of holomorphic polynomials C[z] is a
subalgebra of it (i.e. subspace closed under sum and product). The set of real-valued
complex polynomials R[z̄, z] is an R-algebra. The set of sums of squared moduli of
holomorphic polynomials Σ[z] and the set Σd[z] ⊂ Rd[z] are pointed cones (i.e. closed
under multiplication by elements of R+) that are convex (i.e. tu + (1 − t)v with
0 6 t 6 1 belongs to them if u and v do). Let C(K,C) denote the Banach (i.e. com-
plete) C-algebra of continuous functions from a compact set K ⊂ Cn to C equipped
with the norm ‖ϕ‖∞ := supz∈K |ϕ(z)|. Consider RK : C[z̄, z] −→ C(K,C) defined
by f 7−→ f|K where f|K denotes the restriction of f to K. RK(C[z̄, z]) is a unital
subalgebra of C(K,C) (i.e. contains multiplicative unit) that separates points of K
(i.e. u 6= v ∈ K =⇒ ∃ϕ ∈ RK(C[z̄, z]) : ϕ(u) 6= ϕ(v)) and that is closed under com-
plex conjugation. It is hence a dense subalgebra due to the Complex Stone-Weiestrass
Theorem. Likewise, C(K,R) := {ϕ ∈ C(K,C) | ϕ(z) = ϕ(z), ∀z ∈ Cn} is a Banach
R-algebra of which RK(R[z̄, z]) is a dense subalgebra. In other words, a continuous
real-valued function of multiple complex variables can be approximated as close as de-
sired by real-valued complex polynomials when restricted to a compact set. They are
hence a powerful modeling tool in optimization. Speaking of which, let m ∈ N∗ and
k, k1, . . . , km ∈ N. Consider (f, g1, . . . , gm) ∈ Rk[z̄, z]×Rk1

[z̄, z]×. . .×Rkm
[z̄, z] where
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there exists |α| = k and |β| 6 k such that fα,β 6= 0. In addition, for i = 1, . . . ,m,
there exists |α| = ki and |β| 6 ki such that gi,α,β 6= 0. Consider the problem

(3.3) fopt := infz∈Cn f(z) s.t. gi(z) > 0, i = 1, ...,m,

where fopt := +∞ if the feasible set is empty. The feasible set K := {z ∈ Cn | gi(z) >
0, i = 1, ...,m} is assumed to be compact. LetKopt denote the set of optimal solutions
to (3.3) and M(K) denote the Banach space over R of Radon measures on K. Since
K is compact, M(K) may be identified with the set of linear continuous applications
from C(K,R) to R equipped with the operator norm (Riesz Representation Theorem).
For ϕ ∈ C(K,C), define

∫

K ϕdµ :=
∫

K Re(ϕ)dµ+ i
∫

K Im(ϕ)dµ [63, 1.31 Definition]2.
Consider the convex pointed cone P(K) := { ϕ ∈ C(K,R) | ϕ(z) > 0, ∀z ∈ K }. A
Radon measure µ is positive (denoted µ > 0) if ϕ ∈ P(K) implies that

∫

K
ϕdµ > 0.

Let M+(K) denote the set of positive Radon measures. We have

(3.4) fopt = infµ∈M(K)

∫

K fdµ s.t.
∫

K dµ = 1 & µ > 0.

Indeed, if z ∈ K, then the Dirac3 measure δz is a feasible point of (3.4) for which the
objective value is equal to f(z). Hence the optimal value of (3.4) is less than or equal
to fopt. Conversly, if µ is a feasible point of (3.4), then

∫

K(f −fopt)dµ > 0 and hence
∫

K
fdµ >

∫

K
foptdµ = fopt

∫

K
dµ = fopt.

Proposition 3.1. The set of optimal solutions to (3.4) is

(3.5) { µ ∈ M+(K) | µ(Kopt) = 1 & µ(K \Kopt) = 0 }.

As a consequence, if Kopt is a finite set of S ∈ N∗ points z(1), . . . , z(S) ∈ Cn, then the

optimal solutions to (3.4) are { ∑S
j=1 λjδz(j) |

∑S
j=1 λj = 1 & λ1, . . . , λS ∈ R+ }.

Proof. Consider µ an optimal solution to (3.4). It must be that
∫

K
(f −fopt)dµ =

0. Thus
∫

K\Kopt(f − fopt)dµ = 0 and µ(K \ Kopt) =
∫

K\Kopt dµ = 0. Therefore

µ(Kopt) =
∫

Kopt dµ = µ(K) − µ(K \ Kopt) = 1. Conversly, if µ belongs to the set
in (3.5), then it is feasible for (3.4) and

∫

K(f − fopt)dµ =
∫

K\Kopt(f − fopt)dµ = 0.

Hence
∫

K fdµ =
∫

K foptdµ = fopt
∫

K dµ = fopt.
In order to dualize the equality constraint in (3.4), consider the Lagrange function

L : M+(K) × R −→ R defined by (µ, λ) 7−→
∫

K fdµ + λ
(

1−
∫

K dµ
)

. We have
L(µ, λ) = λ+

∫

K(f − λ)dµ and

(3.6) inf
µ∈M+(K)

∫

K

(f − λ)dµ =

{

0 if f(z)− λ > 0, ∀z ∈ K,
−∞ else,

since, in the second case, we may consider tδz for a z ∈ K such that f(z)−λ < 0 and
t → +∞. This leads to the dual problem

(3.7) fopt = supλ∈R λ s.t. f(z)− λ > 0, ∀z ∈ K.

Primal problem (3.4) gives rise to the complex moment hierarchy in Section 3.1. Dual
problem (3.7) gives rise to the complex sum-of-squares hierarchy in Section 3.2.

2We wish to thank Bruno Nazaret for bringing this reference to our attention.
3The Dirac measure δz with z ∈ K may be identified with the continuous linear application from

C(K,R) to R defined by ϕ 7−→ ϕ(z). This is one way to interpret the fact that
∫
K

fdδz = f(z).
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3.1. Complex Moment Hierarchy. Let H (respectively Hd) denote the set
of sequences of complex numbers (yα,β)α,β∈Nn (respectively (yα,β)|α|,|β|6d) such that
yα,β = yβ,α for all α, β ∈ Nn (respectively |α|, |β| 6 d). An element y ∈ H is
said to have a representing measure µ on K if µ ∈ M+(K) and yα,β =

∫

K z̄αzβdµ
for all α, β ∈ N

n. When y ∈ H has a representing measure on K, the measure
is unique because RK(C[z̄, z]) is dense in C(K,C). The moment problem consists
in characterizing the sequences that are representable by a measure on K. For ex-
ample, Atzmon [5, Theorem 2.1] proved that when K = {z ∈ C | |z| = 1} the
solutions are the sequences y ∈ H such that

∑

m,n,j,k∈N
cn,j cm,k ym+j,n+k > 0 and

∑

m,n∈N
wmwn (ym,n−ym+1,n+1) > 0 for all complex numbers (cj,k)j,k∈N and (wn)n∈N

with only finitely many non-zero terms. Theorem 3.7 below generalizes this result.
Consider a feasible point µ of (3.4) and the sequence y ∈ H that has rep-

resentation measure µ on K. Notice that
∫

K fdµ =
∫

K

∑

|α|,|β|6k fα,β z̄
αzβdµ =

∑

|α|,|β|6k fα,β
∫

K z̄αzβdµ =
∑

|α|,|β|6k fα,βyα,β =: Ly(f) and
∫

K dµ =
∫

K z̄0z0dµ =

y0,0 = 1. For all p ∈ C[z], we have |p|2gi > 0 on K. Since µ > 0, this implies that
∫

K |p|2gidµ > 0. Naturally, we also have
∫

K |p|2g0dµ > 0 if we define g0 := 1. Define
k0 := 0 and dmin := max{k, k1 . . . , km}. Consider d > dmin, 0 6 i 6 m, and p ∈
Cd−ki

[z]. We have
∫

K |p|2gidµ =
∫

K |∑|α|6d−ki
pαz

α|2(∑|γ|,|δ|6ki
gi,γ,δ z̄

γzδ)dµ =
∫

K
(
∑

|α|,|β|6d−ki
pαpβ z̄

αzβ)(
∑

|γ|,|δ|6ki
gi,γ,δz̄

γzδ)dµ =
∫

K

∑

|α|,|β|6d−ki
pαpβ

∑

|γ|,|δ|6ki
gi,γ,δ z̄

α+γzβ+δdµ =
∑

|α|,|β|6d−ki
pαpβ

∑

|γ|,|δ|6ki
gi,γ,δ

∫

K
z̄α+γzβ+δdµ =

∑

|α|,|β|6d−ki
pαpβ

∑

|γ|,|δ|6ki
gi,γ,δ yα+γ,β+δ =:

∑

|α|,|β|6d−ki
pαpβMd−ki

(giy)(α, β) =

~pHMd−ki
(giy)~p where ~p := (pα)|α|6d−ki

and Md−ki
(giy) is a Hermitian matrix in-

dexed by |α|, |β| 6 d− ki. To sum up, y is a feasible point of

(3.8)
ρ := infy∈H Ly(f)

s.t. y0,0 = 1,
Md−ki

(giy) < 0, i = 0, . . . ,m, ∀d > dmin,

with same objective value as µ in (3.4). Automatically, ρ 6 fopt. Consider the
relaxation of (3.8) defined by

(3.9)
ρd := infy∈Hd

Ly(f)
s.t. y0,0 = 1,

Md−ki
(giy) < 0, i = 0, . . . ,m,

which we name the complex moment relaxation of order d for reasons that will become
clear with Theorem 3.7. In Section 3.2, we will introduce its dual counterpart.

Remark 3.1. Given y ∈ H, the function Ly in this section can be formally be
defined by the C-linear operator Ly : C[z̄, z] −→ C such that Ly(z̄

αzβ) = yα,β for

all α, β ∈ N (i.e. Riesz functional). If ϕ ∈ C[z̄, z] and ϕ = ϕ, then Ly(ϕ) = Ly(ϕ).
Given l, d ∈ N and ϕ ∈ Rl[z̄, z], the matrix Md(ϕy) can be formally be defined as the
Hermitian matrix indexed by |α|, |β| 6 d such that Md(ϕy)(α, β) := Ly(ϕ(z)z̄

αzβ) =
∑

|γ|,|δ|6l ϕγ,δ yα+γ,β+δ. Notice that Md(ϕy)(0, 0) = Ly(ϕ). Lastly, define Md(y) :=

Md(g0y) which we refer to as the complex moment matrix of order d.

3.2. Complex Sum-of-Squares Hierarchy. Given l ∈ N and ϕ ∈ Rl[z̄, z],
define ~ϕ := (ϕα,β)|α|,|β|6l. This notation is well-defined due to the unicity of the
coefficients of ϕ.4 Notice that ϕ ∈ Σl[z] if and only if ~ϕ < 0. Also, define 〈A,B〉Hd

:=

4The notation is ill-defined in the real case: if ϕ : x ∈ Rn
−→

∑
|α|,|β|6l ϕα,βx

αxβ
∈ R, then

the coefficients ϕα,β ∈ R are not unique. Thus
∑

|α|62l σαx
α is a real sum of squares if and only if
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Tr(AB) where A,B ∈ Hd. Given d > dmin, consider the Lagrange function Ld :
Hd×R×Σd−k0

[z]×. . .×Σd−km
[z] −→ R defined by (y, λ, σ0, . . . , σm) 7−→ Ly(f)+λ(1−

y0,0)−
∑m

i=0〈Md−ki
(giy), ~σi〉Hd−ki

. Given σi =:
∑ri

j=1 |pij |2, i.e. ~σi =
∑ri

j=1 ~pj
i(~pj

i)H ,

compute Ld(y, λ, σ0, . . . , σm) = λ + Ly(f − λ) −∑m
i=0

∑ri
j=0(~p

i
j )

HMd−ki
(giy)~p

i
j =

λ+ Ly(f − λ)−∑m
i=0

∑ri
j=0 Ly(|pij |2gi) = λ+ Ly(f − λ−∑m

i=0 σigi). Observe that

(3.10) inf
y∈H

Ly

(

f − λ−
m
∑

i=0

σigi

)

=







0 if f(z)− λ−∑m
i=0 σi(z)gi(z) = 0,

for all z ∈ Cn,
−∞ else.

Indeed, in the second case, there exists z ∈ C
n such that f(z)−λ−∑m

i=0 σi(z)gi(z) 6= 0.
With (yα,β)α,β∈N := (z̄αzβ)α,β∈N, Lty(f−λ−∑m

i=0 σigi) −→ −∞ for either t −→ −∞
or t −→ +∞. The associated dual problem of (3.9) is thus

(3.11)
ρ∗d := supλ,σ λ

s.t. f − λ =
∑m

i=0 σigi,
λ ∈ R, σi ∈ Σd−ki

[z], i = 0, . . . ,m,

which we name the complex sum-of-squares relaxation of order d. Consider

(3.12)
ρ∗ := supλ,σ λ

s.t. f − λ =
∑m

i=0 σigi,
λ ∈ R, σi ∈ Σ[z], i = 0, . . . ,m.

Proposition 3.2. We have ρ∗d 6 ρd for all d > dmin and ρ∗d −→ ρ∗ 6 ρ 6 fopt.
Proof. The sequence (ρ∗d)d>dmin is non-decreasing and upper bounded by ρ∗ ∈

R∪{±∞}. Thus it converges towards some limit ρ∗lim ∈ R∪{±∞} such that ρ∗lim 6 ρ∗.
If ρ∗ = −∞, then ρ∗d = −∞ for all d > dmin and ρ∗d −→ ρ∗. If not, by definiton of
the optimum ρ∗, there exists a sequence (λl, σl

0, . . . , σ
l
m) of feasible points such that

λl 6 ρ∗ and λl −→ ρ∗. To each l ∈ N, we may associate an integer d(l) ∈ N such
that (λl, σl

0, . . . , σ
l
m) is a feasible point of the complex sum-of-squares relaxation of

order d(l). Thus λl 6 ρ∗d(l) 6 ρ∗. As a result, ρ∗limit = ρ∗. Moreover, (ρd)d>dmin is

non-decreasing and upper bounded by ρ ∈ R ∪ {±∞}. Thus it converges towards
some limit ρlim ∈ R∪ {±∞} such that ρlim 6 ρ. Moreover, weak duality implies that
ρ∗d 6 ρd (6 ρ). Thus ρ∗ 6 ρlim 6 ρ. It was shown in Section 3.1 that ρ 6 fopt.

Remark 3.2. Problems (3.12) and (3.8) may be interpreted as a pair of primal-
dual linear programs in infinite-dimensional spaces [4]. Consider the duality bracket
〈., .〉 defined from R[z̄, z]×H to R by 〈ϕ, y〉 := Ly(ϕ). A sequence (ϕn)n∈N in R[z̄, z] is
said to converge weakly towards ϕ ∈ R[z̄, z] if for all y ∈ H, we have 〈ϕn, y〉 −→ 〈ϕ, y〉.
Consider the weakly continuous R-linear operator A : R[z̄, z] −→ R[z̄, z] defined by
ϕ 7−→ ϕ − ϕ0,0. Its dual A∗ : H −→ H is defined by y 7−→ y − y0,0δ0,0 where
(δ0,0)0,0 = 1 and (δ0,0)α,β = 0 if (α, β) 6= (0, 0). Indeed, 〈Aϕ, y〉 = 〈ϕ,A∗y〉 for all
(ϕ, y) ∈ R[z̄, z]×H. Consider the convex pointed cone defined by C := Σ[z]g0+ . . .+
Σ[z]gm and its dual cone C∗ := {y ∈ H | ∀ϕ ∈ C, 〈ϕ, y〉 > 0}. If b := Af , then

(3.13)
f0,0 − ρ∗ = infϕ∈R[z̄,z] 〈ϕ, δ0,0〉 s.t. Aϕ = b & ϕ ∈ C,
f0,0 − ρ = supy∈H 〈b, y〉 s.t. δ0,0 −A∗y ∈ C∗.

there exists some real numbers (ϕα,β)|α|,|β|6l < 0 such that
∑

|α|62l σαx
α =

∑
|α|,|β|6l ϕα,βx

αxβ .
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Let cl(C) denote the weak closure of C in R[z̄, z]. [2, 5.91 Bipolar Theorem]5 implies
that cl(C) = C∗∗. Below, Theorem 3.3 and Theorem 3.7 provide a sufficient condition
ensuring no duality gap in (3.13) and cl(C) = {ϕ ∈ R[z̄, z] | ϕ|K > 0} respectively.

3.3. Convergence of the Complex Hierarchy. We turn our attention to a
result from algebraic geometry discovered in 2008.

Theorem 3.3 (D’Angelo’s and Putinar’s Positivstellenstatz [25]). If one of the
constraints that define K is a sphere constraint |z1|2 + . . .+ |zn|2 = 1, and if f|K > 0,
then there exists σ0, . . . , σm ∈ Σ[z] such that f =

∑m
i=0 σigi.

Proof. D’Angelo and Putinar wrote the theorem slightly differently. Say that
constraints gm−1 and gm are such that gm−1 = s and gm = −s where s(z) := 1 −
|z1|2− . . .−|zn|2. With the assumptions of Theorem 3.3, the authors of [25, Theorem
3.1] show that there exists σ0, . . . , σm−2 ∈ Σ[z] and r ∈ R[z̄, z] such that f(z) =
∑m−2

i=0 σi(z)gi(z) + r(z)s(z) for all z ∈ Cn. Thanks to [24, Proposition 1.2], there
exists σm−1, σm ∈ Σ[z] such that r = σm−1 − σm hence the desired result.

Theorem 3.3 can easily be generalized to any sphere |z1|2+ . . .+ |zn|2 = R2 of ra-
dius R > 0. With scaled variable w = z

R ∈ Cn, the sphere constraint has radius 1 and
a monomial of (3.3) with coefficient cα,β ∈ C reads cα,β z̄

αzβ = cα,β(Rw)α(Rw)β =
R|α|+|β|cα,βw

αwβ . With the scaled coefficients R|α|+|β|cα,β , Theorem 3.3 can then
be applied. Reverting back to the old scale z = Rw leads to the desired result.
Accordingly, we define the following statement which is true only when stated:

(3.14) Sphere Assumption:
One of the constraints of (3.3) is a sphere
|z1|2 + . . .+ |zn|2 = R2 for some R > 0.

Corollary 3.4. Under the sphere assumption (3.14), ρ∗d → fopt and ρd → fopt.

Proof. Theorem 3.3 implies that ρ∗ = fopt because for all ǫ > 0, function
f − (fopt − ǫ) is positive on K. The sequences (ρ∗d)d>dmin and (ρd)d>dmin converge
towards fopt due to Proposition 3.2.

To require a sphere constraint in a complex polynomial optimization problem
seems very restrictive and irrelevant for many problems. But in fact, a sphere con-
straint can be applied to any complex polynomial optimization problem (3.3) with a
feasible set contained in a ball |z1|2+ . . .+ |zn|2 6 R2 of known radius R > 0. Indeed,
simply add a slack variable zn+1 ∈ C and the constraint |z1|2+ . . .+ |zn+1|2 = R2. Let
K̂ denote the feasible set of the problem in n+1 variables. If (z1, . . . , zn+1) ∈ K̂, then
(z1, . . . , zn) ∈ K and has the same objective value. Conversly, if (z1, . . . , zn) ∈ K,
then (z1, . . . , zn+1) ∈ K̂ for all zn+1 ∈ C such that |zn+1|2 = R2 − |z1|2 . . . − |zn|2.
Again, the objective value is unchanged. To ensure a bijection between K and K̂, add
yet two more constraints izn+1 − izn+1 = 0 and zn+1 + zn+1 > 0, thereby preserving
the number of global solutions. In that case, the application from K to K̂ defined by
(z1, . . . , zn) 7−→ (z1, . . . , zn,

√

R2 − |z1|2 − . . .− |zn|2) is a bijection. Adding the two
extra constraints is optional and not required for convergence of optimal values.

As seen in Theorem 3.3, an equality constraint may be enforced via two opposite
inequality constraints. Let h1, . . . , he denote e ∈ N∗ equality constraints in polynomial
optimization problem (3.3). Putinar and Scheiderer [59, Propositions 6.6 and 3.2 (iii)]
show that the sphere assumption in D’Angelo’s and Putinar’s Positivstellensatz may

5We wish to thank Jean-Bernard Baillon for bringing this reference to our attention.
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be weakened to the existence of r1, . . . , re ∈ R[z̄, z], σ ∈ Σ[z], and a ∈ R such that

(3.15)
e
∑

j=1

rj(z)hj(z) =
n
∑

i=1

|zi|2 + σ(z) + a, ∀z ∈ C
n.

If the constraints include |z1|2−1 = . . . = |zn|2−1 = 0, the assumption is satisfied by
r1 = . . . = rn = 1, σ = 0 and a = −n. In particular, there is no need to add a slack
variable in the non-bipartite Grothendieck problem over the complex numbers [8].

Example 3.1. D’Angelo and Putinar [25] consider 1
3 < a < 4

9 and problem

(3.16)
infz∈C f(z) := 1− 4

3 |z|2 + a|z|4
s.t. g(z) := 1− |z|2 > 0,

whose set of global solutions is Kopt = {z ∈ C | |z| = 1} and fopt = a− 1
3 > 0. They

prove that the decomposition f = σ0 + σ1g (σ0, σ1 ∈ Σ[z]) of Theorem 3.3 does not
hold. As a result, the optimal values of the complex sum-of-squares relaxations cannot
exceed 0 even though fopt > 0. Indeed, if ρ∗d > 0 for some order d > dmin, then there

exists λ >
ρ∗

d

2 and σ0, σ1 ∈ Σd[z] such that f − λ = σ0 + σ1g. Thus f = λ+ σ0 + σ1g
where λ+ σ0 ∈ Σd[z], which is a contradiction. We suggest solving

(3.17)
infz1,z2∈C f̂(z1, z2) := 1− 4

3 |z1|2 + a|z1|4
s.t. ĝ(z1, z2) := 1− |z1|2 − |z2|2 = 0.

For all λ < fopt, there exists σ̂0 ∈ Σ[z1, z2] and r̂ ∈ R[z1, z2, z1, z2] such that

f̂(z1, z2) − λ = σ̂0(z1, z2) + r̂(z1, z2)ĝ(z1, z2) for all z1, z2 ∈ C. Plug in z1 = z
and z2 = 0 and obtain f(z) − λ = σ̂0(z, 0) + r̂(z, 0)g(z) for all z ∈ C. While func-
tion z 7−→ σ̂0(z, 0) belongs to Σ[z], function z 7−→ r̂(z, 0) does not! Hence we do
not contradict the fact that f = σ0 + σ1g (σ0, σ1 ∈ Σ[z]) is impossible. Consider
a = 1

2 (
1
3 + 4

9 ) = 7
18 so that fopt = 1

18 . Notice that dmin = 2 for (3.16) and
(3.17). The complex relaxations of orders 2 6 d 6 3 of (3.16) yield6 the value
−0.3333. The complex relaxation of order 2 of (3.17) yields the value 0.0556 (≈ fopt)
and optimal polynomials σ̂0(z1, z2) = 0.2780|z2|2 + 0.2776|z1z2|2 + 0.6667|z2|4 and
r̂(z1, z2) = 0.9444− 0.3889|z1|2 + 0.6665|z2|2.

Proposition 3.5. Assume that the sphere assumption (3.14) holds, that n > 1,
and that y ∈ Hd is an optimal solution to the complex moment relaxation of order
d > dmin. With dK := max16i6m ki (ki is defined above (3.3)) and dmin 6 t 6 d, if

1. rank Mt(y) = rank Mt−dK
(y) (=: S),

2.





Mt−dK
(y) Mt−dK

(z̄iy) Mt−dK
(z̄jy)

Mt−dK
(ziy) Mt−dK

(|zi|2y) Mt−dK
(z̄jziy)

Mt−dK
(zjy) Mt−dK

(z̄izjy) Mt−dK
(|zj |2y)



 < 0, for all 1 6 i < j 6 n,

then ρd = fopt and complex polynomial problem (3.3) has at least S global solutions.
Proof. Thanks to Theorem 3.8 below, y ∈ Ht can be represented by a measure µ

on K (i.e. yα,β =
∫

K z̄αzβdµ, ∀|α|, |β| 6 t) and can thus be extended to y ∈ H. The

same theorem implies that µ =
∑S

j=1 λjδz(j) for some S different point z(1), . . . , z(S)

in K and some λ1, . . . , λS > 0. In addition, y0,0 =
∫

K z̄0z0dµ =
∑S

j=1 λj = 1 and

thus fopt > ρd = Ly(f) =
∫

K fdµ =
∑S

j=1 λjf(z(j)) >
∑S

j=1 λjf
opt = fopt. We

simultaneously deduce that ρd = fopt = f(z(1)) = . . . = f(z(S)).

6MATLAB 2013a, YALMIP 2015.06.26 [46], and MOSEK are used for the numerical experiments.
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In particular, if S = 1 in Proposition 3.5, then Point 2 in Proposition 3.5 need not
be checked for (see comment under (3.25)) and yα,β =

∫

K z̄αzβdδz = z̄αzβ, ∀|α|, |β| 6
dmin for some z ∈ Kopt. A global solution can be read from y because z = (y0,β)|β|=1.

Example 3.2. Putinar and Scheiderer [60] consider parameters 0 < a < 1
2 and

C > 1
1−2a , and problem

(3.18)
infz∈C f(z) := C − |z|2
s.t. g(z) := |z|2 − az2 − az̄2 − 1 = 0,

whose set of global solutions is Kopt =
{

± 1√
1−2a

}

and fopt = C − 1
1−2a > 0. They

prove that the decomposition of Theorem 3.3 does not hold. Since the feasible set is
included in the Euclidean ball of radius

√
C, we suggest solving

(3.19)

infz1,z2∈C f̂(z1, z2) := C − |z1|2
s.t. ĝ1(z1, z2) := |z1|2 − az21 − az̄21 − 1 = 0,

ĝ2(z1, z2) := C − |z1|2 − |z2|2 = 0,
ĝ3(z1, z2) := iz2 − iz2 = 0,
ĝ4(z1, z2) := z2 + z2 > 0.

Consider a = 1
4 and C = 3 so that fopt = 1. Notice that dmin = 2 for (3.18) and (3.19).

The complex relaxations of orders 2 6 d 6 3 of (3.18) are unbounded. The complex
relaxation of order 2 of (3.19) yields the value 0.6813. That of order 3 yields 1.0000,
rank M3(y) = rank M1(y) = 2, and Point 2 in Proposition 3.5. Thus fopt ≈ 1.000
and there exists at least 2 global solutions to (3.19), and hence to (3.18).

We next transpose [38, Lemma 3] from real to complex numbers.
Lemma 3.6. Define s(z) := R2 − |z1|2 − . . .− |zn|2. Given d ∈ N∗ and y ∈ Hd, if

Md(y) < 0 and Md−1(sy) = 0, then Tr(Md(y)) 6 y0,0
∑d

l=0 R
2l.

Proof. Given 1 6 l 6 d, we have Tr(Ml−1(sy)) =
∑

|α|6l−1 Ml−1(sy)(α, α) =
∑

|α|6l−1Ly(s(z)z̄
αzα) =

∑

|α|6l−1

∑

|γ|61 sγ,γyγ+α,γ+α =
∑

|α|6l−1,|γ|=0 sγ,γyγ+α,γ+α

+
∑

|α|6l−1,|γ|=1 sγ,γyγ+α,γ+α =
∑

|α|6l−1 R
2yα,α−

∑

|α|6l−1,|γ|=1 yγ+α,γ+α. We have

Md−1(sy) = 0 so Ml−1(sy) = 0 for all 1 6 l 6 d and hence Tr(Ml−1(sy)) = 0.
In addition,

∑

0<|α|6l yα,α 6
∑

|α|6l−1,|γ|=1 yγ+α,γ+α. Thus
∑

|α|6l yα,α 6 y0,0 +

R2
∑

|α|6l−1 yα,α for 1 6 l 6 d, which proves the lemma.

Theorem 3.7 (Putinar and Scheiderer [59]). Under assumption (3.14), y ∈ H
has a representing measure on K if and only if Md(giy) < 0, i = 0, . . . ,m, ∀d ∈ N.

Proof. We provide an alternative proof using Lemma 3.6. The “only if” part is
a consequence of Section 3.1. Concerning the “if” part, if y0,0 = 0, then Lemma
3.6 implies that y = 0 which can be represented by µ = 0 on K. Otherwise
y0,0 > 0 and y/y0,0 is a feasible point of problem (3.8) whose optimal value is
fopt for all f ∈ R[z̄, z] according to Corollary 3.4. If moreover f|K > 0, then
Ly/y0,0

(f) > fopt > 0. In particular, if f|K = 0, then Ly/y0,0
(f) = 0. We may there-

fore define L̃y/y0,0
: RK(C[z̄, z]) −→ C such that L̃y/y0,0

(ϕ|K) := Ly/y0,0
(ϕ) (similar to

Schweighöfer [64, Proof of Theorem 2]). If ϕ ∈ RK(R[z̄, z]), then L̃y/y0,0
(‖ϕ‖∞−ϕ) >

0 and L̃y/y0,0
(ϕ) 6 ‖ϕ‖∞. Linearity implies that |L̃y/y0,0

(ϕ)| 6 ‖ϕ‖∞. As a re-

sult, for all ϕ ∈ RK(C[z̄, z]), we have |L̃y/y0,0
(ϕ)| = |L̃y/y0,0

(Re(ϕ) + iIm(ϕ))| =

|L̃y/y0,0
(Re(ϕ))+iL̃y/y0,0

(Im(ϕ))| 6 |L̃y/y0,0
(Re(ϕ))|+|L̃y/y0,0

(Im(ϕ))| 6 ‖Re(ϕ)‖∞+

‖Im(ϕ)‖∞ 6 2‖ϕ‖∞. Moreover, RK(C[z̄, z]) is dense in C(K,C). Therefore L̃y/y0,0

may be extended to a continous linear functional on C(K,C) (we preserve the same
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name for the extension). K is compact thus the Riesz Representation Theorem im-
plies that there exists a unique Radon measure µ such that L̃y/y0,0

(ϕ) =
∫

K ϕdµ for

all ϕ ∈ C(K,C) and µ > 0 because ϕ ∈ P(K) implies that L̃y/y0,0
(ϕ) > 0 (density

argument). Finally, if α, β ∈ Nn, yα,β/y0,0 = Ly/y0,0
(z̄αzβ) (Remark 3.1) so y has

representing measure y0,0µ on K.

Theorem 3.8. Let n > 1 and y ∈ Hd with d > dK = max16i6m ki (ki is defined
above (3.3)). Assume that K contains the constraints |zk|2 ≦ R2

k, k = 1 . . . n, for
some radii Rk > 0 or the constraint

∑n
k=1 |zk|2 ≦ R2 for some radius R > 0 (where

≦ is an equality or an inequality). Then there exists a positive rankMd−dK
(y)-atomic

measure µ supported on K such that:

(3.20) yα,β =

∫

Cn

z̄αzβdµ , for all |α|, |β| 6 d

if and only if:

1. Md(y) < 0 and Md−ki
(giy) < 0, i = 1 . . .m;

2. rankMd(y) = rankMd−dK
(y);

3.





Md−dK
(y) Md−dK

(z̄iy) Md−dK
(z̄jy)

Md−dK
(ziy) Md−dK

(|zi|2y) Md−dK
(z̄jziy)

Md−dK
(zjy) Md−dK

(z̄izjy) Md−dK
(|zj |2y)



 < 0, ∀1 6 i < j 6 n.

Moreover, for each 1 6 i 6 m, the measure µ has exactly rankMd(y)−rankMd−dK
(giy)

atoms that are zeros of gi.

Proof. (⇐=) Point 1 implies that (yα,β)|α|,|β|6d < 0. Thus there exists a com-
plex matrix x of the same size as (yα,β)|α|,|β|6d such that we have the Cholesky
factorization (yα,β)|α|,|β|6d = xHx. Let (xα)|α|6d denote the columns of x. Also,
let Cd denote the column space and consider the inner product 〈u, v〉Cd

:= uHv
and its induced norm ‖.‖Cd

. We have yα,β = 〈xα, xβ〉Cd
for all |α|, |β| 6 d. Let

V := span(xα)|α|6d ⊂ Cd. Point 2 implies that V = span(xα)|α|6d−1. Given
1 6 k 6 n, define the C-linear operator Tk : V −→ V such that Tkxα = xα+ek

for all |α| 6 d− 1 where ek is the row vector of size n that contains only zeros apart
from 1 in position k. This shift operator is well defined because each element of V has
a unique image by Tk. Indeed, consider some complex numbers (uα)|α|6d−1. The as-
sumption on K in the case of multiple constraints and Point 1 imply that Md−1[(R

2
k−

|zk|2)y] < 0. Thus ‖∑|α|6d−1 uαxα+ek‖2Cd
=
∑

|α|,|β|6d−1〈xα+ek , xβ+ek〉Cd
ūαuβ =

∑

|α|,|β|6d−1 yα+ek,β+ek ūαuβ 6 R2
k

∑

|α|,|β|6d−1 yα,β ūαuβ = R2
k

∑

|α|,|β|6d−1〈xα, xβ〉Cd

ūαuβ = R2
k‖
∑

|α|6d−1 uαxα‖2Cd
. Thus Tk is well-defined and bounded by Rk. The

assumption on K in the case of a single constraint and Point 1 imply that Md−1[(R
2−

∑n
j=1 |zj|2)y] < 0. Thus ‖∑|α|6d−1 uαxα+ek‖2Cd

6
∑n

j=1 ‖∑|α|6d−1 uαxα+ej‖2Cd
6

R2‖∑|α|6d−1 uαxα‖2Cd
. Hence Tk is well-defined and bounded by R.

Clearly, (T1, . . . , Tn) is a pair-wise commuting tuple of operators on V . Let’s now
prove that (T ∗

1 , . . . T
∗
n , T1, . . . , Tn) is a pair-wise commuting tuple of operators, which

reduces to showing that T ∗
i Tj − TjT

∗
i = 0 for all 1 6 i 6 j 6 n (where (·)∗ stands

for adjoint). To do so, consider 1 6 i < j 6 n and u, v, w ∈ V . Point 2 implies
that V = vec(xα)|α|6d−dK

. Thus there exists some complex numbers (uα)|α|6d−dK
,

(vα)|α|6d−dK
, and (wα)|α|6d−dK

such that u =
∑

|α|6d−dK
uαxα, v =

∑

|α|6d−dK
vαxα

and w =
∑

|α|6d−dK
wαxα. Given k ∈ N and ϕ ∈ Ck[z̄, z], notice that 〈u, ϕ(T )v〉Cd

=
∑

|γ|,|δ|6k ϕγ,δ〈T γu, T δv〉Cd
=
∑

|α|,|β|6d−dK

∑

|γ|,|δ|6k ϕγ,δ〈T γxα, T
δxβ〉Cd

ūαvβ =
∑

|α|,|β|6d−dK

∑

|γ|,|δ|6k ϕγ,δ〈xα+γ , xβ+δ〉Cd
ūαvβ = . . .
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∑

|α|,|β|6d−dK
(
∑

|γ|,|δ|6k ϕγ,δyα+γ,β+δ)ūαvβ = ~uHMd−dK
(ϕy)~v. As a result,

(3.21)

〈





u
v
w



 ,





I T ∗
i T ∗

j

Ti T ∗
i Ti T ∗

j Ti

Tj T ∗
i Tj T ∗

j Tj









u
v
w





〉

Cd×Cd×Cd

= . . .

(3.22)





~u
~v
~w





H 



Md−dK
(y) Md−dK

(z̄iy) Md−dK
(z̄jy)

Md−dK
(ziy) Md−dK

(|zi|2y) Md−dK
(z̄jziy)

Md−dK
(zjy) Md−dK

(z̄izjy) Md−dK
(|zj |2y)









~u
~v
~w





Point 3 implies that

(3.23)





I T ∗
i T ∗

j

Ti T ∗
i Ti T ∗

j Ti

Tj T ∗
i Tj T ∗

j Tj



 < 0

which is equivalent to the fact that Schur complement satisfies

(3.24)

(

T ∗
i Ti T ∗

j Ti

T ∗
i Tj T ∗

j Tj

)

−
(

TiT
∗
i TiT

∗
j

TjT
∗
i TjT

∗
j

)

< 0.

Thus T ∗
i Ti−TiT

∗
i < 0 and T ∗

j Tj −TjT
∗
j < 0. Since their trace is zero, we in fact have

that T ∗
i Ti − TiT

∗
i = 0 and T ∗

j Tj − TjT
∗
j = 0. Going back to the Schur complement

(3.24), we thus have T ∗
i Tj − TjT

∗
i = 0.

Having proven that (T ∗
1 , . . . T

∗
n , T1, . . . , Tn) is a pair-wise commuting tuple of op-

erators, it follows that they are commonly diagonizable. In other words, there exists
orthogonal projectors E1, . . . , Ep of V such that EiEj = 0 for all 1 6 i 6= j 6 p and

there exists some complex numbers (λk,j)
16j6p
16k6n such that Tk =

∑p
j=1 λk,jEj for all

1 6 k 6 n (and thus T ∗
k =

∑p
j=1 λk,jEj). For all |α|, |β| 6 d, we thus have yα,β =

〈xα, xβ〉Cd
= 〈Tαx0, T

βx0〉Cd
= 〈x0, (T

∗)αT βx0〉Cd
= 〈x0,

∑p
j=1 λ̄

α
j λ

β
jEjx0〉Cd

=
∑p

j=1 λ̄
α
j λ

β
j 〈x0, Ejx0〉Cd

. Naturally, the number of projectors satisfies p 6 dim(V ) =
rankMd(y). Conversly, rankMd(y) = rank(yα,β)|α|,|β|6d 6 p. Hence p = rankMd(y),
the elements λ1, . . . , λp are all distinct, and 〈x0, Ejx0〉Cd

> 0 for all 1 6 j 6 p.
Thus µ :=

∑p
j=1〈x0, Ejx0〉Cd

δλj
is a positive rankMd−dK

(y)-atomic measure that
satisfies (3.20). Given 1 6 j 6 p, let’s show that λj := (λk,j)16k6n ∈ K. There
exists u ∈ V \ {0} such that Tku = λk,ju for all 1 6 k 6 n. Normality im-

plies that T ∗
ku = λk,ju. Hence (T ∗)αT βu = λ̄α

j λ
β
j u for all α, β ∈ N. As a result,

gi(λj)‖u‖2Cd
= 〈u, gi(λj)u〉Cd

= 〈u, gi(T )u〉Cd
= ~uHMd−dK

(giy)~u > 0. Thus λj ∈ K.
(=⇒) Let p := rankMd−dK

(y), and let (λj)16j6p and (mj)16j6p denote the dis-
tinct atoms and their positive weights respectively. Let xα := (

√
mjλ

α
j )16j6p ∈ Cp for

all |α| 6 d and V := vec(xα)|α|6d. With these notations, we have yα,β = 〈xα, xβ〉Cd

for all |α|, |β| 6 d. Notice that p = rankMd−dK
(y) 6 rankMd(y) = dimV 6 p, thus

Point 2 holds. Given 1 6 k 6 n, let Tk := diag(λk,1, . . . , λk,p). It satisfies the shift
property Tkxα = xα+ek for all |α| 6 d − 1 and T ∗

k = diag(λ̄k,1, . . . , λ̄k,p). Moreover,
the shifts and their adjoints are pair-wise commuting so (3.24) holds and thus Point
3 does too. Let’s now prove Point 1. Consider 1 6 i 6 m and some complex num-
bers (uα)|α|6d−ki

=: ~u. Let u :=
∑

|α|6d−ki
uαxα and u =: (uj)16j6p ∈ Cp. We

have ~uHMd−ki
(giy)~u = 〈u, gi(T )u〉Cd

= 〈u, [gi(λj)uj ]
p
j=1〉Cd

=
∑p

j=1 gi(λj)|uj |2 > 0.
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Hence dim Ker gi(T ) (= p − rank gi(T ) due to the rank-nullity theorem) is equal
to number of atoms that are zeros of gi. To conclude, notice that rank gi(T ) =
rank (〈xα, gi(T )xβ〉Cd

)|α|,|β|6d−dK
= rankMd−dK

(giy).
In the univariate case n = 1, Theorem 3.8 holds when Point 3 is replaced by

(3.25)

(

Md−dK
(y) Md−dK

(z̄y)
Md−dK

(zy) Md−dK
(|z|2y)

)

< 0.

In Theorem 3.8, if we assume that y0,0 > 0, then Point 2 and Point 3 may be replaced
by rankMd(y) = 1. Indeed, in that case, the shift operators act on a one dimensional
space, so they and their adjoints must commute pair-wise. For previous work on
the link between linear functionals that are nonnegative on a quadratic module and
bounded operators that admit a cyclic vector, see [57] and [22, Theorem 2.3].

Corollary 3.9. Let y ∈ Hd be a Hankel matrix (i.e. yα,β = yγ,δ for all
|α|, |β|, |γ|, |δ| 6 d such that α+β = γ+δ). Then there exists a positive rankMd−dK

(y)-
atomic measure µ supported on K such that:

(3.26) yα,β =

∫

Cn

z̄αzβdµ , for all |α|, |β| 6 d

if and only if:
1. Md(y) < 0 and Md−dK

(giy) < 0, i = 1 . . .m;
2. rankMd(y) = rankMd−dK

(y).
Moreover, for each 1 6 i 6 m, the measure µ has exactly rankMd(y)−rankMd−dK

(giy)
atoms that are zeros of gi.

Proof. (=⇒) Same as in proof of Theorem 3.8. (⇐=) The Hankel property im-
plies that the shifts in the proof of Theorem 3.8 are well-defined and self-adjoint.
Indeed, consider 1 6 k 6 n and u, v ∈ V . According the Point 2, there exists
some complex numbers (uα)|α|6d−1 and (vα)|α|6d−1 such that u =

∑

|α|6d−1 uαxα

and v =
∑

|α|6d−1 vαxα. If
∑

|α|6d−1 uαxα = 0, then for all |β| 6 d − 1, we have

〈∑|α|6d−1 uαxα+ek , xβ〉Cd
=
∑

|α|6d−1 ūα〈xα+ek , xβ〉Cd
=
∑

|α|6d−1 ūαyα+ek,β =
∑

|α|6d−1 ūαyα,β+ek = 〈∑|α|6d−1 uαxα, xβ+ek〉Cd
= 0, and hence

∑

|α|6d−1 uαxα+ek =

0. Tk is thus well defined. Moreover, we have T ∗
k = Tk because 〈Tku, v〉Cd

=
〈∑α uαxα+ek ,

∑

α vαxα〉Cd
=
∑

α,β ūαvβ〈xα+ek , xβ〉Cd
=
∑

α,β ūαvβyα+ek,β =
∑

α,β ūαvβyα,β+ek = 〈u, Tkv〉Cd
.

A Hermitian matrix that is a Hankel matrix is real symmetric. Hence the atoms
in Corollary 3.9 lie in K ∩ R

n. Corollary 3.9 is thus the same as [42, Theorem 3.11]
due to Curto and Fialkow [21, Theorem 1.1]. This observation leads to Figure 2.

Next we transpose [38, Theorem 1] from real to complex numbers.
Proposition 3.10. Under assumption (3.14), ρ∗d = ρd ∈ R∪ {+∞}, ∀d > dmin.
Proof. Given A ∈ Hd, consider the operator norm ‖A‖, the largest eigenvalue

of A in absolute value, and the Frobenius norm ‖A‖F :=
√

〈A,A〉Hd
. Consider

d > dmin. Two cases can occur. Case 1: the feasible set of the complex moment
relaxation of order d is non-empty. All norms are equivalent in finite dimension so
there exists a constant Cd ∈ R such that for all feasible points (yα,β)|α|,|β|6d we

have
√

∑

|α|,|β|6d |yα,β |2 = ‖Md(y)‖F 6 Cd ‖Md(y)‖ 6 Cd

∑d
l=0 R

2l according to

Lemma 3.6. As a result, the feasible set of the complex moment relaxation of or-
der d is a non-empty compact set and so is its image by Λ (defined in (2.3)). We
can thus apply Trnovská’s result [71] which states that in a semidefinite program in
real numbers, if the primal feasible set is non-empty and compact, then there exists
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infz∈Cn f(z)

s.t. gi(z) > 0

infx∈Rn f(x)

s.t. gi(x) > 0

infyα,β
Ly(f) s.t.

Md−ki
(giy) < 0

y0,0 = 1

infyα
Ly(f) s.t.

Md−ki
(giy) < 0

y0 = 1

Hankel property

z̄αzβ = z̄γzδ

∀α+ β = γ + δ

Hankel property

yα,β = yγ,δ
∀α+ β = γ + δ

Complex
Hierarchy

yα,β =
∫

K
z̄αzβdµ

Real
Hierarchy
yα =

∫

K
xαdµ

Fig. 2. Commutativity of Relaxation and Hankel Property

a dual interior point and there is no duality gap. Case 2: the feasible set of the
complex moment relaxation of order d is empty, i.e. ρd = +∞. It must be strongly
infeasible because it cannot be weakly infeasible (see [27, Section 5.2] for definitions).
Indeed, if it is weakly infeasible, then there exists a sequence (yj)j∈N of elements of

H such that for all j ∈ N, we have |yj0,0 − 1| 6 1
j+1 and λmin(Md−ki

(giy
j)) > − 1

j+1

where i = 0, . . . ,m. Define c := (n + d)!/(n!d!). We now mimick the computa-
tions in Lemma 3.6 using yj0,0 6 1 + 1

j+1 6 2 and |Tr(Ml−1(sy
j))| 6 c

j+1 6 c
if 1 6 l 6 d. Consider j0 ∈ N such that for all j > j0 and 1 6 l 6 d, we
have

∑

|α|6l−1,|γ|=1 y
j
γ+α,γ+α −∑0<|α|6l y

j
α,α > −1.The concluding equation in the

proof of Lemma 3.6 then becomes
∑

|α|6l y
j
α,α 6 2 + R2

(

∑

|α|6l−1 y
j
α,α

)

+ c + 1.

As a result, Tr(Md(y
j)) =

∑

|α|6d y
j
α,α 6 (3 + c)

∑d
l=0 R

2l, which, together with

λmin(Md(y
j)) > − 1

j+1 > −1, yields λmax(Md(y
j)) 6 (3 + c)

∑d
l=0 R

2l + c− 1. Hence

for all j > j0, the spectrum of Md(y
j) is lower bounded by −1 and upper bounded

by Bd := (3 + c)
∑d

l=0 R
2l + c − 1 > 1. We therefore have

√

∑

|α|,|β|6d |y
j
α,β|2 6

Cd ‖Md(y)‖ 6 Cd × Bd. The sequence (yj)j>j0 is thus included in a compact set.
Hence there exists a subsequence that converges towards a limit ylim which satisfies
ylim0,0 = 1 and the constraints λmin(Md−ki

(giy
lim)) > 0, i = 0, . . . ,m. Therefore ylim

is a feasible point of the complex moment relaxation of order d, which is a contra-
diction. Strong infeasibility means that the dual feasible set contains an improving
ray [27, Definition 5.2.2]. Moreover, infy∈Hd

Ly(f) subject to y0,0 = 1, Md(y) <

0, and Md−1(sy) = 0 is a semidefinite program with a non-empty compact feasible
set hence the dual feasible set contains a point (λ, σ0, σ1). As result (λ, σ0, σ1, 0, . . . , 0)
is a feasible point of the complex sum-of-squares relaxation of order d. Together with
the improving ray, this means that ρ∗d = +∞. To conclude, ρ∗d = ρd in both cases.

Proposition 3.11. Assume that (3.3) satisfies (3.15) and has a global solution
zopt ∈ Kopt. In addition, assume that (σopt

0 , . . . , σopt
m ) ∈ Σ[z]m+1 is an optimal

solution to the sum-of-squares problem (3.12). Then (zopt, σopt
1 , . . . , σopt

m ) is a saddle
point of φ : Cn × Σ[z]m −→ R defined by (z, σ) 7−→ f(z)−∑m

i=1 σi(z)gi(z).

Proof. The optimality of (σopt
0 , . . . , σopt

m ) means that f−fopt =
∑m

i=0 σ
opt
i gi. With

f(zopt) − fopt =
∑m

i=0 σ
opt
i (zopt)gi(z

opt) = 0, σopt
i (zopt) > 0, and gi(z

opt) > 0, we
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have σopt
i (zopt)gi(z

opt) = 0 for i = 0, . . . ,m. It follows that φ(zopt, σ) 6 φ(zopt, σopt)
for all σ ∈ Σ[z]. For all z ∈ Cn, φ(zopt, σopt) 6 φ(z, σopt) because f(z) − fopt −
∑m

i=1 σ
opt
i (z)gi(z) = σopt

0 (z) > 0.
Given an application ϕ : Cn −→ R, define ϕ̃ : R2n −→ R by (x, y) 7−→ ϕ(x+ iy).

If ϕ̃ is R-differentiable at point (x, y) ∈ R2n, consider the Wirtinger derivative [75]
defined by ∇ϕ(x + iy) := 1

2 (∇xϕ̃(x, y)− i∇yϕ̃(x, y)) ∈ Cn.
Corollary 3.12. With the same assumptions as in Proposition 3.11, we have

(3.27)

∇f(zopt) =
∑m

i=1 σ
opt
i (zopt)∇gi(z

opt),

σopt
i (zopt), gi(z

opt) > 0, i = 1, . . . ,m,

σopt
i (zopt)gi(z

opt) = 0, i = 1, . . . ,m.

Proof. zopt is a minimizer of z ∈ Cn 7−→ φ(z, σopt) thus ∇zφ(z
opt, σopt) =

∇f(zopt) −∑m
i=1 ∇σopt

i (zopt)gi(z
opt) −∑m

i=1 σ
opt
i (zopt)∇gi(z

opt) = 0. Consider 1 6

i 6 m. Since σopt
i (zopt) = 0 and σopt

i ∈ Σ[z], it must be that |zk − zoptk |2 divides

σopt
i,k : zk ∈ C 7−→ σopt

i (zopt1 , . . . , zoptk−1, zk, z
opt
k+1, . . . , z

opt
n ). With zoptk =: xopt

k + iyoptk ,

the real number xopt
k is a root of multiplicity 2 of xk ∈ R 7−→ σopt

i,k (xk+ iyoptk ), with an

analogous remark for yoptk . Thus ∇σopt
i (zopt) = 0 which leads to the desired result.

supλ∈R λ

s.t. ∀z ∈ K,

f(z)− λ > 0

supλ∈R λ

s.t. ∀x+ iy ∈ K,

f(x+ iy)− λ > 0

supλ∈R
λ s.t.

∀x, y ∈ R
n, f(x+ iy)− λ =

m
∑

i=0

(

ri
∑

j=1

∣

∣

∣

∣

∣

∑

|α+β|6d−ki

pij,α,β(x− iy)α(x+ iy)β

∣

∣

∣

∣

∣

2)

gi(x+ iy)

supλ∈R
λ s.t.

∀z ∈ C
n, f(z)− λ =

m
∑

i=0

(

ri
∑

j=1

∣

∣

∣

∣

∣

∑

|α|6d−ki

pij,αz
α

∣

∣

∣

∣

∣

2)

gi(z)

supλ∈R
λ s.t.

∀x, y ∈ R
n, f(x+ iy)− λ =

m
∑

i=0

(

ri
∑

j=1

∣

∣

∣

∣

∣

∑

|α|6d−ki

pij,α(x+ iy)α

∣

∣

∣

∣

∣

2)

gi(x+ iy)

Identify
real and

imaginary
parts

Identify
real and

imaginary
parts

Complex Hierarchy

>

Real Hierarchy

Fig. 3. Comparison of Real and Complex Hierarchies

3.4. Comparison of Real and Complex Hierarchies. In Figure 3 where
pij,α, p

i
j,α,β ∈ C, the real sum-of-squares hierarchy is artificially written using squares

of moduli of complex polynomials. It thus yields bounds superior or equal to the
complex hierarchy. For example, at order 2, the real hierarchy yields 1.0000 while the
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complex hierarchy yields 0.6813 for (3.19). However, the size of the largest semidefinite
constraint in the complex hierarchy when converted to real numbers, i.e. 2×card{α ∈
Nn s.t. |α| 6 d} = 2(n + d)!/(n!d!), is far inferior to that of the real hierarchy, i.e.
card{α, β ∈ Nn s.t. |α+ β| 6 d} = (2n+ d)!/((2n)!d!). At fixed d, the size reduction
converges towards 2d−1 as n → ∞. Further reduction is possible (Section 3.5).

3.5. Invariant Hierarchy. We generalize and transpose to complex numbers
the work in [62] (see also [19]). Let (G,×) denote a compact group whose unit we
denote 1. First, consider the continuous action of G on Cn via A : G × Cn −→ Cn

such that A(1, z) = z, A(g1 × g2, z) = A(g1,A(g2, z)) for all z ∈ Cn and g1, g2 ∈ G.
Second, consider the action of G on R[z̄, z] via A′ : G × R[z̄, z] −→ R[z̄, z] defined
by A′(g, ϕ) := ϕ(A(g, z)). Third, consider the action of G on the set B(K) of Borel
subsets of K via A′′ : G×B(K) −→ B(K) defined by A′′(g,B) := {z ∈ K | A(g, z) ∈
B}. Last, consider the action of G on M(K) via A′′′ : G×M(K) −→ M(K) defined
by A′′′(g, µ)(·) := µ(A′′(g, ·)). Given a set S on which G is acting via T and Y ⊂ S,
let Y G := {y ∈ Y | ∀g ∈ G, T (g, y) = y}. If f, g1, . . . , gm ∈ R[z̄, z]G, then:

(3.28) fopt = infµ∈M(K)G
∫

K fdµ s.t.
∫

K dµ = 1 & µ > 0.

If µ is feasible for (3.28), then
∫

K
|p|2gidµ > 0 for all d ∈ N and p ∈ Cd[z] such that

|p|2 ∈ Σd[z]
G. Given A ∈ Hd, let A <G 0 therefore denote ~pHA~p > 0 for all p ∈ Cd[z]

such that |p|2 ∈ Σd[z]
G. This yields a G-invariant hierarchy for all d > dmin

(3.29)
ρGd := infy∈Hd

Ly(f)
s.t. y0,0 = 1,

Md−ki
(giy) <

G 0, i = 0, . . . ,m,

(3.30)
(ρGd )

∗ := supλ,σ λ
s.t. f − λ =

∑m
i=0 σigi,

λ ∈ R, σi ∈ Σd−ki
[z]G, i = 0, . . . ,m,

whose convergence we now discuss. Assume that the first 2e (e ∈ N∗) constraint func-
tions g1, . . . , gm form equality constraints (i.e. g2i−1 = −g2i =: hi, i = 1 . . . e). Define
S := Σ[z]G +

∑e
i=1 R[z̄, z]

Ghi (and S := Σ[z]G if there are no equality constraints).
Proposition 3.13. Assume that f, g1, . . . , gm ∈ R[z̄, z]G and that R[z̄, z]G =

S + R. If f|K > 0, then there exists σ0, . . . , σm ∈ Σ[z]G such that f =
∑m

i=0 σigi.
Proof. By definition of A′, R[z̄, z]G is an R-algebra. As a result, S is a semiring of

R[z̄, z]G (i.e. contains R+ and is closed in R[z̄, z]G under taking sums and products)
and M := S+

∑m
i=2e+1 Σ[z]

Ggi is an S-module of R[z̄, z]G (i.e. contains 1 and satisfies
M +M ⊂ M and SM ⊂ M). The conclusion then follows from [60, Theorem 2.6].

Proposition 3.14. The torus G = T in C with the action A(g, z) := gz satisfies
ρTd = ρd and (ρTd)

∗ = ρ∗d for all d > dmin if f, g1, . . . , gm ∈ R[z̄, z]T.
Proof. Firstly, ϕ ∈ R[z̄, z]T if and only if ∀α, β ∈ Nn, |α−β|ϕα,β = 0. Indeed, for

all θ ∈ R and z ∈ Cn, ϕ(eiθz) =
∑

α,β∈Nn ϕα,β(eiθz)
α
(eiθz)β =

∑

α,β∈Nn ϕα,βe
i(|β|−|α|)θ

z̄αzβ is equal to ϕ(z) if and only if ϕα,β = 0 or |β − α|θ ≡ 0[2π] (i.e. |β −
α| = 0). Secondly, if σ ∈ Σ[z], i.e. σ =

∑r
j=1 |pj |2, then

∑

|α|=|β| σα,β z̄
αzβ =

∑

l∈N

∑r
j=1 |

∑

|α|=l pj,αz
α|2 ∈ Σ[z]T. Thirdly, if (λ, σ0, . . . , σm) is feasible for (3.11),

then (λ,
∑

|α|=|β| σ0,α,β z̄
αzβ, . . . ,

∑

|α|=|β| σm,α,β z̄
αzβ) is feasible for (3.30). Thus

(ρTd)
∗ = ρ∗d. Lastly, if y is feasible for (3.29), then (yα,βδ|α|=|β|)|α|,|β|6d is feasible

for (3.9) (where δ is the Kronecker symbol). Hence ρTd = ρd.
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If f, g1, . . . , gm ∈ R[z̄, z]T, then the minimum order dmin of the complex hierarchy,
i.e. max{|α|, |β| s.t. |fα,β| + |g1,α,β| + . . .+ |gm,α,β| 6= 0}, is equal to that of the real
hierarchy, i.e. max{⌈(|α|+ |β|)/2⌉ s.t. |fα,β|+ |g1,α,β|+ . . .+ |gm,α,β| 6= 0}, where ⌈.⌉
denotes the ceiling of a real number.

Proposition 3.15. The subgroup G = {−1, 1} of T with A(g, z) := gz satisfies

ρ
{−1,1}
d = ρd and (ρ

{−1,1}
d )∗ = ρ∗d for all d > dmin if f, g1, . . . , gm ∈ R[z̄, z]{−1,1}.

Proof. Firstly, ϕ ∈ R[z̄, z]{−1,1} if and only if ∀|α+β| odd, ϕα,β = 0. Secondly, if
σ ∈ Σ[z], i.e. σ =

∑r
j=1 |pj |2, then

∑

|α+β|even σα,β z̄
αzβ =

∑r
j=1 |

∑

|α|even pj,αz
α|2 +

|∑|α|odd pj,αz
α|2 ∈ Σ[z]{−1,1}. Thirdly, if (λ, σ0, . . . , σm) is feasible for (3.11), then

(λ,
∑

|α+β|even σ0,α,β z̄
αzβ, . . . ,

∑

|α+β|even σm,α,β z̄
αzβ) is feasible for (3.30). Lastly, if

y is feasible for (3.29), then (yα,βδ|α+β|even)|α|,|β|6d is feasible for (3.9).
A problem with T-invariance in complex numbers converts in real numbers to a

problem with {−1, 1}-invariance. If σ ∈ Σd[z]
T, then (σα,β)|α|,|β|6d has a (d + 1)-

block-diagonal structure, whereas if σ ∈ Σd[x, y]
{−1,1} with z =: x+ iy, then it has a

2-block-diagonal structure (after permutation) whose 2 blocks are much bigger.

3.6. Multi-Ordered Relaxation. We generalize and transpose to complex
numbers the work in [53]. The idea is to associate a relaxation order to each con-
straint. In addition, we consider the coupling of the variables induced by the monomi-
als present in the optimization problem, to which we add the coupling of the variables
induced by only some constraints (those with a “high-order”). For instance, the cou-
pling induced by the mononials in g1(z1, z2, z3) := ℜ{z1(z2+z3)} > 0 is {(1, 2), (2, 3)},
while the coupling induced by the constraint is {(1, 2), (1, 3), (2, 3)}.

Given α ∈ Nn with n > 1, let supp(α) := {1 6 s 6 n | αs 6= 0}. Consider
the coupling induced by monomials defined by Emono := {(l,m) | l 6= m s.t. ∃α, β ∈
Nn s.t. {l,m} ⊂ supp(α + β) and |fα,β | + |g1,α,β | + . . . + |gm,α,β| 6= 0}. Given
I ⊂ {1, . . . , n}, let z(I) := {zi | i ∈ I} if I 6= ∅, else z(C) := 1. Given y ∈ H,
d ∈ N, and ϕ ∈ R[z(I), z(I)], let Md(ϕy, I) := ( Md(ϕy)(α, β) )supp(α),supp(β)⊂I .
Let G1, . . . , Gm ⊂ {1, . . . , n} denote the minimal sets in terms of inclusion such that
(g1, . . . , gm) ∈ Rk1

[z(G1), z(G1)]× . . .× Rkm
[z(Gm), z(Gm)].

Let (d1, . . . , dm) ∈ Nm be such that di − ki > 0 for all 1 6 i 6 m. Consider
the coupling induced by monomials and high-order constraints defined by Econ :=
Emono ∪ ⋃

di>ki
{(l,m) | l 6= m s.t. {l,m} ⊂ Gi}. Let C1, . . . , Cp ⊂ {1, . . . ,m} denote

the maximal cliques of a chordal extension of ({1, . . . , n}, Econ). Given 1 6 i 6 m, let
Ii := ∪l∈LCl where L ∈ argmin{∑l∈L |Cl| | Gi ⊂ ∪l∈LCl, L ⊂ {1, . . . ,m} }. For i

such that di > ki, L is a singleton due to the definition of Econ. Define (dcl1 , . . . , d
cl
p ) ∈

Np such that dcll := min{d1, . . . , dm} if Cl 6= Ii for all 1 6 i 6 m; if not, let dcll :=
max{di | Ii = Cl}. Define the relaxation of order (d1, . . . , dm) by

(3.31)

ρd1,...,dm
:= infy∈H Ly(f)

s.t. y0,0 = 1,
Mdcl

l
(y, Cl) < 0, l = 1, . . . , p,

Mdi−ki
(giy, Ii) < 0, i = 1, . . . ,m,

(3.32)

ρ∗d1,...,dm
:= supλ,σ λ

s.t. f − λ =
∑p

l=1

(

σ0,l +
∑

Cl⊂Ii
σigi

)

,

σ0,l ∈ Σdcl
l
[z(Cl)], l = 1, . . . , p,

σi ∈ Σdi−ki
[z(Ii)], i = 1, . . . ,m.
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3.7. Multi-Ordered Hierarchy. Given H : N −→ [k1,+∞[× . . . × [km,+∞[
such that mind→+∞ H(d) = +∞, consider the sequence indexed by d ∈ N of re-
laxations of order H(d). We refer to such a sequence as multi-ordered hierarchy.
The uniform case where H(d) := (d + dmin, . . . , d + dmin) is a special case of the
sparse real hierarchy of [74] when transposed to complex numbers. The hierarchy
of [74] converges to the global value of a real polynomial optimization problem if a
ball constraint is added for each clique of a chordal extension of the sparsity pat-
tern [42, equation (2.29)]. The same holds in the complex case if a slack variable and
redundant sphere constraint is added for each clique. The proof is the same as in
the real case [42, Lemma B.13 and 4.10.2 Proof of Theorem 4.7] once the real vector
spaces on which measures are defined are replaced by complex vector spaces. (For
other proofs of [42, Theorems 2.28 and 4.7], see [31] and [40].) For d ∈ N great enough,
i.e. once di > ki for all 1 6 i 6 m, the relaxation of order H(d) = (d1, . . . , dm) is at
least as tight as the complex sparse relaxation of [74] of order minH(d). Any multi-
ordered hierarchy thus globally converges (if a slack variable and sphere constraint is
added for each clique).

3.8. Example of Multi-Ordered Hierarchy: the Mismatch Hierarchy.
Conceptually, the mismatch hierarchy is defined by the following procedure. Until a
measure can be extracted from a solution y to the multi-ordered relaxation,

1. compute a solution y to the moment relaxation of order (d1, . . . , dm);
2. find a closest measure µ to y not necessarily supported on K:

(3.33) argmin
µ Dirac

∥

∥

∥

∥

∥

(

yα,β −
∫

Cn

z̄αzβdµ

)

|α|,|β|=1

∥

∥

∥

∥

∥

F

3. increment di = di + 1 at the highest mismatch, that is to say:

(3.34) argmax
16i6m

∣

∣

∣

∣

∣

∣

∑

α,β

gi,α,β

(

yα,β −
∫

Cn

z̄αzβdµ

)

∣

∣

∣

∣

∣

∣

.

Stricly speaking, we refer to the mismatch hierarchy as the following recursively de-
fined multi-ordered hierarchy H . It depends on 3 parameters: a mismatch tolerance
ǫ > 0; the number h ∈ N∗ of highest mismatches considered at each iteration; and
an upper bound ∆max

min on the difference between maximum and minimum orders, i.e.
{maxH(d)−minH(d) | d ∈ N}.

Initialize by H(0) := k1 × . . . × km and let’s define H(d + 1) in function of
H(d). We distinguish two cases. Case 1: if there exists no solution to the moment
relaxation of order H(d), then let H(d + 1) := H(d) + (1, . . . , 1). Case 2: if not,
consider a solution y. For 1 6 l 6 p, consider some complex numbers (u(l)j)j∈Cl

such that u(l) u(l)
H

is the closest rank 1 matrix to y(l) := (yα,β)
|α|=|β|=1
supp(α),supp(β)⊂Cl

with respect to the Frobenius norm. Let λ1(l) > λ2(l) > 0 respectively denote
the first and second largest eigenvalues of y(l). Let θ ∈ Rp be a minimizer of
∑p

l,m=1

∑

j∈Cl∩Cm
(arg u(l)j + θl − arg u(m)j − θm)2 s.t. θ ∈ [0, 2π]p. Let z ∈ C

n be

a minimizer of
∑

λ2(l) 6=0 λ1(l)/λ2(l)‖z(Cl) − u(l)eiθl‖22 + 2max{λ1(l)/λ2(l) | λ2(l) 6=
0} ×∑λ2(l)=0 ‖z(Cl)− u(l)eiθl‖22. We distinguish 3 cases:

• Case 2.1: M := {1 6 i 6 m | |Ly(gi)−gi(z)| > ǫ and Hi(d) < maxH(d)} 6= ∅
• Case 2.2: M = ∅ and M′ := {i ∈ S | |Ly(gi)− gi(z)| > ǫ} 6= ∅
• Case 2.3: M = M′ = ∅
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In Case 2.1, let Hj(d + 1) := Hj(d) + 1 if Ij ⊂ Ii and i has one of the h highest
mismatches |Ly(gi)− gi(z)| among i ∈ M. For all other 1 6 j 6 m, let Hj(d+ 1) :=
Hj(d) unless the bound ∆max

min is violated, in which case for all 1 6 j 6 m such that
Hj(d) = minH(d), let Hj(d + 1) := Hj(d) + 1. In Case 2.2, apply instructions of
Case 2.1 where M is replaced by M′. In Case 2.3, let H(d+ 1) := H(d) + (1, . . . , 1).
Observe that minH(d) > maxH(d)−∆max

min → +∞ as d → +∞.

4. Application to Electric Power Systems. The optimal power flow is a
central problem in power systems introduced half a century ago in [14]. While many
non-linear methods [16, 77] have been developed to solve this difficult problem, there
is a strong motivation for producing more reliable tools. Since 2006, the ability of the
Shor and second-order conic relaxations to find global solutions [3,7,20,34,47,52,69]
has been studied. Some relaxations are presented in real numbers [43,54] and some in
complex numbers [9, 10, 76]. However, in all numerical applications, standard solvers
such as SeDuMi, SDPT3, and MOSEK are used which currently handle only real
numbers. Modeling languages such as YALMIP and CVX do handle inputs in complex
numbers, but the data is transformed into real numbers before calling the solver [11,
Example 4.42]. We use the European network to illustrate that it is beneficial to relax
non-convex constraints before converting from complex to real numbers.

4.1. Optimal Power Flow. A transmission network can be modeled using an
undirected graph G = (B,L) where buses B = {1, . . . n} are linked to one another via
lines L ⊂ B×B. Power flows are governed by the admittance matrix Y ∈ Cn×n whose
extra diagonal terms (l,m) ∈ L are equal to ylm/(ρmlρ

H
lm) and whose diagonal terms

(l, l) are equal to
∑

(l,m)∈L(ylm + ygrlm)/|ρlm|2. All others terms are equal to zero.

Here, ylm ∈ C denotes the mutual admittance between buses (l,m) ∈ L, ygrlm ∈ C

denotes the admittance-to-ground at end l of line (l,m) ∈ L, and ρlm ∈ C denotes
the ratio of the ideal phase-shifting transformer at end l of line (l,m) ∈ L.

Each bus injects power pgenk +iqgenk into the network with capacity limits pmin
k , pmax

k ,
qmin
k , qmax

k (potentially all equal to 0) and extracts power demand pdemk + iqdemk from
the network. Each bus operates at a voltage vk ∈ C. Finding power flows that
minimize active power loss is a problem that can be cast as an instance of QCQP-C:

inf
v∈Cn

vH
Y H + Y

2
v(4.1)

s.t. ∀k ∈ B, pmin
k − pdemk 6 vHHkv 6 pmax

k − pdemk ,(4.2)

∀k ∈ B, qmin
k − qdemk 6 vHH̃kv 6 qmax

k − qdemk ,(4.3)

∀k ∈ B, (vmin
k )2 6 vHeke

T
k v 6 (vmax

k )2,(4.4)

where Hk :=
Y Heke

T
k +eke

T
k Y

2 and H̃k :=
Y Heke

T
k −eke

T
k Y

2i are Hermitian and ek is the
kth column of the identity matrix. In Section 4.2, power flows are computed that seek
to minimize either power loss or generation costs

∑

k∈B ak(p
gen
k )2 + bkp

gen
k + ck where

ak, bk, ck ∈ R, ak > 0, and pgenk = vHHkv+ pdemk . In the case of generation costs, new
real variables (tk)k∈B are introduced, objective (4.1) is replaced by

∑

k∈B tk, and new

constraints are added for all k ∈ B: ak(vHHkv + pdemk )2 + bk(v
HHkv + pdemk ) + ck 6

tk. In Section 4.2 apparent power flow limits |vliHlm| 6 smax
lm are enforced where

vli
H
lm = vHFlmv and Flm := aHlmele

T
l + bHlmemeTl , with alm := (ylm + ygrlm)/|ρlm|2 and

blm := −ylm/(ρmlρ
H
lm). These can be written for all (l,m) ∈ L: (vH

Flm+FH
lm

2 v)2 +

(vH
Flm−FH

lm

2i v)2 6 (smax
lm )2. Note that generation cost and line flow constraints yield
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second-order conic constraints for all the relaxations considered in this paper as well as
semidefinite constraints for higher orders of the moment/sum-of-squares hierarchies.
The optimal power flow problem is invariant under the action of the torus (Section 3.5)
due to alternating current. We thus implement invariant hierarchies in Section 4.2.3.

4.2. Numerical Results. We consider large test cases representing portions of
European power systems: Great Britain (GB) [72], Poland (PL) [77], and systems
from the PEGASE project [28, 37]. They were preprocessed (see Table 1) to remove
low-impedance lines in order to improve the solver’s numerical convergence, which
is a typical procedure in power system analysis. A 1× 10−3 per unit low-impedance
line threshold was used for all test cases except for PEGASE-1354 and PEGASE-2869
which use a 3× 10−3 per unit threshold. Table 1 includes the at-least-locally-optimal
objective values obtained from the interior point solver in Matpower [77] for the
problems after preprocessing. Note that the PEGASE systems specify generation
costs that minimize active power losses, so the objective values in both columns
are the same. Implementations use YALMIP 2015.06.26 [46], Mosek 7.1.0.28, and
MATLAB 2013a on a computer with a quad-core 2.70 GHz processor and 16 GB of
RAM. The results do not include the typically small formulation times.

Table 1
Size of Data (After Low-Impedance Line Preprocessing)

Test Number of Number of Matpower Solution [77]
Case Complex Edges Gen. Cost Loss Min.
Name Variables in Graph ($/hr) (MW)

GB-2224 2,053 2,581 1,942,260 60,614
PL-2383wp 2,177 2,651 1,868,350 24,991
PL-2736sp 2,182 2,675 1,307,859 18,336
PL-2737sop 2,183 2,675 777,617 11,397
PL-2746wop 2,189 2,708 1,208,257 19,212
PL-2746wp 2,192 2,686 1,631,737 25,269
PL-3012wp 2,292 2,805 2,592,462 27,646
PL-3120sp 2,314 2,835 2,142,720 21,513
PEGASE-89 70 185 5,819 5,819
PEGASE-1354 983 1,526 74,043 74,043
PEGASE-2869 2,120 3,487 133,945 133,945
PEGASE-9241 7,154 12,292 315,749 315,749
PEGASE-9241R7 7,154 12,292 315,785 315,785

4.2.1. Shor Relaxation. Table 2 shows the results of applying SDP-R and
SDP-C. They yield global decision variables and the global objective value for the
cases marked an asterisk (*) in Table 2. For those cases, the eigenvector associated to
the largest eigenvalue is feasible up to 0.005 p.u. at voltage constraints and 1 MVA at
all other constraints, and the objective evaluated in the eigenvector matches the bound
within 0.05% relative to the bound. The lower bounds in Table 2 suggest that the
corresponding Matpower solutions in Table 1 are at least very close to being globally
optimal. The gap between the Matpower solutions and the lower bounds from
SDP-C for the generation cost minimizing problems are less than 0.72% for GB-2224,

7PEGASE-9241 contains negative resistances to account for generators at lower voltage levels.
In PEGASE-9241R these are set to 0.
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0.29% for the Polish systems, and 0.02% for the PEGASE systems with the exception
of PEGASE-9241. The non-physical negative resistances in PEGASE-9241 result in
weaker lower bounds, yielding a gap of 1.64%. In accordance with Appendices B

Table 2
Real and Complex SDP (Generation Cost Minimization)

Case SDP-R SDP-C
Name Val. ($/hr) Time (sec) Val. ($/hr) Time (sec)

GB-2224 1,928,194 10.9 1,928,444 6.2
PL-2383wp 1,862,979 48.1 1,862,985 23.0
PL-2736sp* 1,307,749 35.7 1,307,764 22.0
PL-2737sop* 777,505 41.7 777,539 19.5
PL-2746wop* 1,208,168 51.1 1,208,182 22.8
PL-2746wp 1,631,589 43.8 1,631,655 20.0
PL-3012wp 2,588,249 52.8 2,588,259 24.3
PL-3120sp 2,140,568 64.4 2,140,605 25.5
PEGASE-89* 5,819 1.5 5,819 0.9
PEGASE-1354 74,035 11.2 74,035 5.6
PEGASE-2869 133,936 38.2 133,936 20.6
PEGASE-9241 310,658 369.7 310,662 136.1
PEGASE-9241R 315,848 317.2 315,731 95.9

and C, all objective values in Table 2 match within 0.037%. SDP-C is faster (between
a factor of 1.60 and 3.31) than SDP-R. Exploiting the isomorphic structure of complex
matrices in SDP-C is thus better than eliminating a row and column in SDP-R.

4.2.2. Second-Order Conic Relaxation. Table 3 shows the results of apply-
ing SOCP-R and SOCP-C. Unlike the Shor relaxation, they do not yield the global
solution to any of the test cases.8 SOCP-C provides better lower bounds and is faster
than SOCP-R. Lower bounds from SOCP-C are between 0.87% and 3.96% larger and
solver times are faster by between a factor of 1.24 and 6.76 than those from SOCP-R.

4.2.3. Moment/Sum-of-Squares Hierarchy. The real hierarchy globally solves
a broad class of optimal power flow problems [30, 39, 51, 53] by first converting them
to real numbers. The dense real and complex hierarchies solve problems up to 10
buses while the sparse ones solve problems with up 40 buses. In order to solve large-
scale instances, we apply the mismatch hierarchy of Section 3.8 with the following
parameters: ǫ := 1 MVA; h := 2; and ∆max

min := 2. See Appendix E for a small ex-
ample. The mismatches are taken to be the modulus of the complex number whose
real part is the mismatch for constraint k in (4.2) and whose imaginary part is the
mismatch for constraint k in (4.3). In other words, apparent power mismatches are
considered rather than active and reactive power seperately. To improve numerics,
|yα,β + yα,β | 6 2(vmax)α+β and |yα,β − yα,β| 6 2(vmax)α+β are added to the complex
hierarchy and |yα| 6 (vmax)α is added to the real hierarchy for all |α|, |β| 6 maxH(d)
where vmax := (vmax

1 , . . . , vmax
n ) (see (4.4)). A similar procedure can be found in [74].

In Tables 4 and 5, the mismatch hierarchy is applied until the solution obtained
is feasible up to 0.005 p.u. at voltage constraints and 1 MVA at all other constraints9,

8SOCP-C generally does not provide a global solution with the exception of radial systems when
certain non-trivial technical conditions are satisfied [47].

9Typical violations are smaller than 1 MVA. For instance, with the complex hierarchy PL-3012wp
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Table 3
Real and Complex SOCP (Generation Cost Minimization)

Case SOCP-R SOCP-C
Name Val. ($/hr) Time (sec) Val. ($/hr) Time (sec)

GB-2224 1,855,393 3.5 1,925,723 1.4
PL-2383wp 1,776,726 8.5 1,849,906 2.4
PL-2736sp 1,278,926 4.8 1,303,958 1.7
PL-2737sop 765,184 5.5 775,672 1.6
PL-2746wop 1,180,352 5.1 1,203,821 1.7
PL-2746wp 1,586,226 5.5 1,626,418 1.7
PL-3012wp 2,499,097 5.9 2,571,422 2.0
PL-3120sp 2,080,418 6.2 2,131,258 2.2
PEGASE-89 5,744 0.5 5,810 0.4
PEGASE-1354 73,102 3.4 73,999 1.5
PEGASE-2869 132,520 9.0 133,869 2.7
PEGASE-9241 306,050 35.3 309,309 10.0
PEGASE-9241R 312,682 36.7 315,411 5.4

and until the objective evaluated in the solution matches the bound within 0.05%
relative to the bound. The optimal values in the two tables match to at least 0.007%,
which is within the expected solver tolerance. Further, they match the optimal values
for the loss minimizing problems in Table 1 to within 0.013%, further proving that they
are globally optimal. However, local solvers do not always globally solve the optimal
power flow [12,15,50,53]. Though both hierarchies solve many small- and medium-size
test cases which minimize generation cost, the mismatch hierarchy requires too many
higher-order constraints for larger generation-cost-minimizing test cases.

The feasible set of the optimal power flow problem is included in the ball of
radius

∑

k∈B (vmax
k )2 so a slack variable and a sphere constraint may be added as

suggested in Section 3.3. In order to preserve sparsity, a slack variable and a sphere
constraint may be added for each maximal clique of the chordal extension of the
network graph. However, it tends to introduce numerical convergence challenges in
problems with several thousand buses, resulting in higher-order constraints at more
buses and correspondingly longer solver times. Interestingly, the results in Table 5
were obtained without the slack variables and sphere constraints. A potential way
to account for this would be to compute the Hermitian complexity [26] of the ideal
generated by the polynomials associated with equality constraints. A step in that
direction would be to assess the greatest number of distinct points (possibly infinite)
vi ∈ Cn, 1 6 i 6 p, such that (vi)H(Hk + iH̃k)v

j = −pdemk − iqdemk for all buses k not
connected to a generator and for all 1 6 i, j 6 p. The Hermitian complexity of the
ideal generated by

∑n
i=1 |zi|2 + σ(z) + a as defined in (3.15) with a < 0 is equal to 1.

Tables 4 and 5 show that the complex hierarchy has advantages over the real
hierarchy. In all cases except PEGASE-1354, there is a speedup factor in solver time
of between 1.31 and 21.42. The most significant improvements are seen for cases
(e.g., PL-2383wp and PL-2746wop whose biggest maximal clique has 19 nodes) where
the higher-order constraints account for a large portion of the solver times. This is
due to fewer terms in the higher-order constraints. There is also a speedup in solver

has over 99% of the buses with less than 0.02 MVA violation, and only 0.09% of the buses with greater
than 0.1 MVA violation. Maximum line flow viotation is 0.0006 MVA.
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Table 4
Real Moment/Sum-of-Squares Hierarchy (Active Power Loss Minimization)

Case Num. Global Obj. Max. Viol. Solver
Name Iter. Val. (MW) (MVA) Time (sec)

PL-2383wp 3 24,990 0.25 583.4
PL-2736sp 1 18,334 0.39 44.0
PL-2737sop 1 11,397 0.45 52.4
PL-2746wop 2 19,210 0.28 2,662.4
PL-2746wp 1 25,267 0.40 45.9
PL-3012wp 5 27,642 1.00 318.7
PL-3120sp 7 21,512 0.77 386.6
PEGASE-1354 5 74,043 0.85 406.9
PEGASE-2869 6 133,944 0.63 921.3

Table 5
Complex Moment/Sum-of-Squares Hierarchy (Active Power Loss Minimization)

Case Num. Global Obj. Max. Viol. Solver
Name Iter. Val. (MW) (MVA) Time (sec)

PL-2383wp 3 24,991 0.10 53.9
PL-2736sp 1 18,335 0.11 17.8
PL-2737sop 1 11,397 0.07 25.7
PL-2746wop 2 19,212 0.12 124.3
PL-2746wp 1 25,269 0.05 18.5
PL-3012wp 7 27,644 0.91 141.0
PL-3120sp 9 21,512 0.27 193.9
PEGASE-1354 11 74,042 1.00 1,132.6
PEGASE-2869 9 133,939 0.97 700.8

time of between 2.0 and 5.9 for 7 out of the 8 small- to moderate-size generation-cost-
minimizing test cases in [53], the exception being case39Q due to numerical difficulties.
For those 7 cases, the maximum violation for the complex hierarchy is 0.08 MVA, with
the remaining case (case118Q) having a maximum violation of 0.32 MVA.

PL-3012wp, PL-3120sp, PEGASE-1354, and PEGASE-2869 require more iter-
ations in the complex case than the real one. However, the improved speed per
iteration results in faster overall solution times for all of these test cases except for
PEGASE-1354, for which 6 additional iterations result in a factor of 2.78 slower solver
time. Interestingly, the dense versions of the real and complex hierarchies yield the
same bounds at each order for small test cases (6 10 buses) from [12, 44, 50, 55].

5. Conclusion. We construct a complex moment/sum-of-squares hierarchy for
complex polynomial optimization and prove convergence toward the global optimum.
Theoretical and experimental evidence suggest that relaxing non-convex constraints
before converting from complex to real numbers is better than doing the operations
in the opposite order. We conclude with the question: is it possible to gain efficiency
by transposing convex optimization algorithms from real to complex numbers?
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Appendix A. Rank-2 Condition. It is proven here that a Hermitian matrix
Z is positive semidefinite and has rank 1 if and only if Λ(Z) is positive semidefinite
and has rank 2.

(=⇒) Say Z = zzH where real and imaginary parts are defined by z = x1 + ix2

and (x1, x2) 6= (0, 0). Then

Λ(Z) =

(

x1x
T
1 + x2x

T
2 x1x

T
2 − x2x

T
1

x2x
T
1 − x1x

T
2 x1x

T
1 + x2x

T
2

)

(A.1a)

=

(

x1

x2

)(

x1

x2

)T

+

(

−x2

x1

)(

−x2

x1

)T

.(A.1b)

The rank of Λ(Z) is equal to 2 since ( xT
1 xT

2 )T and ( (−x2)
T xT

1 )T are non-zero
orthogonal vectors.

(⇐=) Say Λ(Z) = xxT + yyT where x and y are non-zero real vectors. Consider
the block structure x = ( xT

1 xT
2 )T and y = ( yT1 yT2 )T . For i = 1, . . . , n, it must be

that

x2
1i + y21i = x2

2i + y22i,(A.2a)

x1ix2i + y1iy2i = 0.(A.2b)

Two cases can occur. The first is that x1ix2i 6= 0 in which case there exists a real
number λi 6= 0 such that

(A.3)

{

y1i = −λi x2i,
y2i = 1

λi
x1i.

Equation (A.2a) implies that (1 − λ2
i )x

2
1i = (1 − 1

λ2
i

)x2
2i thus (1 − λ2

i )(1 − 1
λ2
i

) > 0

and λi = ±1. The second case is that x1ix2i = 0. Then, according to (A.2b),
y1iy2i = 0. If either x1i = y1i = 0 or x2i = y2i = 0, then (A.2a) implies that
x1i = x2i = y1i = y2i = 0. If x1i = y2i = 0, then (A.2a) implies that y1i = ±x2i. If
x2i = y1i = 0, then (A.2a) implies that y2i = ±x1i.

In any case, there exists ǫi = ±1 such that

(A.4)

{

y1i = −ǫi x2i,
y2i = ǫi x1i.

For i, j = 1, . . . , n it must be that

(1 − ǫiǫj)(x1ix1j − x2ix2j) = 0,(A.5a)

(1 − ǫiǫj)(x1jx2i + x1ix2j) = 0.(A.5b)

Moreover

(A.6)

{

x1ix1j + y1iy1j = x1ix1j + ǫiǫjx2ix2j ,
x1ix2j + y1iy2j = x1ix2j − ǫiǫjx2ix1j .

It will now be shown that

(A.7)

{

x1ix1j + y1iy1j = x1ix1j + x2ix2j ,
x1ix2j + y1iy2j = x1ix2j − x2ix1j .
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It is obvious if ǫiǫj = 1. If ǫiǫj = −1, then (A.5a)–(A.5b) imply

x1ix1j − x2ix2j = 0,(A.8a)

x1jx2i + x1ix2j = 0.(A.8b)

If x1ix1jx2ix2j = 0, it can be seen that (A.7) holds. If not, (A.8a) implies that there
exists a real number µij 6= 0 such that

(A.9)

{

x2i = µij x1i,
x2j = 1

µij
x1j .

Further, (A.8b) implies that (µij +
1

µij
)x1jx2i = 0. This is impossible (µij +

1
µij

6= 0

and x1jx2i 6= 0). Thus, (A.7) holds.
With the left hand side corresponding to Λ(Z) = xxT + yyT and the right hand

side corresponding to (A.1b), equation (A.7) implies that Λ(Z) is equal to (A.1b).
Since the function Λ is injective, it must be that Z = (x1 + ix2)(x1 + ix2)

H .

Appendix B. Invariance of Shor Relaxation Bound. We have val(CSDP-R)
> val(SDP-R) since the feasible set is more tightly constrained due to (2.4d). To prove
the opposite inequality, define Λ̃(X) := (A + C)/2 + i(B − BT )/2 for all X ∈ S2n

using the block decomposition in the left hand part of (2.4d). It is proven here
that if X is a feasible point of SDP-R, then Λ ◦ Λ̃(X) is a feasible point of CSDP-R
with same objective value as X . Firstly, Λ ◦ Λ̃(X) satisfies (2.4d) because Λ̃(X) is a
Hermitian matrix. Secondly, in order to show that Λ ◦ Λ̃(X) satisfies (2.4c), notice
that if x = ( xT

1 xT
2 )T then

(B.1)

(

x1

x2

)T (

C −B

−BT A

)(

x1

x2

)

=
(

−x2

x1

)T (

A BT

B C

)(

−x2

x1

)

.

Hence Λ ◦ Λ̃(X) is equal to the sum of two positive semidefinite matrices. Fi-
nally, to prove that Λ ◦ Λ̃(X) satisfies (2.4b) and has same objective value as X ,
notice that if H ∈ Hn and Y ∈ S2n, then Tr [Λ(H)Y ] =

∑

16i,j62n Λ(H)ijYji =
∑

16i,j62n Λ(H)ijYij =
∑

16i,j6n Re(H)ijAij + Im(H)ijBij + (−Im(H)ij)(B
T )ij +

Re(H)ijCij =
∑

16i,j6n Re(Hij)(A+ C)ij + Im(Hij)(B −BT )ij = . . .

2
∑

16i,j6n Re[Hij(Λ̃(Y )ij)
H ] = 2

∑

16i,j6n Hij(Λ̃(Y )ij)
H = 2Tr[HΛ̃(Y )]. Complet-

ing the proof, for all H ∈ Hn, Tr[Λ(H) Λ ◦ Λ̃(X)] = 2Tr[HΛ̃(X)] = Tr [Λ(H)X ].

Appendix C. Invariance of SDP-R Relaxation Bound. We assume that X
is a feasible point of SDP-R and construct a feasible point of SDP-R with same objec-
tive value and first diagonal entry equal to 0. Consider the eigenvalue decomposition
X =

∑p
k=1 xkx

T
k for some xk ∈ R2n and p ∈ N. For all θ ∈ R, define

(C.1) Rθ := Λ[cos(θ)In + i sin(θ)In] =

(

cos(θ)In − sin(θ)In
sin(θ)In cos(θ)In

)

.

For k = 1, . . . , p, define θk ∈ R such that xk,n+1 + ixk,1 =:
√

x2
k,n+1 + x2

k1e
iθk . Con-

struct X̃ :=
∑p

k=1(Rθkxk)(Rθkxk)
T < 0 whose first diagonal entry is equal to 0. If



Hierarchy for Complex Polynomial Optimization 27

H ∈ Hn, Tr(Λ(H)X̃) =
∑p

k=1 Tr[Λ(H)Rθkxkx
T
k R

T
θk
] =

∑p
k=1 Tr[R

T
θk
Λ(H)Rθkxkx

T
k ] =

∑p
k=1 Tr[Λ{(cos(θk)In − i sin(θk)In)H(cos(θk)In + i sin(θk)In)}xkx

T
k ] = . . .

∑p
k=1 Tr[Λ(H)xkx

T
k ] = Tr(Λ(H)X).

Appendix D. Discrepancy Between Second-Order Conic Relaxation
Bounds. We have val(CSOCP-R) > val(SOCP-R) since the feasible set is more
tightly constrained. The opposite inequality between optimal values does not hold,
and this can be proven by considering the example QCQP-C defined by infz1,z2∈C (1+
i)z̄1z2 + (1 − i)z̄2z1 s.t. z̄1z1 6 1, z2z2 6 1. CSOCP-R yields the globally optimal
value of −2

√
2, while SOCP-R yields −4.

Appendix E. Five-Bus Illustrative Example for Exploiting Sparsity.
Consider the five-bus optimal power flow problem in [12] which is an instance of
QCQP-C. Let ind(·) denote the set of indices corresponding to monomials of either
the objective f or constraint functions (gi)16i620. We have

ind(f) = {(1, 1), (1, 2), (1, 3), (3, 5), (4, 5), (5, 5)},
ind(g1) = ind(g2) = {(1, 1), (1, 2), (1, 3)}

[

Pmin
1 , Qmin

1

]

,

ind(g3) = ind(g4) = {(1, 2), (2, 2), (2, 3), (2, 4)} [P2, Q2] ,

ind(g5) = ind(g6) = {(1, 3), (2, 3), (3, 3), (3, 5)} [P3, Q3] ,

ind(g7) = ind(g8) = {(2, 4), (4, 4), (4, 5)} [P4, Q4] ,

ind(g9) = ind(g10) = {(3, 5), (4, 5), (5, 5)}
[

Pmin
5 , Qmin

5

]

,(E.1)

ind(g11) = ind(g12) = {(1, 1)}
[

V min
1 , V max

1

]

,

ind(g13) = ind(g14) = {(2, 2)}
[

V min
2 , V max

2

]

,

ind(g15) = ind(g16) = {(3, 3)}
[

V min
3 , V max

3

]

,

ind(g17) = ind(g18) = {(4, 4)}
[

V min
4 , V max

4

]

,

ind(g19) = ind(g20) = {(5, 5)}
[

V min
5 , V max

5

]

,

where the text in brackets indicates the origin of the constraint: Pi and Qi for active
and reactive power injection equality constraints, Pmin

i and Qmin
i for lower limits

on active and reactive power injections, and V min
i and V max

i for squared voltage
magnitude limits at bus i. For brevity, the sphere constraints discussed in Section 3.3
are not enforced in this example. Regardless, the complex hierarchy with di = 1, ∀i ∈
{1, 2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16}, di = 2, ∀i ∈ {7, 8, 9, 10, 17, 18, 19, 20}, yields the
global solution. Second-order constraints are identified using the mismatch hierarchy.

The graph ({1, . . . , 5}, Emono) corresponding to (E.1) is shown in Fig. 4 where
each node i corresponds to a complex variable zi. Edges Emono, which are denoted
by solid lines in Fig. 4, connect variables that appear in the same monomial in any of
the constraint equations or objective function. The supergraph ({1, . . . , 5}, Econ) has
edges Econ comprised of Emono (solid lines in Fig. 4) augmented with edges connecting
all variables within each constraint with di > 1 (dashed lines in Fig. 4). In this case,
the supergraph is already chordal, so there is no need to form a chordal extension
Gch. The maximal cliques of the supergraph are C1 = {1, 2, 3} and C2 = {2, 3, 4, 5}.
Clique C2 is the minimal covering clique for all second-order constraints gi (z) >

0, ∀i ∈ {7, 8, 9, 10, 17, 18, 19, 20}. The order associated with C2 is two (dcl2 = 2)
since the highest order di among all constraints for which C2 is the minimal covering
clique is two. Clique C1 is not the minimal covering clique for any constraints with
di > 1, so dcl1 = 1. The globally optimal objective value obtained from the complex
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1

3

5

2

4

Fig. 4. Graph Corresponding to Equations (E.1) from Five-Bus System in [12]

hierarchy specified above is 946.8 with corresponding decision variable z = (1.0467+
0.0000i, 0.9550− 0.0578i, 0.9485− 0.0533i, 0.7791+ 0.6011i, 0.7362+ 0.7487i)T .
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[32] R. Grone, C.R. Johnson, E.M. Sá, and H. Wolkowicz, Positive Definite Completions of
Partial Hermitan Matrices, Linear Algebra Appl., 58 (1984), pp. 109–124.

[33] J.J. Hilling and A. Sudbery, The Geometric Measure of Multipartite Entanglement and the
Singular Values of a Hypermatrix, J. Math. Phys., 51 (2010).

[34] R.A. Jabr, Radial Distribution Load Flow using Conic Programming, IEEE Trans. Power
Syst., 21 (2006), pp. 1458–1459.

[35] B. Jiang, Z. Li, and S. Zhang, Approximation Methods for Complex Polynomial Optimization,
Springer Comput. Optim. Appl., 59 (2014), pp. 219–248.

[36] , Characterizing Real-Valued Multivariate Complex Polynomials and Their Symmetric
Tensor Representations, SIAM J. Matrix Anal. Appl., (2016), pp. 381–408.

[37] C. Josz, S. Fliscounakis, J. Maeght, and P. Panciatici, AC Power Flow Data in MAT-
POWER and QCQP format: iTesla, RTE Snapshots, and PEGASE, https://arxiv.org/
abs/1603.01533, (2016).

[38] C. Josz and D. Henrion, Strong Duality in Lasserre’s Hierarchy for Polynomial Optimization,
Springer Optim. Lett., (2015).

[39] C. Josz, J. Maeght, P. Panciatici, and J.C. Gilbert, Application of the Moment-SOS
Approach to Global Optimization of the OPF Problem, IEEE Trans. Power Syst., 30 (2015),
pp. 463–470.

[40] S. Kuhlmann and M. Putinar, Positive Polynomials on Fibre Products, C. R. Acad. Sci.
Paris, 344 (2007), pp. 681–684.

[41] J. B. Lasserre, Global Optimization with Polynomials and the Problem of Moments, SIAM
J. Optim., 11 (2001), pp. 796–817.

[42] , Moments, Positive Polynomials and Their Applications, no. 1 in Imperial College Press
Optimization Series, Imperial College Press, 2010.

[43] J. Lavaei and S.H. Low, Zero Duality Gap in Optimal Power Flow Problem, IEEE Trans.
Power Syst., 27 (2012), pp. 92–107.

[44] B.C. Lesieutre, D.K. Molzahn, A.R. Borden, and C.L. DeMarco, Examining the Limits
of the Application of Semidefinite Programming to Power Flow Problems, in 49th Annu.
Allerton Conf. Commun., Control, Comput., 2011, pp. 28–30.

[45] Z. Li, S. He, and S. Zhang, Approximation Methods for Polynomial Optimization: Models,
Algorithms, and Applications, Comput. Optim. Appl., Springer, New York, 2012.
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