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Abstract— The power flow equations are at the core of most
of the computations for designing and operating electric grids.
This system of multivariate nonlinear equations relate the
power injections and voltages in an electric power system. A
plethora of methods have been devised to solve these equations,
from Newton-based methods to homotopy continuation and
other optimization-based methods. Although many of these
methods often efficiently find a high-voltage, stable solution,
challenges remain for finding low-voltage solutions, which play
significant roles in certain stability-related computations. While
we do not claim to have exhausted the existing literature on
all related methods, this tutorial paper introduces some of the
recent advances in power flow solution methods to the wider
power systems community as well as bringing attention from
the computational mathematics and optimization communities
to power systems problems. After briefly reviewing some of
the traditional computational methods used to solve the power
flow equations, we focus on three emerging methods: the
numerical polynomial homotopy continuation method, Gröbner
basis techniques, and moment/sum-of-squares relaxations using
semidefinite programming. In passing, we also emphasize the
importance of an upper bound on the number of solutions of the
power flow equations and review the current status of research
in this direction.

I. INTRODUCTION

The power flow equations model the steady-state re-
lationship between the complex voltage phasors and the
power injections in an electric power system. Power systems
typically operate at a “high-voltage” solution to the power
flow equations that corresponds to a stable equilibrium of
the differential-algebraic equations modeling power system
dynamics. Section II of this paper gives an overview of the
power flow equations.

Calculating a high-voltage power flow solution has been
the subject of research efforts for over fifty years. There
exist a variety of mature iterative methods, often based
on Newton’s method and related variants [1], [2] or the
Gauss-Seidel method [3], that are capable of solving many
practical large-scale power flow problems. Convergence of
these iterative methods depends on the selection of an
appropriate initialization. Reasonable initializations, such as
the solution to a related problem or a “flat start” consisting
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of a 1∠0◦ voltage profile, often result in convergence to
the high-voltage power flow solution. However, determining
an appropriate initialization is challenging when parameters
move outside typical operating ranges as may occur with
high penetrations of renewable generation and during contin-
gencies. Illustrating this initialization challenge, [4] and [5]
demonstrate that the basins of attraction for Newton-based
power flow solution methods are fractal in nature.

This challenge has motivated a variety of approaches for
improving the robustness of Newton-based methods with
respect to the choice of initialization. For instance, [6] calcu-
lates an “optimal multiplier” at each iteration of the Newton
algorithm that prevents divergence. Other approaches con-
sider alternate formulations of the power flow equations,
such as [7] which applies a Newton-based iteration to a
formulation that includes both voltages and currents.

There has been significant recent interest in alternatives
to Newton-based methods. For instance, the Holomorphic
Embedding Load Flow method [8], which uses analytic
continuation theory from complex analysis, is claimed to be
capable of reliably finding a stable solution for any feasible
set of power flow equations. Approaches based on monotone
operator and convex optimization theory [9], [10] identify re-
gions with at most one power flow solution. After identifying
such a region, any solution contained within can be quickly
calculated. Convex relaxation techniques can also calculate
power flow solutions [11] and certify infeasibility [12]–[14].
Additionally, progress has been made using “decoupling”
approximations that facilitate separate analysis of the active
and reactive power flow equations [15]–[17].

Many existing approaches focus primarily on calculation
of the high-voltage power flow solution. However, other
power flow solutions generally exist, often at lower volt-
ages [18]–[23]. These solutions are important for many types
of power system stability assessments [24]–[28]. Addition-
ally, studying non-convexities in the power flow feasible
space related to multiple solutions can help explain the
behavior of convex relaxations of power system optimization
problems [29], [30]. There may also exist multiple stable
power flow solutions [31], particularly in the presence of
power flow reversal on distribution systems [32], [33].

Attempts to calculate multiple power flow solutions in-
clude the use of a Newton-based algorithm with a range of
carefully chosen initializations [34], [35]. Using semidefinite
relaxations of the power flow equations with objectives
that are functions of squared voltage magnitudes, [36] also
identifies multiple power flow solutions. By considering
various regions characterized by a monotonicity property,



multiple power flow solutions can be computed using the
theory developed in [10]. Other approaches include the use of
an auxiliary gradient system [37] and a holomorphic embed-
ding method [38]. However, there are no known systematic
methods based on these approaches that are guaranteed to
yield all power flow solutions.

A numerical continuation approach that claims to find all
power flow solutions was presented in [39]. Since it scales
with the number of actual rather than potential power flow
solutions, this approach is computationally tractable for real-
istic power systems. However, the robustness proof indicating
that this approach finds all solutions to all power flow prob-
lems is flawed [40], and [41] presents a counterexample. This
counterexample also invalidates the robustness of the related
approach in [42] for calculating all power flow solutions that
have a certain stability property. Recent work [43] presents
a related method that improves the robustness of [39].

Although not yet scalable to large systems, there are
approaches which are guaranteed to find all power flow
solutions. As described in Section III, the most computa-
tionally tractable of these methods are based on numerical
polynomial homotopy continuation (NPHC). Existing tech-
niques are tractable for systems with up to 14 buses [44]–
[46] (and the equivalent of 18 buses for the related Ku-
ramoto model [47]). The NPHC methods use continuation
to trace all complex solutions from a selected “simple”
polynomial system for which all solutions can be easily
calculated to the solutions of the specified target system.
In this context, the power flow equations are transformed
by splitting real and imaginary parts of the voltage phasors
to obtain polynomials in real variables. Thus, only the real
solutions to these polynomial equations are physically mean-
ingful. Nevertheless, ensuring recovery of all real solutions
requires a number of continuation traces that depends on
an upper bound for the number of complex solutions. Apart
from being theoretically interesting, tighter upper bounds on
the number of power flow solutions would thus improve
the computational tractability of NPHC methods. Existing
bounds [20], [21], [23], [48] are based on calculations of
the number of complex solutions for complete (i.e., fully
connected) networks. Recent work [49] uses NPHC to find
all complex solutions for a variety of small test cases in
order to inform conjectured upper bounds that are based on
the network topology. NPHC is also applied to a variety of
small test cases in [48]. Other recent work [50] constructs
network topology dependent and tighter1 upper bounds using
the adjacency polytope for the power flow equations.

Other methods guaranteed to find all solutions to systems
of polynomials (which may therefore be applied to the
power flow equations) are the eigenvalue technique in [51],
interval analysis [52], Gröbner bases (Section IV), and the
“moment/sum-of-squares” relaxations in [53] and Section V.

Section IV overviews the Gröbner basis techniques. In ad-
dition to solving the power flow equations, these techniques

1In fact, these new bounds are the tightest possible bounds for the generic
values of the parameters.

are presented in the contexts of equivalencing methods,
bifurcation analyses, and dynamic power system models.

Section V describes recent progress in moment/sum-of-
squares relaxations of the power flow equations. While these
relaxations are applicable to many power systems computa-
tions, this work is presented in the context of the optimal
power flow (OPF) problem. Specifically, the OPF problem
seeks the voltages which result in power injections that
minimize operational cost while satisfying both the power
flow equations and engineering limits. The moment/sum-of-
squares relaxations lower bound the optimal objective value
and, for many OPF problems, give the global solution.

II. OVERVIEW OF THE POWER FLOW EQUATIONS

Consider an n-bus electric power system where N =
{1, . . . , n} is the set of buses and G is the set of generator
buses.2 The network admittance matrix, which contains the
electrical parameters of the network as well as the topology
information, is denoted Y = G+jB, where j =

√
−1. (See,

e.g., [54] for details on the construction of the admittance
matrix.)

Each bus has two associated complex values: the voltage
phasors and the power injections. We will use both complex
voltage phasor representation V ∈ Cn and rectangular
voltage coordinates Vd + jVq , Vd, Vq ∈ Rn. Each bus i ∈ N
has active and reactive power injections Pi+jQi, P,Q ∈ Rn.

In terms of complex voltages, the power flow equations
are polynomials in V and V :

Pi = Re

(
Vi

n∑
k=1

YikV k

)
(1a)

Qi = Im

(
Vi

n∑
k=1

YikV k

)
(1b)

where ( · ) indicates the complex conjugate and Re (·) and
Im (·) return the real and imaginary parts, respectively, of a
complex argument. Squared voltage magnitudes are

|Vi|2 = ViV i. (1c)

Splitting real and imaginary parts of (1) and using rectan-
gular voltage coordinates yields quadratic polynomials in real
variables Vd and Vq . The active and reactive power injections
at bus i are

Pi =Vdi

n∑
k=1

(GikVdk −BikVqk)

+ Vqi

n∑
k=1

(BikVdk +GikVqk) + PDi (2a)

Qi =Vdi

n∑
k=1

(−BikVdk −GikVqk)

+ Vqi

n∑
k=1

(GikVdk −BikVqk) +QDi. (2b)

2A “bus” in power system terminology represents a node in the graph
corresponding to the power system network. A “line” corresponds to an
edge of this graph.



Squared voltage magnitudes are

|Vi|2 = V 2
di + V 2

qi. (2c)

To represent typical equipment behavior, each bus is
traditionally classified as PQ, PV, or slack. PQ buses, which
typically correspond to loads, treat Pi and Qi as specified
quantities and enforce the active and reactive power equa-
tions. PV buses, which typically correspond to generators,
enforce the active power and squared voltage magnitude
equations with specified Pi and |Vi|2. The associated reactive
power Qi may be computed as an “output quantity” via
the reactive power equation.3 Finally, a single slack bus is
selected with specified Vi (typically chosen such that the
reference angle is 0◦; i.e., Im (Vi) = 0). The active power
Pi and reactive power Qi at the slack bus are determined
from the active and reactive power equations, respectively;
network-wide conservation of complex power is thereby sat-
isfied. Solving the power flow equations means determining
voltage phasors such that the enforced equations are satisfied
at each bus.

III. THE NUMERICAL POLYNOMIAL HOMOTOPY
CONTINUATION METHOD

The Numerical Polynomial Homotopy Continuation
(NPHC) method [55]–[57] has recently gained attention as
it successfully found all the solutions of the power flow
equations (2) for the IEEE test systems with up to 14
buses [44]–[46]. The method has also been applied [47] to
find all equilibria of the Kuramoto model [58], a prototypical
model for the power flow equations [59], for up to an 18-
bus case with different network topologies. This section
provides an overview of the NPHC method and discusses
recent work in determining upper bounds on the number of
isolated complex solutions for the power flow equations.

A. Overview of the NPHC Method

The basic ingredient of the NPHC method, called homo-
topy continuation, has been used by mathematicians for quite
some time [60]. To solve a system of nonlinear equations,
one first constructs a “simple” system for which all solutions
can be easily identified. The solutions of the simple system
are then continuously deformed to obtain solutions of the
original “target” system. However, in traditional continuation
methods for general nonlinear systems, the solution-paths
may cross one another, bifurcate, or turn back towards the
simple system. In practice, one or more of these behaviors
may be observed for general nonlinear systems. Thus, these
methods generally do not guarantee finding all solutions.

For the specific case of systems of polynomial equations,
however, the situation is different due to the maturity of
algebraic geometry theory. For polynomial systems, one
can construct a specific type of homotopy method, NPHC,
between the simple system and the target system such that
all the solution-paths are well-behaved. The NPHC method
thus guarantees finding all isolated complex solutions of the
target system of polynomial equations.

3Note that this paper does not consider reactive-power-limited generators.

We now describe the specific strategy for the NPHC
method. Denote the transpose as (·)ᵀ. Define the target
system to be solved as f(x) = 0, where f(x) is a vector
of n polynomial equations f (x) :=

[
f1(x) . . . fn(x)

]ᵀ
and x is a vector of n variables x :=

[
x1 . . . xn

]ᵀ
. To

utilize theory from algebraic geometry, we consider x ∈ Cn.
If only real solutions are physically relevant, as is the case for
the power flow equations (2), we disregard all the non-real
solutions upon completion of the method.

The NPHC method starts by calculating an upper bound
on the number of isolated complex solutions of f(x) = 0.
There exist various off-the-shelf upper bounds arising from
the computational algebraic geometry literature. The classical
Bézout bound (CBB) states that the number of complex
isolated solutions for a system of polynomial equations is
at most the product of degree of each of the polynomials:∏n
i=1 di, where di is the degree of fi(x).4 A discussion

on tighter upper bounds for the power flow equations is
presented later in this section.

Using an upper bound on the number of complex solu-
tions, one constructs a “simple” system in the same vari-
ables, g(x) = 0, such that 1) the simple system has the
same number of isolated complex solutions as the upper
bound, and 2) obtaining all the solutions of g(x) = 0 is
straightforward. Using the CBB, such a system is g(x) :=[
a1x

d1
1 − b1 . . . anx

dn
n − bn

]ᵀ
, where ai, bi 6= 0 are

generic complex numbers. The system g (x) = 0 has
∏n
i=1 di

isolated solutions: xi = di

√
bi
ai

.

The NPHC method then constructs a homotopy between
f(x) and g(x):

H(x; t) := (1− t) f(x) + η t g(x) = 0, (3)

where t ∈ [0, 1]. At t = 1, we have g(x) = 0 and know
all the solutions by construction. At t = 0, we recover the
original system f(x) = 0. Hence, for each of the solutions
of g(x) = 0, a path from t = 1 to t = 0 is tracked using
an efficient path-tracker [57], such as a predictor-corrector
method. Since the upper bound on the number of solutions
of f(x) = 0 may not be exact, some of the solution-paths
may diverge to infinity along the way. It has been shown
that exactly as may paths as the number of isolated complex
solutions, counting multiplicity, of f(x) = 0 reach t = 0 so
long as η in (3) is chosen generically from C [57]. In other
words, for t ∈ (0, 1] with a generic complex η, it is proven
that no path will cross other paths, turn back, or bifurcate.
(Note that more than one path may sometimes reach the
same solution at t = 0 if the system has multiple solutions.)
Hence, in the end, the NPHC method is guaranteed to yield
all isolated complex solutions of a system of polynomial
equations. The method is embarassingly parallelizeable since
each path can be tracked independently, and is thus suitable
for high-performance supercomputing clusters.

4The power flow equations are degree-two polynomials.



B. Upper Bounds on the Number of Power Flow Solutions

The efficiency of the NPHC method strongly depends on
the quality of the upper bounds on the isolated complex
solutions of the power flow equations, as this is the number
of solution-paths one has to track. Another determinant of the
efficiency of the method is the computational effort required
to compute the upper bound and solve the corresponding
start system g(x) = 0. The CBB is trivial to compute for
any given system, and solving the corresponding start system
is also straightforward. However, in practice, the number of
complex solutions is usually much lower than the CBB due
to the sparsity of the system. Hence, computational effort is
wasted in tracking paths that eventually diverge.

The computational tractability of the NPHC method can be
improved by using tighter bound on the number of complex
solutions to the power flow equations. One approach for
computing high-quality upper bounds is by exploiting the
sparsity structure inherent to the power flow equations, which
is encoded inside the network topology of the power system.

After fixing the slack bus voltage, there are 2 (n− 1)
power flow equations for an n-bus system, each of which is
a quadratic polynomial. Thus, the CBB is 22(n−1). A tighter
upper bound,

(
2n−2
n−1

)
, on the number of complex solutions

was first proposed in [20] for lossless systems without PQ
buses, extended to (potentially lossy) systems without PV
buses in [21], and finally to general power systems in [23].
(See [48] for an alternative proof of this bound.) In [44],
it was pointed out that a generic upper bound, called the
BKK bound (named after its inventors Bernstein-Khovanskii-
Kushnirenko [61]–[63]), was significantly smaller than the
CBB for the IEEE test case with up to 14 buses. However,
no theoretical justification for this observation is yet known.

These bounds do not consider the sparsity structure of
the power flow polynomials. There is some existing work on
bounds that are functions of the network topology. The bound
in [64] applies to power systems whose network graphs are
composed of subgraphs having exactly one shared bus. The
number of isolated complex solutions for such systems is
equal to the product of number of solutions for the individual
subgraphs. Using numerical experiments conducted with the
NPHC method, recent results in [49] conjecture an upper
bound for systems whose network graphs are composed of
maximal cliques (i.e., maximally sized, completely connected
subgraphs) which share exactly two buses along with some
other technical conditions. The work in [50] reviews existing
upper bounds and constructs new upper bounds based on the
adjacency polytope of the power flow equations. For a given
network topology, [50] shows that some of the bounds on the
number of complex solutions are attainable for some choice
of electrical parameters.

IV. THE GRÖBNER BASIS TECHNIQUES

As discussed in the previous sections, many important
power systems problems are naturally formulated in terms of
systems of polynomial equations. The classical and perhaps
most important is the system of power flow equations. Other
examples include but are not limited to loadability limits,

small-signal stability and others. These systems of equations
define an algebraic set characterizing the relation between
system variables and parameters. Although these relations
are usually defined in high-dimensional spaces, the important
engineering questions usually involve only a few variables
and parameters. For example, classical loadability and path
rating analysis addresses the questions of system response to
variation of specific load consumption levels.

Gröbner basis techniques provide a formal way to con-
struct all the solutions of polynomial systems equations.
Apart from offering an alternative to other techniques de-
scribed in this tutorial, they also allow elimination of vari-
ables from these systems at the expense of raising the total
degree of equations. In the following we provide an informal
introduction to the algebraic geometry concepts necessary to
understand the ideas of Gröbner bases. The reader is referred
to [65] for an accessible but formal and thorough introduction
to the subject.

From algebraic perspective, any polynomial equations in
x1, . . . , xn variables with real coefficients is an element of
the so-called polynomial ring R[x1, . . . , xn] or R[x] – the
set of polynomials in x1, . . . , xn with real coefficients with
the naturally defined addition and multiplication operations.
Like elements of other rings, for example integer numbers,
the polynomials can be sometimes factorized into products
of lower-order polynomials, for example x21 − x22 = (x1 −
x2)(x1 + x2), which allows the definition of a long division
operation on the polynomial ring. Whenever the degree of
polynomial Q ∈ R[x] is less than the degree of polynomial
P ∈ R[x], one can always represent P = UQ + R,
where U is the quotient and R the remainder polynomials,
each with lower order in comparison to Q. As there is no
natural ordering on multivariable polynomials, typically a
lexicographic ordering is used, where the monomials are
ordered lexicographically, so 1 ≺ x1 ≺ x21 ≺ · · · ≺
x2 ≺ x2x1 ≺ x2x

2
1 ≺ · · · ≺ x22 etc, and polynomials are

ordered with respect to the highest monomial order, so, for
example x21 + x22 � 2x1x2 because x22 � 2x1x2. Given a
polynomial ordering, the long division is uniquely defined.
For example, dividing P = x21 + x22 by Q = x1 + x2 one
gets x21 + x22 = (x2 − x1)(x1 + x2) + 2x21.

An ideal 〈P1, . . . , Pm〉 generated by polynomials
P1(x), . . . , Pm(x) ∈ R[x] is a set of polynomials that can
be represented as linear combination of P1 . . . , Pm, i.e.
f = g1P1+· · ·+gmPm, where every coefficient gk ∈ R[x] is
itself a polynomial in the same variable set. Any point y that
solves the system of equations P1(y) = 0, . . . , Pm(y) = 0 is
also a root of every polynomial P in the ideal 〈P1, . . . , Pm〉.
An ideal defines a set of equations that can be constructed
from the original equations Pk(x) = 0 via algebraic addition
and multiplication operations. Any ideal can be generated
by various different base polynomials. For a trivial example,
consider replacing the first equation P1(x) = 0 with
P1(x) + P2(x) = 0. Obviously the new set of polynomials
will define exactly the same ideal and characterize exactly
the same algebraic set of solutions.

The Gröbner basis is a special representation of an ideal



that possesses a number of properties making it partic-
ularly suitable for solving elimination problems and also
for constructing complete sets of solutions. For the lexico-
graphic ordering of monomials defined above, the Gröbner
basis provides a “triangular” representation of the ideal
〈Q1, . . . , Qm〉 with the following properties: Q1 = Q1(xn),
Q2 = Q2(xn−1, xn), and so on with Qn = Qn(x1 . . . , xn)
where we assumed for simplicity that m = n. Such a
representation of the original system of equations provides
a straightforward way of finding all the solutions. First,
the univariate equation Q1(xn) = 0 can be solved to
find all the values of xn. This can be accomplished, for
example, by constructing the companion matrix and finding
its eigenvalues, or using the Newton method followed by
factorization of the obtained solutions.

On the second step, the solutions of the first equation
can be substituted into the equation Q2(xn−1, xn) = 0 to
find all the values of xn−1. The obvious advantage of this
approach is the transformation of the original multivariate
problem to a sequence of univariate polynomial problems
for which generally more straightforward methods exist both
for identification of the solutions and for providing guar-
antees that no solution exist in specific regions. Certainly,
the degree of the univariate polynomials can become very
large for Gröbner bases constructed from large systems of
equations. For systems of quadratic equations common to
power systems, the degrees of the polynomials are bounded
by 22

n+1 where n is the total number of variables.
In many practical problems the goal is to characterize the

dependence of one or many variables on external parameters.
Algebraically, both the unknown variables x1, . . . , xm and
external parameters p1, . . . , pk can be combined in a single
variable set x1, . . . , xn with n = m+ k and xm+i = pi for
i = 1, . . . , k. In this case, the Gröbner basis takes the form
Q1 = Q1(xm, xm+1, . . . , xn), Q2 = Q2(xm−1, . . . , xn),
and, finally Qm = Qm(x1, . . . , xn). The first equations
represents the implicit dependence of the unknown vari-
able xm on external parameters p1, . . . , pk represented by
xm+1, . . . , xn.

The Gröbner basis can be constructed using the classical
Buchberger’s algorithm which generalizes the classical Eu-
clidean algorithm for finding the greatest common divisor of
two integers to polynomial rings. In essence, the Buchberger
algorithm implements the nonlinear version of the Gaussian
elimination procedure and establishes the analogue of LU
decomposition for nonlinear systems of equations. This al-
gorithm is implemented in most general purpose computer
algebra systems like Maple, Mathematica, Sagemath as well
as specialized algebraic geometry systems like MAGMA and
Singular. The algebraic nature of the algorithm requires exact
arithmetic and definition of the problem on the polynomial
ring Q[x] over field of rational rather than real numbers.
This constraint reduces the computational efficiency of the
algorithm and limits its applicability to large systems, al-
though at the same time it eliminates the numerical error that
can be accumulated in floating point manipulations. Existing
implementations of Gröbner basis construction algorithms

do not exploit any structural properties of the underlying
network graphs. However, recent generalization of the clas-
sical algorithm suggest that the complexity of the algorithm
and degree of the resulting polynomials may be substantially
lower than classical upper bounds for graphs with low tree-
width typical for power systems [66]. So applications of
Gröbner basis approach to large-scale power systems are
not out of the question and may become realistic in the
future with the maturation of algorithms exploiting the low
treewidth of the underlying system graphs.

Below we discuss several potential applications of Gröbner
basis techniques to power system analysis problems, illustrat-
ing the application of Gröbner basis techniques on the simple
example of a two-bus power system.

The first application we discuss is equivalencing and
model reduction. A power grid network has a hierarchical
structure with high-voltage power line layers feeding the
power to lower-voltage layers. Typically, the low-voltage
distribution grid models representing the power consumers
are aggregated into simple equivalents typically represented
either with constant power PQ-buses or slightly more so-
phisticated ZIP models. The equivalencing of distribution
grids happens in an ad-hoc non-systematic manner. Gröbner
bases provide a tool for constructing the equivalent models in
a systematic way. For a trivial example, consider a classical
two-bus system where a bus 1 with voltage V is connected to
a PQ load bus via a line of impedance r+ jx. The effective
load model as seen by the transmission grid represented by
bus 1 is different from the constant specified PQ load due
to losses in the line. The implicit model can be recovered by
constructing the Gröbner basis for the following system of
power flow equations:

P = V id (4)
Q = −V iq (5)
Vd = V − rid + xiq (6)
Vq = −riq − xid (7)
PL = Vdid − Vqiq (8)
QL = −Vdiq − Vqid. (9)

In this system Vd + jVq represents voltage phasor at bus 2
and id + jiq represents the current phasor. The power levels
P,Q represent the overall power consumption at bus 1, while
PL, QL correspond to consumption at load bus 2. The levels
of r, x are set to r = x = 1/4 per unit (p.u.) for the sake of
simplicity in this illustration, whereas the values of V , PL,
and QL are assumed to be independent parameters. Using
the lexicographic ordering id ≺ iq ≺ Vd ≺ Vq ≺ Q ≺
P ≺ V ≺ PL ≺ QL, one can construct the Gröbner basis
for this system and obtain the following first two generating
equations:

2P 2 − 2AP +B = 0 (10)
P − PL −Q+QL = 0, (11)

where A = PL − QL + 2V 2 and B = P 2
L − 2PLQL +

Q2
L + 4PLV

2. These relations define an implicit model of



Fig. 1. Dependence of the total power consumption P on voltage at bus 1
for PL = 0.25 p.u.,QL = 0.25 p.u. (blue), PL = 0.25 p.u.,QL =
0.0 p.u. (orange), PL = 0.25 p.u.,QL = −0.25 p.u. (green).

the aggregate load, representing the dependence of the power
consumption levels P and Q on terminal voltage V . Note
that typically the value of V is affected by the flows in
the transmission grid, while external parameters PL and QL
depend on the load consumption levels. This model can
either be used directly or approximated by more common
polynomial models of the loads. The resulting dependence is
illustrated in Fig. 1. Note that the solution does not exist for
low-voltage levels, which corresponds to phenomena referred
to as voltage collapse in power system literature. Also, there
are two possible values of power consumption for given
voltage levels, corresponding to two branches of power flow
equation solutions. In this representation, only the lower
branch is stable.

The method can be obviously generalized to more com-
plicated situations with less trivial grid topologies and more
sophisticated individual load models. As discussed before,
the traditional Gröbner basis construction algorithms may
result in high-order implicit equations describing the models,
so either numerical approximation of intermediate results or
utilization of more advanced sparsity-exploiting elimination
schemes is necessary to scale the approach to large systems.

Another important application of the Gröbner basis ap-
proach is the analysis of bifurcations in power system
models. Overloading the power system beyond acceptable
limits typically leads to disappearance of equilibrium or loss
of stability. Understanding the loadability limits is critical
for secure operation of power systems. Mathematically, dis-
appearance of power flow solutions happens through the
saddle-node bifurcation which occurs when the power flow

Fig. 2. Lodability limit boundaries defined by equation (19) with V =
0.9 p.u. (blue), V = 1.0 p.u. (orange), V = 1.1 p.u. (green).

equations’ Jacobian matrix becomes singular. As the power
flow equations have a polynomial form, the Jacobian can
be also represented as matrix polynomial J(x, p) depending
both on the variables and external parameters. Given this
representation, one can introduce the singularity condition
through two additional equations Jz = 0 and zᵀz = 1 where
z is the zero eigenvector of the Jacobian. The combination
of power flow equations and these two singularity conditions
describes the algebraic saddle-node bifurcation manifold.

For the two-bus example described above, the system
of equations (4)–(9) is complemented with the following
representation of the matrix singularity conditions:

z1 = 0, (12)
z2 = 0, (13)
z3 − z5id + z6iq = 0, (14)
z4 − z6id − z5iq = 0, (15)
z3
4

+
z4
4
− z5Vd − z6Vq − V z1 = 0, (16)

z4
4
− z3

4
+ z6Vd − z5Vq + V z2 = 0, (17)

z21 + z22 + z23 + z24 + z25 + z26 = 1. (18)

The first equation of Gröbner basis with the ordering id ≺
iq ≺ Vd ≺ Vq ≺ Q ≺ P ≺ z1 ≺ · · · ≺ z6 ≺ V ≺ PL ≺ QL
takes the form

P 2
L − 2PLQL +Q2

L + 4V 2PL + 4V 2QL − 4V 4 = 0, (19)

that describes the ellipsoidal curve corresponding to load-
ability limits in terms of PL, QL, and terminal voltage V .
The resulting boundaries are presented in Fig. 2

Similar techniques can be extended to more complicated
problems. For instance, inequality constraints responsible for



feasibility can be introduced in the same framework via slack
variable approaches. For example, the voltage constraint
V 2
d + V 2

q >
(
V min

)2
can be rewritten in equality form

with additional slack variable s introduced as V 2
d + V 2

q =(
V min

)2
+ s2. This equation has a solution only when

the voltage level satisfies the original inequality constraint.
Therefore, the bifurcations of this extended system will
define the boundary of the feasibility region where the
solution exists and also satisfies the physical limits.

Gröbner basis approaches can be also applied to dynamic
models of power systems. For small-signal stability analysis,
the linearized equations of motion ẋ = A(p)x depend on
the operating conditions described by the parameter set p.
The small-signal stability condition can be expressed as
A(p)(u + jv) = (µ + jν)(u + jv) with extra constraints
uᵀu + vᵀv = 1 and µ 6 0. Here, the vector (u + jv) is
the eigenvector of the linearized system matrix, and µ, ν are
the real and imaginary parts of the corresponding eigenvalue.
The condition ν 6 0, which can be also expressed as ν+s2 =
0 after the slack variable introduction trick, expresses the
small-signal stability criterion. The resulting system defines
an algebraic manifold corresponding to stable operating
conditions. Elimination of the u,v and µ, ν variables defines
the manifold in parameter p space where the system possess
a stable equilibrium.

Recently, Gröbner basis techniques have been applied to
power system models in the context of the power flow rever-
sal problem [32], [33]. Introduction of renewable generation
on a distribution grid may result in reversal of power flow
and export of power to the transmission systems. These
new regimes, which are not common to traditional power
systems, are characterized by multiple branches of solutions.
Although usually not suitable for normal operations, these
new equilibrium points may compromise the normal post-
fault restoration of the system and result in the system being
trapped in an undesirable stable equilibrium. The structure of
the new solutions, precise conditions of their appearance, and
their impact on power system stability and security is still
poorly understood and requires more intensive investigation.

V. MOMENT/SUM-OF-SQUARES RELAXATIONS OF THE
POWER FLOW EQUATIONS

Advances in computational methods related to the power
flow equations have the potential to improve solution tech-
niques for many different problems. Motivated by the exten-
sive optimization needs envisioned for future power systems,
a variety of convex relaxations and approximations of the
power flow equations have recently been developed. These
relaxations and approximations can facilitate the optimiza-
tion of broader classes of systems and operating conditions
than traditional methods. Further, emerging computational
tools have capabilities that surpass those in traditional so-
lution techniques, such as providing a measure of solution
quality, certifying problem infeasibility, and, in many cases,
provably obtaining the global optimum. This section reviews
recent work in developing a hierarchy of moment/sum-of-
squares (MSOS) relaxations of the power flow equations.

Most of the work on convex relaxations of the power
flow equations has focused on the optimal power flow
(OPF) problem (e.g., [36], [67]–[74]). The OPF problem
determines a minimum cost operating point for an electric
power system subject to both network constraints (i.e., the
power flow equations) and engineering limits (e.g., bounds
on voltage magnitudes, active and reactive power injections,
and line flows). This section presents the MSOS relaxations
in terms of the OPF problem; however, note that the MSOS
formulations could be applied to a variety of other power
system optimization problems (e.g., transmission expansion
planning [75], [76], voltage regulation [77], state estima-
tion [78], and calculating voltage stability margins [12]–
[14]). Further, when applied to an optimization problem with
a feasible space defined by polynomial equality constraints
and a constant objective function, MSOS relaxations with
sufficiently high relaxation order can find all solutions to the
polynomials [53]. This approach could be applied to find all
power flow solutions for small systems.

Formulating the power flow equations as a system of
polynomials enables the application of the Lasserre hierarchy
for polynomial optimization problems [53]. The first-order
MSOS relaxation in the Lasserre hierarchy is equivalent
to the semidefinite programming (SDP) relaxation in [67];
higher-order MSOS relaxations in the Lasserre hierarchy take
the form of SDPs that generalize the relaxation in [67].

Directly applying the Lasserre hierarchy to the OPF prob-
lem has been explored in [30], [79], [80]. Related work
includes exploiting sparsity and selectively applying the
higher-order constraints to solve large-scale problems [81],
[82]. Other related work develops hierarchies that leverage
the complex structure of the power flow equations [83]
and employ a mix of semidefinite and second-order cone
programming (SOCP) to enforce the higher-order constraints
in the MSOS relaxations [84]. This section will review the
development of the MSOS relaxations from the Lasserre
hierarchy in [30], [79], [80] and summarize the related work
on computational improvements in [81]–[84].

A. Overview of the Optimal Power Flow Problem

We first present the non-convex optimal power flow prob-
lem, starting with the introduction of notation in addition
to that used for the power flow problem in Section II.
Superscripts “max” and “min” denote specified upper and
lower limits and buses without generators have maximum
and minimum generation set to zero.

In terms of complex voltages, the active and reactive
power generation fPi (V ) and fQi (V ), respectively, are
polynomials in V and V :

fPi (V ) := PDi +Re

(
Vi

n∑
k=1

YikV k

)
(20a)

fQi (V ) := QDi + Im

(
Vi

n∑
k=1

YikV k

)
(20b)

where PDi + jQDi are specified load demands. Squared



voltage magnitudes are

fV i (V ) := ViV i. (21)

The OPF problem in terms of complex voltages V is

min
V

∑
i∈G

ci fPi (V ) subject to (22a)

Pmin
Gi 6 fPi (V ) 6 Pmax

Gi ∀i ∈ N (22b)

Qmin
Gi 6 fQi (V ) 6 Qmax

Gi ∀i ∈ N (22c)

(V min
i )2 6 fV i (V ) 6 (V max

i )2 ∀i ∈ N (22d)

where c ∈ Rn is a linear cost of active power generation.5

Note that buses without generators have Pmax
Gi = Pmin

Gi =
Qmax
Gi = Qmin

Gi = 0.
Splitting real and imaginary parts of (20)–(21) and using

rectangular voltage coordinates yields quadratic polynomials
in real variables Vd and Vq:

gPi (Vd, Vq) := Vdi

n∑
k=1

(GikVdk −BikVqk)

+ Vqi

n∑
k=1

(BikVdk +GikVqk) + PDi, (23a)

gQi (Vd, Vq) := Vdi

n∑
k=1

(−BikVdk −GikVqk)

+ Vqi

n∑
k=1

(GikVdk −BikVqk) +QDi. (23b)

Squared voltage magnitudes are given by

gV i (Vd, Vq) := V 2
di + V 2

qi. (24)

The OPF problem in terms of real voltage components Vd
and Vq is

min
Vd,Vq

∑
i∈G

ci gPi (Vd, Vq) subject to (25a)

Pmin
Gi 6 gPi (Vd, Vq) 6 Pmax

Gi ∀i ∈ N (25b)

Qmin
Gi 6 gQi (Vd, Vq) 6 Qmax

Gi ∀i ∈ N (25c)

(V min
i )2 6 gV i (Vd, Vq) 6 (V max

i )2 ∀i ∈ N (25d)

Since the power flow equations are functions of angle
differences, both formulations of the OPF problem (22)
and (25) have a degeneracy in the voltage angle. Similar to
the slack bus in the power flow equations, this degeneracy
is accounted for by arbitrarily fixing the angle reference at a
specified bus. This can either be accomplished by rotating the
voltage vectors from the solutions to the MSOS relaxations
such that the angle reference is satisfied (as is done here)
or by enforcing the additional constraints V1−V 1

2j = 0 and
Vq1 = 0 in (22) and (25), respectively, where it is assumed
that bus 1 has a fixed angle reference of 0◦.

5The MSOS relaxations are applicable to more general OPF formulations
that include, e.g., line-flow limits, quadratic and piecewise-linear generator
costs, and multiple generators per bus [69], [72], [81]

B. Applying the Lasserre Hierarchy to the OPF Problem

Lasserre developed a hierarchy of increasingly tighter
MSOS relaxations of polynomial optimization problems in
real variables [53].6 MSOS relaxations from the Lasserre
hierarchy, which take the form of semidefinite programs,
converge to the global optimum of a polynomial optimiza-
tion problem with increasing relaxation order. We denote
the order-γ relaxation applied to the OPF problem in real
variables Vd and Vq as MSOSγ-R. This section reviews [30],
[79], [80], which formulate MSOS relaxations for the OPF
problem (25) in real variables.

Development of the relaxations require several definitions.
Group the decision variables Vd and Vq into a vector x̂:

x̂ :=
[
Vd1 . . . Vdn Vq1 . . . Vqn

]ᵀ
. (26)

Define a vector xγ consisting of all monomials of the voltage
components Vd and Vq up to the relaxation order γ:

xγ :=
[
1 Vd1 . . . Vqn V 2

d1 Vd1Vd2 . . .

. . . V 2
qn V 3

d1 V 2
d1Vd2 . . . V γqn

]ᵀ
. (27)

A monomial is defined using a vector α ∈ N2n of expo-
nents: x̂α := V α1

d1 V
α2

d2 · · ·V α2n
qn . A polynomial is h (x̂) :=∑

α∈N2n hαx̂
α, where hα is the real scalar coefficient corre-

sponding to the monomial x̂α.
Define a linear functional Ly {h} which replaces the

monomials x̂α in a polynomial h (x̂) with real scalar vari-
ables yα:

Ly {h} :=
∑
α∈N2n

gαyα. (28)

For a matrix h (x̂), Ly {h} is applied componentwise to each
element of h (x̂).

Consider, e.g., the vector x̂ =
[
Vd1 Vd2 Vq1 Vq2

]ᵀ
corresponding to the voltage components of a two-bus sys-
tem. Consider also the polynomial (V max

2 )
2 − gV 2 (x̂) =

(V max
2 )

2−V 2
d2−V 2

q2. (The constraint (V max
2 )

2−gV 2 (x̂) > 0
forces the voltage magnitude at bus 2 to be less than or equal
to V max

2 .) Then Ly

{
(V max

2 )
2 − gV 2

}
= (V max

2 )
2
y0000 −

y0200−y0002. Thus, Ly {g} converts a polynomial (V max
2 )

2−
gV 2 (x̂) to a linear function of y.

The MSOS relaxations add additional variables and con-
straints that are redundant in the original problem but serve
to strengthen the relaxation. To simplify the notation, we
group all the constraints in (25) into a vector g (x̂) ∈ R6n:

6The primal form of these relaxations, which is presented here, is derived
using truncated moment sequences. The dual form is interpreted as a sum-
of-squares program. Hence, the terminology “MSOS” relaxations. There is
zero duality gap between the primal and dual forms of the MSOS relaxations
for OPF problems [85].



g (x̂) :=



Pmax
G1 − gP1

...
Pmax
Gn − gPn
gP1 − Pmin

G1
...

gPn − Pmin
Gn

Qmax
G1 − gQ1

...
Qmax
Gn − gQn

gQ1 −Qmin
G1

...
gQn −Qmin

Gn

(V max
1 )

2 − gV 1

...
(V max
n )

2 − gV n
gV 1 −

(
V min
1

)2
...

gV n −
(
V min
n

)2



. (29)

The order-γ relaxation MSOSγ-R can be derived from a
rank-constrained optimization problem related to (25):

min
x̂

∑
k∈G

ck gPk (x̂) subject to (30a)

gi (x̂)xγ−1x
ᵀ
γ−1 < 0 i = 1, . . . , 6n (30b)

xγx
ᵀ
γ < 0 (30c)

where < indicates positive semidefiniteness of the corre-
sponding matrix and γ > 1 is a specified integer which
will denote the relaxation order. The rank-one matrices
xγ−1x

ᵀ
γ−1 and xγx

ᵀ
γ are positive semidefinite by con-

struction. Thus, the constraints gi (x̂)xγ−1x
ᵀ
γ−1 < 0 and

gi (x̂) > 0 are redundant and (30c) is unnecessary. The
matrices gi (x̂)xγ−1x

ᵀ
γ−1 < 0 and xγx

ᵀ
γ < 0 are composed

of polynomials and monomials, respectively, which have
degree at most 2γ.

The relaxation MSOSγ-R is formed by applying the linear
functional Ly {·} to the constraints and objective function
in (30) in order to obtain an SDP in terms of the lifted
variables y:

min
y

∑
k∈G

ck Ly {gPk (x̂)} subject to (31a)

Ly
{
gi (x̂)xγ−1x

ᵀ
γ−1
}
< 0 i = 1, . . . , 6n (31b)

Ly
{
xγx

ᵀ
γ

}
< 0 (31c)

y0...0 = 1. (31d)

In Lasserre’s terminology [53], (31b) constrains localiz-
ing matrices and (31c) constrains the moment matrix for
MSOSγ-R. See [30] and [86] for the localizing and moment
matrices for small example OPF problems. Note that (31d)
results from the fact that x̂0 = 1.

Since x0 is the scalar 1, the localizing constraints (31b)
for MSOSγ-R are in fact non-negativity constraints
Ly {gi (x̂)} > 0. Thus, MSOS1-R is equivalent to the SDP
relaxation in [67], and MSOSγ-R generalizes the relaxation
of [67] for γ > 1.

As a relaxation, the optimal objective value for MSOSγ-R
lower bounds the globally optimal objective value for the
OPF problem. A solution to MSOSγ-R which satisfies

rank (Ly {x̂x̂ᵀ}) 6 2 (32)

indicates that the relaxation is exact.7 The globally optimal
voltage phasor solution V ∗ to the OPF problem can be
extracted using a spectral decomposition. Let λ and η denote
a non-zero eigenvalue and corresponding unit-length eigen-
vector, respectively, of the matrix Ly {x̂x̂ᵀ}. Then V ∗ =√
λ (η1:n + jηn+1:2n), rotated such that Im (V ∗1 ) = 0, where

subscripts indicate vector entries in MATLAB notation. If the
rank condition (32) is not satisfied, increasing the relaxation
order to γ + 1 will tighten the relaxation and may yield the
globally optimal solution. The results in [30], [79], [80], [86]
demonstrate that MSOS2-R is capable of globally solving
many small problems for which MSOS1-R (or, equivalently,
the SDP relaxation in [67]) fails to be exact.

C. Computational Improvements

Application to large OPF problems requires addressing
the computational scaling challenges inherent to the MSOS
relaxations. For an n-bus system, the size of the moment
matrix (31c) for MSOSγ-R is (2n+ γ)!/ ((2n)!γ!). For
example, n = 10 and γ = 3 correspond to a moment matrix
of size 1,771× 1,771. This limits application of the “dense”
formulation described in Section V-B to systems with at
most approximately ten buses. We next summarize three
approaches for improving the computational tractability of
the MSOS relaxations: 1) exploiting sparsity and selectively
applying the higher-order relaxation constraints to specific
“problematic” buses, 2) using a hierarchy that exploits the
complex structure of the OPF problem, and 3) enforcing the
first-order constraints with the SDP formulation while using
an SOCP relaxation of the higher-order constraints.

1) Exploiting Sparsity and Selectively Applying the
Higher-Order Constraints: As is common in power system
optimization, exploiting sparsity has the potential to improve
the computational tractability of the MSOS relaxations. A
method for exploiting sparsity in relaxations of general poly-
nomial optimization problems [87] can be directly applied
to the MSOS relaxations of the OPF problem. This ap-
proach uses a matrix completion theorem [88] to decompose
the single large positive semidefinite constraints in (31b)
and (31c) into constraints on many smaller submatrices in
a manner that depends on the so-called chordal sparsity of

7A rank less than or equal to 2 (rather than 1) indicates global optimality
of a solution to (31) due to the degeneracy resulting from the lack of an
angle reference specification in (25). Enforcing the additional constraint
Vq1 = 0 or removing Vq1 from the formulation would specify bus 1 as the
angle reference, thus eliminating this degeneracy and resulting in a global
optimality condition of rank (Ly {x̂x̂ᵀ}) = 1.



the power system network. Related approaches applied to the
SDP relaxation of [67] (and therefore also MSOS1-R) enable
solution of problems with thousands of buses [68], [69].

Naı̈vely applying the chordal-sparsity approach to the
higher-order relaxations is less successful; only systems
with at most approximately 40 buses are computationally
tractable for MSOS2-R. The key insight needed to scale
the higher-order MSOS relaxations to larger problem is that
the computationally intensive higher-order constraints are
only needed for certain buses. By selectively applying the
higher-order constraints at “problematic” buses, [81] and [82]
are able to globally solve OPF problems with thousands
of buses.8 Reference [81] describes a iterative method for
identifying the problematic buses using a “power injection
mismatch” heuristic. See [89] for a computational analysis of
the key parameter in this sparsity-exploiting approach (i.e.,
the number of additional buses with higher-order constraints
applied at each iteration).

2) Complex Hierarchy: The approach in Section V-B
converts the OPF problem from a formulation with complex
variables (22) to a formulation with real variables (25) and
then applies the Lasserre hierarchy. An alternative approach
recognizes that, in general, the operations of converting to
the real representation and applying the Lasserre hierarchy
are not commutative. For the OPF problem, it is often
computationally advantageous to directly build a complex
moment/sum-of-squares hierarchy, where we denote the
order-γ relaxation as MSOSγ-C, and then convert to real
variables before passing the formulation to the SDP solver.
This section briefly describes the complex moment/sum-of-
squares hierarchy which was first proposed in [83].

This section adopts notation and follows the development
of the real moment/sum-of-squares hierarchy in Section V-B.
A complex monomial is defined using two vectors of expo-
nents α, β ∈ Nn: V αV

β
:= V α1

1 · · ·V αn
n V1

β1 · · ·Vn
βn . A

polynomial h (V ) :=
∑
α,β∈Nn hα,βV

αV
β

, where hα,β is
the complex scalar coefficient corresponding to the monomial
V αV

β
. Since h (V ) is a real quantity, hα,β = hβ,α.

Define a linear functional L̂ŷ {h} which replaces the
monomials V αV

β
in a polynomial h (V ) with complex

scalar variables ŷα,β :

L̂ŷ {h} :=
∑

α,β∈Nn

hα,β ŷα,β . (33)

For a matrix h (V ), L̂ŷ {h} is applied componentwise.
Consider, e.g., the vector V =

[
V1 V2

]ᵀ
of complex

voltages for a two-bus system and the polynomial (V max
2 )

2−
fV 2 (V ) = (V max

2 )
2 − V2V2. (The constraint (V max

2 )
2 −

fV 2 (V ) > 0 forces the voltage magnitude at bus 2 to be less
than or equal to V max

2 .) Then L̂ŷ
{
(V max

2 )
2 − fV 2 (V )

}
=

(V max
2 )

2
ŷ00,00− ŷ01,01. Thus, L̂ŷ {h} converts a polynomial

h (V ) to a linear function of ŷ.

8More so than computational speed, numerical convergence limits the per-
formance of the higher-order relaxations. Reference [82] presents a method
for preprocessing the OPF problem data to eliminate “low-impedance” lines
in order to improve convergence characteristics of the SDP solver.

For the order-γ relaxation, define a vector zγ consisting of
all monomials of the voltages up to order γ without complex
conjugate terms (i.e., β = 00 · · · 0):

zγ :=
[
1 V1 . . . Vn V 2

1 V1V2 . . .

. . . V 2
n V 3

1 V 2
1 V2 . . . V γn

]ᵀ
. (34)

We again simplify the notation by grouping all the con-
straints in (22) into a vector f (V ) ∈ R6n in the same manner
as in (29).

The order-γ relaxation in the complex hierarchy,
MSOSγ-C, can be derived from a rank-constrained optimiza-
tion problem related to (22):

min
V

∑
k∈G

ck fPk (V ) subject to (35a)

fi (V ) zγ−1z
H
γ−1 < 0 i = 1, . . . , 6n (35b)

zγz
H
γ < 0 (35c)

where (·)H denotes the complex conjugate transpose. The
rank-one Hermitian matrices zγ−1z

H
γ−1 and zγz

H
γ are pos-

itive semidefinite by construction. Thus, the constraints
fi (V ) zγ−1z

H
γ−1 < 0 and fi (V ) > 0 are redundant

and (35c) is unnecessary. The matrices fi (V ) zγ−1z
H
γ−1 < 0

and xγx
H
γ < 0 are composed of complex polynomials and

monomials, respectively, which have degree at most 2γ (i.e.,
all monomials V αV

β
satisfy |α| + |β| 6 2γ, where | · |

indicates the one-norm).
The relaxation MSOSγ-C is formed by applying the linear

functional L̂ŷ {·} to the constraints and objective function
in (35) in order to obtain an SDP in terms of the lifted
complex variables ŷ:

min
ŷ

∑
k∈G

ck L̂ŷ {fPk (V )} subject to (36a)

L̂ŷ
{
fi (V ) zγ−1z

H
γ−1
}
< 0 i = 1, . . . , 6n (36b)

L̂ŷ
{
zγz

H
γ

}
< 0 (36c)

ŷ0...0,0...0 = 1. (36d)

Mirroring Lasserre’s terminology [53], (36b) constrains com-
plex localizing matrices and (36c) constrains the complex
moment matrix for MSOSγ-C. See [89] for the complex
localizing and moment matrices for small example problems.

Similar to MSOSγ-R, a solution to MSOSγ-C that satisfies
the rank condition

rank
(
L̂ŷ
{
V V H

})
= 1 (37)

indicates that the relaxation is exact and the globally op-
timal voltage phasor solution V ∗ to the OPF problem can
be extracted using a spectral decomposition. Let λ̂ and
η̂ denote the non-zero eigenvalue and corresponding unit-
length eigenvector, respectively, of the matrix L̂ŷ

{
V V H

}
.

Then V ∗ =
√
λ̂η̂, rotated so that Im (V ∗1 ) = 0. If the

rank condition (37) is not satisfied, increasing the relaxation
order to γ + 1 will tighten the relaxation and may yield
the globally optimal solution. The second-order complex



hierarchy globally solves many problems for which the first-
order relaxation is not exact.

Since z0 is the scalar 1, the localizing constraints (36b)
for MSOSγ-C are in fact non-negativity constraints
L̂ŷ {fi (V )} > 0. It is proven in [83] that MSOS1-C and
MSOS1-R (and therefore also the SDP relaxation of [67])
have the same optimal objective values. However, MSOS1-C
typically has computational advantages over MSOS1-R [83].

Another characteristic of the complex hierarchy, as proven
in [83], is a sum-of-squares interpretation of the dual prob-
lem, with zero duality gap between the primal and dual
relaxations for the OPF problem.

As proven in [83], the optimal objective value from the real
hierarchy is at least as tight as that from the complex hierar-
chy, and there exist general complex polynomial optimization
problems for which the real hierarchy is tighter. However,
[83] conjectures that the real and complex hierarchies are
equally tight for a class of problems modeling oscillatory
phenomena (which includes the OPF problem) augmented
with a redundant “sphere constraint”.

The computational advantage of the complex hierarchy
is most evident when comparing the moment matrix sizes
between MSOSγ-R and MSOSγ-C. For an n-bus system, the
size of the moment matrix (36c) for MSOSγ-C (converted
to real representation for input to the solver [90, Ex. 4.42])
is 2 ((n+ γ)!) / (n!γ!), which is significantly smaller than
(2n+ γ)!/ ((2n)!γ!) for MSOSγ-R. For example, n = 10
and γ = 3 correspond to matrices of size 1,771 × 1,771
and 572 × 572 for the real and complex hierarchies, re-
spectively. Note that the sparsity-exploiting approach applied
to MSOSγ-R [81] can be adopted to MSOSγ-C [83]. The
results in [83] demonstrate that computational speed im-
provements for the complex hierarchy vs. the real hierarchy
can exceed an order of magnitude for some large test cases.

3) Mixed SDP/SOCP Hierarchy: First proposed in [84],
a relaxation of the Lasserre hierarchy that mixes SDP and
SOCP constraints facilities the development of a related
hierarchy with tightness and computational burden between
MSOS1-R and MSOS2-R.9 This enables exploitation of the
intuition that the second-order relaxation is often more than
necessary for global solution of many OPF problems.

A necessary (but not sufficient) condition for a matrix to be
positive semidefinite takes the form of an SOCP constraint.
Specifically, a generic symmetric, positive semidefinite ma-
trix W satisfies

WiiWkk > |Wik|2 ∀ {(i, k) | k > i} (38)

In [70], the SOCP constraint (38) is applied to the first-
order relaxation MSOS1-C. While this significantly reduces
the computational burden compared to using SDP con-
straints, the SOCP relaxation in [70] typically only yields
the global solution to a limited set of OPF problems.10

9Future work includes extending the mixed SDP/SOCP hierarchy reported
in this section to the complex hierarchy MSOSγ -C.

10The SOCP relaxation in [70] is guaranteed to globally solve OPF
problems with radial networks that satisfy certain non-trivial technical
conditions, but generally fails to yield the global optimum for mesh network
topologies.

Conversely, the mixed SDP/SOCP relaxation proposed
in [84] formulates the first-order relaxation MSOS1-R with
SDP constraints. This alone is sufficient to globally solve
many OPF problems [67], [69]. When the solution to
MSOS1-R does not satisfy the rank condition (32), the mixed
SDP/SOCP relaxation applies the SOCP formulation (38)
to the entries of the localizing and moment matrices which
correspond to the higher-order constraints rather than use the
computationally intensive SDP formulation. Thus, the pro-
posed mixed SDP/SOCP relaxation forms a “middle ground”
between the first- and higher-order moment relaxations.

The mixed SDP/SOCP relaxations are generally not as
tight as those which use only SDP constraints; there exist
OPF problems for which MSOS2-R is exact, but low-order
mixed SDP/SOCP relaxations only provide a strict lower
bound on the optimal objective value [86]. However, results
for a variety of systems with up to several hundred buses
demonstrate a significant computational speed improvement
for some problems (e.g., a factor of 18.7 for one test case).

VI. CONCLUSION

After briefly reviewing both canonical and emerging com-
putational methods to solve the power flow equations, this
tutorial paper has presented overviews of three methods
based on algebraic geometry: Numerical Polynomial Ho-
motopy Continuation, Gröbner Basis, and Moment/Sum-of-
Squares relaxations. We anticipate that this tutorial paper will
motivate both power systems researchers and computational
mathematicians to further explore the capabilities of these
methods with respect to power systems problems as well as
to enhance the computational capabilities of these methods.
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