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Convex Relaxations of Optimal Power Flow
Problems: An Illustrative Example
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Abstract—Recently, there has been significant interest in con-
vex relaxations of the optimal power flow (OPF) problem. A
semidefinite programming (SDP) relaxation globally solves many
OPF problems. However, there exist practical problems for
which the SDP relaxation fails to yield the global solution.
Conditions for the success or failure of the SDP relaxation are
valuable for determining whether the relaxation is appropriate
for a given OPF problem. To move beyond existing conditions,
which only apply to a limited class of problems, a typical
conjecture is that failure of the SDP relaxation can be related to
physical characteristics of the system. By presenting an example
OPF problem with two equivalent formulations, this paper
demonstrates that physically based conditions cannot universally
explain algorithm behavior. The SDP relaxation fails for one
formulation but succeeds in finding the global solution to the
other formulation. Since these formulations represent the same
system, success (or otherwise) of the SDP relaxation must involve
factors beyond just the network physics. The lack of universal
physical conditions for success of the SDP relaxation motivates
the development of tighter convex relaxations capable of solving
a broader class of problems. Tools from polynomial optimization
theory provide a means of developing tighter relaxations. This
paper uses the example problem to illustrate relaxations from
the Lasserre hierarchy for polynomial optimization and a related
“mixed semidefinite/second-order cone programming” hierarchy.

Index Terms—Optimal power flow, convex relaxation, global
solution, power system optimization

I. INTRODUCTION

THE optimal power flow (OPF) problem determines a

minimum cost operating point for an electric power

system subject to both network constraints and engineering

limits. Typical objectives are minimization of losses or gener-

ation costs. The OPF problem is generally non-convex due

to the non-linear power flow equations [1] and may have

local solutions [2]. OPF solution techniques are therefore an

ongoing research topic. Many techniques have been proposed,

including successive quadratic programs, Lagrangian relax-

ation, and interior point methods [3]–[7].

There has been significant interest in convex relaxations of

OPF problems. Convex relaxations lower bound the objective

value, can certify infeasibility, and, in many cases, globally

solve OPF problems. In contrast, traditional OPF solution

methods may find the global optimum [8] but provide no guar-

antee of doing so, do not provide a measure of solution quality

and cannot provably identify infeasibility. The capabilities of

convex relaxations thus supplement traditional techniques.
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For radial systems that satisfy certain non-trivial technical

conditions [9], a second-order cone programming (SOCP)

relaxation is provably exact (i.e., the lower bound is tight and

the solution provides the globally optimal decision variables).

For more general OPF problems, a semidefinite programming

(SDP) based Shor relaxation [10] is often exact [11], [12].

Active research in this area includes developing tighter and

faster relaxations with improved modeling flexibility as well

as distributed solution algorithms [13]–[25].

Despite success in globally solving many practical OPF

problems [12], [13], there are problems for which the SDP

relaxation of [12] is not exact [2], [13], [26], [27]. There

is substantial interest in developing sufficient conditions for

exactness of the SDP relaxation. Existing conditions include

requirements on power injection, voltage magnitude and line-

flow limits, and either radial networks (typical of distribution

systems), appropriate placement of controllable phase-shifting

transformers, or a limited subset of mesh network topolo-

gies [9], [28].

The SDP relaxation globally solves many OPF problems

which do not satisfy any known sufficient conditions [9], [28].

In other words, the set of problems guaranteed to be exact

by known conditions is much smaller than the actual set of

problems for which the relaxation is exact. This suggests the

potential for developing less stringent conditions. It is natural

to speculate that some physical characteristics of an OPF

problem may govern such conditions. With solutions close

to voltage collapse, this speculation is supported by several

problems for which the SDP relaxation is not exact [27].

This paper’s first contribution is an example that dampens

enthusiasm for this avenue of research. We consider a small

problem, first presented in [29], with two equivalent formu-

lations. The SDP relaxation globally solves one formulation

but fails to solve the other. Since both formulations represent

the same system, strictly physically based conditions for the

success of the relaxation cannot differentiate between these

formulations.1 The feasible spaces of both problems illustrate

why the SDP relaxation succeeds for one formulation but fails

for the other.

The small example considered in this paper is relatively

simple. In fact, this example “OPF” problem reduces to

finding the minimum loss solution to power flow constraint

equations for a specified set of power injections and voltage

magnitudes. Thus, this example further demonstrates that the

SDP relaxation may fail even for simple OPF problems.

1See also [28] for an example where different line-flow limit formulations
determine success or failure of the SDP relaxation.
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The lack of universal, physically based conditions for de-

termining success or failure of the SDP relaxation of [12]

motivates the development of tighter convex relaxations. Re-

cent research [30]–[34] exploits the fact that the OPF problem

is a polynomial optimization problem in terms of the com-

plex voltage phasors. Separating the complex voltages into

real and imaginary parts yields a polynomial optimization

problem in real variables. This facilitates the application

of the Lasserre hierarchy of “moment” relaxations for real

polynomial optimization problems, which take the from of

SDPs [35]. The first-order moment relaxation is equivalent to

the SDP relaxation of [12]. Higher-order moment relaxations

thus generalize the SDP relaxation of [12], enabling global

solution of many problems for which the SDP relaxation

of [12] is not exact [30]–[34].

The ability of the moment relaxations to solve a broader

class of OPF problems comes at a computational cost: the

matrices grow rapidly with both relaxation order and system

size. Ameliorating the former challenge, low relaxation orders

suffice for global solution of many problems. Several recent

developments address the latter challenge. First, by exploiting

sparsity and selectively applying the higher-order constraints

to specific buses, loss-minimization problems with thousands

of buses are computationally tractable [33], [34]. Second,

rather than separating complex voltages into their real and

imaginary parts, a hierarchy built directly from the com-

plex formulation is computationally advantageous [36]. Third,

emerging SDP solution algorithms may enable faster com-

putation of the moment relaxations [21], [37], [38]. Fourth,

a “mixed SDP/SOCP” hierarchy implements the first-order

constraints with an SDP formulation, but the higher-order

constraints are relaxed to an SOCP formulation [39]. The

less computationally intensive SOCP constraints often reduce

solution times while still yielding global optima.

The second contribution of this paper is a tutorial-style

review of the moment relaxation and mixed SDP/SOCP hi-

erarchies in the context of the small example system. By

illustrating the corresponding feasible spaces, the small ex-

ample system is used to demonstrate the varying capabilities

of the relaxations to globally solve OPF problems. Further,

presentation of the matrices and related discussion for the

small example system clarify implementation details regarding

the various relaxation hierarchies.

This paper is organized as follows. Section II introduces the

OPF problem. Section III describes the SDP relaxation of [12].

Section IV presents the example OPF problem which demon-

strates that factors beyond the problem physics determine

success or failure of the SDP relaxation. Sections V and VI

provide the moment relaxations using SDP constraints and the

mixed SDP/SOCP hierarchy, respectively, with the problem

in Section IV providing an illustrative example. Section VII

concludes the paper.

II. OPTIMAL POWER FLOW PROBLEM

We first present an OPF formulation in terms of rectangular

voltage coordinates, active and reactive power injections, and

apparent power line flow limits. Consider an n-bus system

+

−
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τlmejθlm : 1

Rlm jXlm

j
bsh,lm

2j
bsh,lm

2

+

−

Vm

Plm + jQlm Pml + jQml

Fig. 1. Line Model

with nl lines, where N = {1, . . . , n} is the set of buses, G
is the set of generator buses, and L is the set of lines. The

network admittance matrix is Y = G+ jB, where j denotes

the imaginary unit. Let PDk + jQDk represent the active and

reactive load demand and Vk = Vdk+jVqk the voltage phasors

at each bus k ∈ N . Superscripts “max” and “min” denote

specified upper and lower limits. Buses without generators

have maximum and minimum generation set to zero.
Define a function for squared voltage magnitude:

fV k (Vd, Vq) := V 2
dk + V 2

qk. (1)

The power flow equations describe the network physics:

fPk (Vd, Vq) :=Vdk

n
∑

i=1

(GkiVdi −BkiVqi)

+ Vqk

n
∑

i=1

(BkiVdi +GkiVqi) + PDk, (2a)

fQk (Vd, Vq) :=Vdk

n
∑

i=1

(−BkiVdi −GkiVqi)

+ Vqk

n
∑

i=1

(GkiVdi −BkiVqi) +QDk. (2b)

Define a convex quadratic cost of active power generation:

fCk (Vd, Vq) := ck2 (fPk (Vd, Vq))
2 + ck1fPk (Vd, Vq) + ck0.

(3)
We use a line model with an ideal transformer that has a

specified turns ratio τlmejθlm : 1 in series with a Π circuit with

series impedance Rlm+ jXlm (equivalent to an admittance of

glm+ jblm := 1
Rlm+jXlm

) and total shunt susceptance jbsh,lm.

(See Fig. 1.) The line flow equations are:

fPlm (Vd, Vq) :=
(

V 2
dl + V 2

ql

)

glm/τ2lm

+ (VdlVdm + VqlVqm) (blm sin (θlm)− glm cos (θlm)) /τlm

+ (VdlVqm − VqlVdm) (glm sin (θlm) + blm cos (θlm)) /τlm,
(4a)

fQlm (Vd, Vq) := −
(

V 2
dl + V 2

ql

)

(

blm +
bsh,lm

2

)

/τ2lm

+ (VdlVdm + VqlVqm) (blm cos (θlm) + glm sin (θlm)) /τlm

+ (VdlVqm − VqlVdm) (glm cos (θlm)− blm sin (θlm)) /τlm,
(4b)

fSlm (Vd, Vq) := (fPlm (Vd, Vq))
2
+ (fQlm (Vd, Vq))

2
, (4c)

fPml (Vd, Vq) :=
(

V 2
dm + V 2

qm

)

glm

− (VdlVdm + VqlVqm) (glm cos (θlm) + blm sin (θlm)) /τlm

+ (VdlVqm − VqlVdm) (glm sin (θlm)− blm cos (θlm)) /τlm,
(4d)
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fQml (Vd, Vq) := −
(

V 2
dm + V 2

qm

)

(

blm +
bsh,lm

2

)

+ (VdlVdm + VqlVqm) (blm cos (θlm)− glm sin (θlm)) /τlm

+ (−VdlVqm + VqlVdm) (glm cos (θlm) + blm sin (θlm)) /τlm,
(4e)

fSml (Vd, Vq) := (fPml (Vd, Vq))
2 + (fQml (Vd, Vq))

2 . (4f)

The OPF problem is:

min
Vd,Vq

∑

k∈G

fCk (Vd, Vq) subject to (5a)

Pmin
Gk 6 fPk (Vd, Vq) 6 Pmax

Gk ∀k ∈ N (5b)

Qmin
Gk 6 fQk (Vd, Vq) 6 Qmax

Gk ∀k ∈ N (5c)

(V min
k )2 6 fV k (Vd, Vq) 6 (V max

k )2 ∀k ∈ N (5d)

fSlm (Vd, Vq) 6 (Smax
lm )

2 ∀ (l,m) ∈ L (5e)

fSml (Vd, Vq) 6 (Smax
lm )

2 ∀ (l,m) ∈ L (5f)

Vq1 = 0. (5g)

Constraint (5g) sets the reference bus angle to zero.

III. SEMIDEFINITE RELAXATION OF THE OPF PROBLEM

This section describes an SDP relaxation of the OPF

problem adopted from [12], [13], [15]. We use notation

from [30], [33] corresponding to the moment relaxations that

will be introduced in the following sections. We begin with

several definitions. Define the vector of real decision variables

x̂ ∈ R
2n as

x̂ :=
[

Vd1 Vd2 . . . Vqn

]⊺

(6)

where (·)⊺ denotes the transpose.2 A monomial is defined us-

ing a vector α ∈ N
2n of exponents: x̂α := V α1

d1 V α2

d2 · · ·V α2n
qn .

A polynomial is g (x̂) :=
∑

α∈N2n gαx̂
α, where gα is the real

scalar coefficient corresponding to the monomial x̂α.

Define a linear functional Ly {g} which replaces the mono-

mials x̂α in a polynomial g (x̂) with real scalar variables y:

Ly {g} :=
∑

α∈N2n

gαyα. (7)

For a matrix g (x̂), Ly {g} is applied componentwise to each

element of g (x̂).

Consider, for example, the vector x̂ =
[

Vd1 Vd2 Vq2

]⊺

corresponding to the voltage components of a two-bus system,

where the angle reference (5g) is used to eliminate Vq1.

Consider also the polynomial g (x̂) = (V max
2 )

2 − V 2
d2 − V 2

q2.

(The constraint g (x̂) > 0 forces the voltage magnitude at

bus 2 to be less than or equal to V max
2 .) Then Ly {g} =

(V max
2 )2 y000 − y020 − y002. Thus, Ly {g} converts a polyno-

mial g (x̂) to a linear function of y.

The convex quadratic cost functions (3) for each generator

k ∈ G are implemented by minimizing an auxiliary variable

ωk constrained by the SOCP formulation in (8e) [15].

2The ability to arbitrarily set an angle reference in the OPF problem enables
the choice of one arbitrarily selected variable. We choose Vq1 = 0 as in (5g).

The SDP relaxation of (5) is:

min
y,ω

∑

k∈G

ωk subject to (8a)

Pmin
Gk 6 Ly {fPk} 6 Pmax

Gk ∀k ∈ N (8b)

Qmin
Gk 6 Ly {fQk} 6 Qmax

Gk ∀k ∈ N (8c)
(

V min
k

)2
6 Ly {fV k} 6

(

V max
k

)2 ∀k ∈ N (8d)

(1− ck1Ly {fPk} − ck0 + ωk)

>

∣

∣

∣

∣

∣

∣

∣

∣

[

(1 + ck1Ly {fPk}+ ck0 − ωk)
2
√
ck2 Ly {fPk}

]∣

∣

∣

∣

∣

∣

∣

∣

2

∀k ∈ G (8e)

Smax
lm >

∣

∣

∣

∣

∣

∣

∣

∣

[

Ly {fPlm}
Ly {fQlm}

]∣

∣

∣

∣

∣

∣

∣

∣

2

∀ (l,m) ∈ L (8f)

Smax
lm >

∣

∣

∣

∣

∣

∣

∣

∣

[

Ly {fPml}
Ly {fQml}

]
∣

∣

∣

∣

∣

∣

∣

∣

2

∀ (l,m) ∈ L (8g)

Ly {x̂x̂⊺} < 0 (8h)

y00...0 = 1 (8i)

y⋆⋆...⋆ρ⋆...⋆ = 0 ρ = 1, 2, (8j)

where < 0 indicates positive semidefiniteness of the corre-

sponding matrix and || · ||2 denotes the two-norm. The apparent

power line flow constraints (5e) and (5f) are implemented

with the SOCP formulations in (8f) and (8g). See [13] for a

more general formulation of the SDP relaxation that considers

the possibilities of multiple generators per bus and convex

piecewise-linear generation costs. The constraint (8i) enforces

the fact that x̂0 = 1. The constraint (8j) corresponds to

the angle reference Vq1 = 0; the ρ in (8j) is in the index

n + 1, which corresponds to the variable Vq1. Note that the

angle reference can alternatively be used to eliminate all terms

corresponding to Vq1 to reduce the size of the semidefinite

program.

If the condition rank (Ly {x̂x̂⊺}) = 1 is satisfied, the

relaxation is “exact” and the global solution to (5) is recovered

using an eigen-decomposition. Consider a solution to (8)

where the rank of the matrix Ly {x̂x̂⊺} is equal to one with

non-zero eigenvalue λ and associated unit-length eigenvector

η. The globally optimal voltage phasor solution to (5) is

V ∗ =
√
λ
(

η1:n + jη(n+1):2n

)

(9)

where subscripts denote vector entries in MATLAB notation.

The computational bottleneck of the SDP relaxation is

the constraint (8h), which enforces positive semidefiniteness

of a 2n × 2n matrix. Solving the SDP relaxation of large

OPF problems requires exploiting network sparsity. A matrix

completion decomposition exploits sparsity by converting the

positive semidefinite constraint on the large matrix in (8h)

to positive semidefinite constraints on many smaller subma-

trices. These submatrices are defined using the cliques (i.e.,

completely connected subgraphs) of a chordal extension of

the power system network graph. See [13], [15], [40] for a

full description of a formulation that enables solution of (8)

for systems with thousands of buses.
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1

V1 = 1

θ1 = 0◦
R′

12 + jX ′
12

= 0.06129 + j0.05117

2

V2 = 1.3

P2 = 0

Fig. 2. Two-Bus System

IV. EQUIVALENT FORMULATIONS OF A SMALL EXAMPLE

PROBLEM

The SDP relaxation (8) globally solves many OPF prob-

lems which do not satisfy any known sufficient conditions

guaranteeing exactness [9], [28], indicating the potential for

development of broader sufficient conditions. One speculation

is that some physical characteristic of the OPF problem

predicts the relaxation’s success or failure.
The following example shows that strictly physically based

sufficient conditions are unable to definitively predict success

or failure of the SDP relaxation for all OPF problems. The

example problem has equivalent two- and three-bus formula-

tions. The relaxation globally solves the two-bus system. For

the three-bus system, however, the relaxation only gives a strict

lower bound on the objective value rather than the solution.

A. Example Problem

Consider the two- and three-bus systems in Figs. 2 and 3.

For both systems, the voltage magnitudes at buses 1 and 2

are fixed to 1.0 and 1.3 per unit, respectively, and the active

power injection at bus 2 is fixed to zero.3 There are no limits

on the reactive power injections at buses 1 and 2. For bus 3 in

the three-bus system, the active and reactive power injections

are constrained to zero and there is no voltage magnitude

constraint. With the active power injections at the other buses

fixed to zero, the objective function minimizes active power

injection at bus 1.
The resistance-to-reactance ratios for lines in both the two-

and three-bus systems are somewhat atypical for transmission

systems, but are not particularly unusual for more lossy

networks like subtransmission and distribution systems [41].

Similar characteristics to these systems may also occur when

using “equivalencing” techniques to reduce larger systems to

a smaller representative network [42], [43].
With two quantities specified at each bus k along with two

degrees of freedom (Vdk and Vqk), the feasible space for the

OPF problem (5) for this example consists of a set of isolated

points that are the solutions of the power flow equations.

The OPF finds the solution point that has the lowest active

power losses. Here, this solution corresponds to the “high-

voltage/small angle-difference” power flow solution, which

is commonly calculated using a Newton-Raphson iteration

initialized from a flat start (i.e., voltages of 1∠0◦).4 In this

paper, however, we use this problem to explore the properties

of the convex relaxations.

3Equality constraints are achieved by setting the upper and lower limits
equal (e.g., V max

1
= V min

1
= 1 per unit).

4For both two- and three-bus systems, (5) has one other local minimum:
there exists one “low-voltage/large angle-difference” power flow solution with
larger losses.

1

V1 = 1

θ1 = 0◦
R12 + jX12

= 0.15 + j0.1

2

V2 = 1.3

P2 = 0

R13 + jX13

= 0.1 + j0.05

3
P3 = 0

Q3 = 0

R23 + jX23

= 0.001 + j0.05

Fig. 3. Three-Bus System

Since bus 3 in the three-bus system has zero power in-

jections, it can be eliminated by adding R13 + jX13 and

R23 + jX23 to yield an equivalent two-bus system with two

parallel lines.5 The parallel combination of these lines gives

the line impedance R′
12 + jX ′

12 shown in the two-bus system

of Fig. 2. Thus, the OPF problems for the two- and three-bus

systems are equivalent. The voltage at bus 3 in the three-bus

system can be directly computed from the solution to the two-

bus system. The global solutions are given in Table I.

The SDP relaxation globally solves the two-bus system.

However, for the three-bus system, the relaxation only pro-

vides a lower bound that is 22% less than the true global

optimum (i.e., there exists a large relaxation gap). We note

that MATPOWER’s interior point solver [7] fails to converge

for the three-bus formulation of this problem but successfully

solves the two-bus formulation.

B. Feasible Space Exploration

Although the OPF problems (5) for the two- and three-

bus systems share the same feasible spaces, this is not the

case for their SDP relaxations (8). This section explores the

feasible spaces of these relaxations to illustrate why the SDP

relaxation globally solves the two-bus system but fails for the

equivalent three-bus system.

Figs. 4 and 5 show projections of the feasible spaces of

the two- and three-bus systems in terms of the active power

injections. The boundary of the oval, shown by the black line

in Fig. 4, is the feasible space of the OPF problem (5) for

5Elimination of bus 3 requires that the zero power injection at this bus is
achieved using an “open circuit to ground”. A “short circuit to ground” could
also yield zero power injections. However, a short circuit at bus 3 results in
infeasibility of the power flow equations for the loading specified in Fig. 3.
Thus, the feasible space of the two-bus system in Fig. 2 can be directly
mapped to the feasible space of the three-bus system in Fig. 3.

TABLE I
SOLUTIONS TO TWO- AND THREE-BUS SYSTEMS (PER UNIT)

Two-Bus System Three-Bus System

Vd1 + jVq1 1.000 + j0.000 1.000 + j0.000
Vd2 + jVq2 1.049 − j0.767 1.049− j0.767
Vd3 + jVq3 N/A 0.849− j0.586
P1 + jQ1 5.68− j7.77 5.68− j7.77
P2 + jQ2 0.0 + j12.52 0.0 + j12.52
P3 + jQ3 N/A 0.0 + j.0
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(a) Projection of the Two-Bus System’s Feasible Space
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(b) Zoomed View of Fig. 4a

Fig. 4. Projection of the Two-Bus System’s Feasible Space. The red squares at the intersection of the black oval and red dashed line are the feasible space
for the OPF problem (5). The blue region, including the black oval boundary, is the feasible space for the SDP relaxation (8). The orange star is the solution
to the SDP relaxation, which is the global optimum for the two-bus system.

(a) Projection of the Three-Bus System’s Feasible Space
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(b) Projection of the Three-Bus System’s Feasible Space with P3=0

Fig. 5. Projection of the Three-Bus System’s Feasible Space. The feasible space for the OPF problem (5) is denoted by the red squares at the intersection
of the red dashed line and the region formed by the colored lines in Fig. 5a (the black line in Fig. 5b). The blue region is the feasible space for the SDP
relaxation (8). The orange star is the solution to the SDP relaxation, which does not match the global solution at the leftmost red square.

varying values of P2. The region in Fig. 4 consisting of the

oval and its interior is the feasible space of the SDP relaxation.

For the specified value of P2 = 0, shown by the red dashed

line, the OPF problem has a feasible space consisting of the

two red squares at the intersection of the red dashed line and

the black oval. The SDP relaxation finds the global optimum

of (5) (i.e., the leftmost red square) at the orange star.

In Fig. 5a, the colored lines outline the feasible space of

the OPF problem (5) for varying values of P2 and P3, as

determined using the approach in [44] and validated using

repeated homotopy calculations [45]. This feasible space has

an ellipsoidal shape with a hole in the interior. The red dashed

line corresponds to zero active power injections at buses 2

and 3. The OPF solutions, which are shown by the red squares

at the intersection of the exterior of the ellipsoidal shape with

the red dashed line, are near the hole in the feasible space.

The feasible space of the SDP relaxation, shown by the shaded

region, “stretches over” this hole in the OPF’s feasible space.

As seen in Fig. 5b, which shows a zoomed view of a cut

through P3 = 0, the exterior of the relaxation’s feasible space

does not match the feasible space of the OPF problem near this

hole. Thus, the solution to the SDP relaxation (8) at the orange

star does not match the global solution to the OPF problem (5)

at the leftmost red square, and the SDP relaxation is not exact

for this formulation. Similar phenomena occur for a range of

non-zero active power injections at bus 2.

The hole in the OPF’s feasible space is a non-convexity

introduced by “nearby” problems (i.e., different values of P3)

in the three-bus system. Without the additional degrees of

freedom associated with bus 3, there is no “nearby” non-

convexity for the two-bus system. Thus, despite the fact that

the OPF problems share the same feasible space (i.e., the red

squares in Figs. 4 and 5), the SDP relaxation is exact for the

two-bus system but not for the three-bus system.

V. MOMENT RELAXATIONS

By demonstrating that factors other than just physical char-

acteristics determine success or failure of the SDP relaxation,

the example in Section IV motivates the development of tighter

convex relaxations that globally solve a broader class of OPF
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problems. Recognizing that the objective function and all

constraints in the OPF problem are polynomial functions of

the voltage phasor components enables the application of a

hierarchy of convex “moment” relaxations from the Lasserre

hierarchy for polynomial optimization problems. The moment

relaxations, which converge to the global optimum of (5) with

increasing relaxation order [35], generalize the SDP relaxation

presented in Section III. This section introduces and illustrates

the moment relaxations using the example from Section IV.

The moment relaxations require definitions beyond those in

Section III. Define a vector xγ consisting of all monomials of

the voltage components Vd and Vq up to order γ:

xγ :=
[

1 Vd1 . . . Vqn V 2
d1 Vd1Vd2 . . .

. . . V 2
qn V 3

d1 V 2
d1Vd2 . . . V γ

qn

]⊺

. (10)

The moment relaxations are composed of positive semidef-

inite constraints on moment and localizing matrices. The

symmetric moment matrix Mγ is composed of entries yα
corresponding to all monomials x̂α up to order 2γ:

Mγ {y} := Ly

{

xγx
⊺

γ

}

. (11)

Symmetric localizing matrices are defined for each con-

straint of (5). For a polynomial constraint g (x̂) > 0 of degree

2η, the localizing matrix is:

Mγ−η {gy} := Ly

{

gxγ−ηx
⊺

γ−η

}

. (12)

See (14a), (14b), and (14c) for the vector x2, moment matrix

M2 {y}, and the localizing matrix associated with upper

voltage magnitude limit (V max
2 )

2−V 2
d2−V 2

q2 > 0, respectively,

for a three-bus OPF problem. Note that the angle reference

Vq1 = 0 is used to eliminate Vq1 in (14). These equations use

the notation Ly

{

V α1

d1 V α2

d2 V α3

d3 V α4

q2 V α5

q3

}

= yα1α2α3

α4α5
.

The order-γ moment relaxation is:

min
y,ω

∑

k∈G

ωk subject to (13a)

Mγ−1

{(

fPk − Pmin
k

)

y
}

< 0 ∀k ∈ N (13b)

Mγ−1

{(

Pmax
k − fPk

)

y
}

< 0 ∀k ∈ N (13c)

Mγ−1

{(

fQk −Qmin
k

)

y
}

< 0 ∀k ∈ N (13d)

Mγ−1

{(

Qmax
k − fQk

)

y
}

< 0 ∀k ∈ N (13e)

Mγ−1

{(

fV k −
(

V min
k

)2
)

y
}

< 0 ∀k ∈ N (13f)

Mγ−1

{(

(V max
k )2 − fV k

)

y
}

< 0 ∀k ∈ N (13g)

(1− ck1Ly {fPk} − ck0 + ωk)

>

∣

∣

∣

∣

∣

∣

∣

∣

[

(1 + ck1Ly {fPk}+ ck0 − ωk)
2
√
ck2 Ly {fPk}

]∣

∣

∣

∣

∣

∣

∣

∣

2

∀k ∈ G (13h)

Ly {fCk} = ωk ∀k ∈ G (13i)

Mγ−2

{(

(Smax
lm )

2 − fSlm

)

y
}

< 0 ∀ (l,m) ∈ L (13j)

Mγ−2

{(

(Smax
lm )2 − fSml

)

y
}

< 0 ∀ (l,m) ∈ L (13k)

Smax
lm >

∣

∣

∣

∣

∣

∣

∣

∣

[

Ly {fPlm}
Ly {fQlm}

]
∣

∣

∣

∣

∣

∣

∣

∣

2

∀ (l,m) ∈ L (13l)

Smax
lm >

∣

∣

∣

∣

∣

∣

∣

∣

[

Ly {fPml}
Ly {fQml}

]
∣

∣

∣

∣

∣

∣

∣

∣

2

∀ (l,m) ∈ L (13m)

Mγ{y} < 0 (13n)

y00...0 = 1 (13o)

y⋆⋆...⋆ρ⋆...⋆ = 0 ρ = 1, . . . , 2γ. (13p)

where ρ in the angle reference constraint (13p) is in the index

n + 1, which corresponds to the variable Vq1. In the same

way as (8), the angle reference can alternatively be used to

eliminate all terms corresponding to Vq1.6

As for the SDP relaxation, the globally optimal voltage

phasors can be extracted using (9) from a solution to (13)

that satisfies the condition rank (Ly {x̂x̂⊺}) = 1.

The order γ of the moment relaxation (13) must be greater

than or equal to half of the degree of any polynomial in the

OPF problem (5). This suggests that γ > 2 due to the fourth-

order polynomials resulting from the objective function (5a)

and the apparent power line flow constraints (5e) and (5f).

However, as in the SDP relaxation (8), these can be rewritten

using a Schur complement [15] to allow γ > 1. Experience

suggests that implementing (5a), (5e), and (5f) both directly

and with a Schur complement formulation, as shown in (13h)

and (13i) for the quadratic objective function and (13j)–(13m),

gives superior results for γ > 2. (Constraints (13i), (13j),

and (13k) are not enforced for γ = 1.)

The second-order relaxation’s moment matrix M2{y} is

shown in (14b). The upper limit on the voltage magnitude at

bus 2 in (13g) corresponds to a positive semidefinite constraint

on the localizing matrix shown in (14c).

Fig. 6 shows a projection of the feasible space in terms of

active power injections for the second-order moment relax-

ation of the three-bus system in Section IV. The points in this

figure were obtained by gridding the P1–P2–P3 space, and

associating with each grid point a quadratic objective function

that achieved its minimum at that point. The relaxation (13)

was solved for each of those objective functions while allowing

the loading conditions to vary (i.e., the constraints on P2

and P3 were released). The second-order moment relaxation

globally solved all these scenarios, with the resulting feasible

space in Fig. 6 seemingly equivalent to the space illustrated by

the colored lines in Fig. 5a. Since the power injections result

from a non-linear transformation of the voltage components

given by the power flow equations (2), the second-order

moment relaxation can represent the non-convex space of

power injections while maintaining convexity in the decision

variables yα.

All polynomials in the OPF problem have only even-order

monomials (i.e., x̂α such that |α| is even, where | · | indicates

the one-norm). Odd-order terms in the moment relaxations

are therefore unnecessary: all yα such that |α| is odd can

6We note that the angle reference constraint is unnecessary (i.e., its
inclusion does not tighten the constraints) in the SDP relaxation [12] and the
first-order moment relaxation [36]. However, the angle reference constraint
(implemented either via eliminating Vq1 or explicitly enforcing (13p)) can
tighten the higher-order moment relaxations. For instance, the second-order
moment relaxation with the angle reference constraint yields the globally
optimal objective value of $456.55 for the two-bus system in [46], but
only a lower bound of $452.61 without the angle reference constraint. (This
phenomenon was not observed for the test case in Section IV.)
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be set to zero without violating any constraints or changing

the objective value. For instance, the positive semidefinite

constraint on the second-order relaxation’s moment matrix,

M2{y} < 0, is equivalent to positive semidefinite constraints

on two submatrices: the diagonal block corresponding to the

degree-two monomials (i.e., |α| = 2), which is identified

by the green dashed highlighting in (14b), and the terms

corresponding to the degree-zero, off-diagonal degree-two, and

degree-four monomials (i.e., |α| = 2k for some k ∈ N), which

are identified by the blue dotted highlighting in (14b).

The first-order localizing “matrices” corresponding to the

constraints (8b)–(8d) are, in fact, scalars.7 The corresponding

scalar constraints in the first-order relaxation (13b)–(13g) are

equivalent to the linear constraints in the SDP relaxation (8b)–

(8d). The moment matrix in the first-order relaxation has all

terms yα such that |α| 6 2 (the diagonal block surrounded

7Observe that Ly

{

g (x̂)x
0
x
⊺

0

}

= Ly {g (x̂)} since x0 = 1.

by the black line in (14b)), whereas the SDP relaxation has

all terms yα such that |α| = 2 (the diagonal block with

green dashed highlighting in (14b)). The degree-one terms

(the terms with orange highlighting in (14b)) have odd |α|
and so are unnecessary, as discussed earlier. Since the degree-

one terms are unnecessary and y00...0 > 0 by (13o), the

positive semidefinite constraint on the first-order relaxation’s

moment matrix (13n) is equivalent to the positive semidefinite

constraint in the SDP relaxation (8h). With an equivalent

feasible space and objective function, the SDP relaxation in (8)

is the same as the first-order (γ = 1) moment relaxation (13).

The moment matrix for the lower-order relaxation

Mγ−1{y} is contained in the upper-left diagonal block of

Mγ{y}. Likewise, the upper-left diagonal block of the higher-

order localizing matrices contain the lower-order localizing

matrices. (The first-order matrices are contained within the

solid black outlines in the second-order matrices in (14b)

and (14c).) Since a necessary condition for a matrix to be pos-

x2 =
[

1 Vd1 Vd2 Vd3 Vq2 Vq3 V 2

d1 Vd1Vd2 Vd1Vd3 Vd1Vq2 Vd1Vq3 V 2

d2 Vd2Vd3 Vd2Vq2 Vd2Vq3 . . .

. . . V 2

d3 Vd3Vq2 Vd3Vq3 V 2

q2 Vq2Vq3 V 2

q3

]

⊺

[Note : (5g) is used to remove Vq1] (14a)

M2{y} = Ly{x2
x
⊺

2
} = (14b)
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(a) Projection of the 2nd-Order Moment Relaxation’s Feasible Space
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(b) Projection of the Feasible Space shown in Fig. 6a with P3 = 0

Fig. 6. Projection of the Second-Order Moment Relaxation’s Feasible Space for the Three-Bus System. The feasible space for the OPF problem (5) is denoted
by the red squares. The second-order moment relaxation gives the global optimum at the orange star. The second-order moment relaxation was exact for all
scenarios tested.
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(a) Projection of the 2nd-Order Mixed SDP/SOCP Relaxation’s Feasible Space
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(b) Projection of the Feasible Space shown in Fig. 7a with P3 = 0

Fig. 7. Projection of the Second-Order Mixed SDP/SOCP Relaxation’s Feasible Spaces for the Three-Bus System. The feasible space for the OPF problem (5)
is denoted by the red squares. The second-order mixed SDP relaxation gives the global optimum at the orange star. Fig. 7b shows that the second-order mixed
SDP/SOCP relaxation is exact for the points near the specified scenario. However, this was not the case for all scenarios: Fig. 7a shows that the second-order
mixed SDP/SOCP relaxation includes some points in the “hole” in the feasible space for which rank (Ly {x̂x̂⊺}) > 1.

itive semidefinite is positive semidefiniteness of all principal

submatrices, the moment relaxations form a hierarchy where

higher-order constraints imply the lower-order constraints.

Adding a rank-constraint rank (Ly {x̂x̂⊺}) = 1 to the SDP

relaxation (8) yields a non-convex problem equivalent to the

OPF problem (5). The SDP formulation (8) can thus be under-

stood in terms of a rank relaxation. The higher-order moment

relaxations generalize this approach by introducing constraints

that are redundant in the OPF problem (5) but strengthen the

moment relaxations. Consider g (x̂)xγ−ηx
⊺

γ−η < 0, where

g (x̂) > 0 is a generic constraint in the OPF problem (5)

with degree 2η. The rank-one matrix xγ−ηx
⊺

γ−η is positive

semidefinite by construction, and the scalar constraint g (x̂)
is non-negative. Thus, their product is a rank-one positive

semidefinite matrix. Relaxing to Ly

{

g (x̂)xγ−ηx
⊺

γ−η

}

< 0
(i.e., eliminating the rank constraint implied by xγ−ηx

⊺

γ−η)

results in the localizing matrix constraint.

The computational difficulty of solving the moment relax-

ations grows quickly with the relaxation order due to the

size of the positive semidefinite matrix constraints. After

elimination of Vq1 using the angle reference constraint, the

size of the moment matrix (13n) for the order-γ relaxation of

a n-bus system is (2n− 1 + γ)!/ ((2n− 1)!γ!). For instance,

the third-order relaxation of a 10 bus system has a matrix

with size 1,540 × 1,540. The “dense” formulation of the

second-order relaxation is limited to solving problems with

less than approximately ten buses [30]–[32]. By exploiting

sparisty using techniques analogous to those for the SDP

relaxation [47], the second-order relaxation is computationally

tractable for systems with up to approximately 40 buses [33].

Extension to larger systems is possible by both exploiting spar-

sity and only applying the computationally intensive higher-

order constraints to specific “problematic” buses [33], [34].
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VI. MIXED SDP/SOCP RELAXATION HIERARCHY

The moment relaxations globally solve many OPF problems

but are computationally challenging. First proposed in [39], a

“mixed SDP/SOCP” hierarchy is tighter than the first-order

moment relaxation but more tractable than the higher-order

relaxations. This section describes this mixed SDP/SOCP hier-

archy in the context of the example problem from Section IV.

The mixed SDP/SOCP hierarchy further relaxes the SDP

constraints in the higher-order moment relaxations (13) to

less stringent SOCP constraints. To ensure that the mixed

SDP/SOCP relaxations are at least as tight as the first-

order moment relaxation, positive semidefinite constraints are

enforced for the diagonal block of the moment matrix that

corresponds to degree-two monomials (i.e., yα such that

|α| = 2, which are contained within the diagonal block

highlighted in green dashed lines in (14b).) We relax the

higher-order constraints using a necessary condition for a

matrix to be positive semidefinite. Specifically, a necessary

but not sufficient condition for a generic symmetric matrix

W to be positive semidefinite is given by the constraints:

Wii > 0 i = 1, . . . , 2n, (15a)

WiiWkk > |Wik|2 ∀ {(i, k) | k > i} . (15b)

The mixed SDP/SOCP hierarchy enforces the higher-order

constraints in the moment and localizing matrices using (15)

for (13b)–(13g), (13j)–(13k), and (13n). Since the terms cor-

responding to odd-order monomials can be set to zero, this

reduces to enforcing the SOCP constraints on the submatrices

corresponding to those highlighted in blue in (14b) and (14c)

for the three-bus system. For instance, in addition to non-

negativity of the diagonal entries, the second-order mixed

SDP/SOCP hierarchy includes the following SOCP constraints

associated with the moment matrix (14b):

y00000 y
400
00 >

∣

∣y20000
∣

∣

2
,

y00000 y
220
00 >

∣

∣y11000
∣

∣

2
,

...

y40000 y
220
00 >

∣

∣y31000
∣

∣

2
,

y40000 y
202
00 >

∣

∣y30100
∣

∣

2
,

...

y00022 y
000
04 >

∣

∣y00013
∣

∣

2
.

Similarly, in addition a non-negative diagonal, the second-

order mixed SDP/SOCP hierarchy enforces the following

SOCP constraints associated with the localizing matrix (14c):

(

(V max
2 )

2
y20000 − y22000 − y20020

)(

(V max
2 )

2
y02000 − y04000 − y02020

)

>

∣

∣

∣
(V max

2 )
2
y11000 − y13000 − y11020

∣

∣

∣

2

,
(

(V max
2 )2 y20000 − y22000 − y20020

)(

(V max
2 )2 y00200 − y02200 − y00220

)

>

∣

∣

∣
(V max

2 )
2
y10100 − y12100 − y10120

∣

∣

∣

2

,

...
(

(V max
2 )2 y00020 − y02020 − y00040

)(

(V max
2 )2 y00002 − y02002 − y00022

)

>

∣

∣

∣
(V max

2 )
2
y00011 − y02011 − y00031

∣

∣

∣

2

.

Since SOCP constraints have significant computational ad-

vantages over SDP constraints, the mixed SDP/SOCP relax-

ation is more tractable than the formulation of the moment

relaxations given in Section V. Further, it is only necessary

to enforce the SOCP constraints that correspond to higher-

order polynomials which appear in a localizing matrix con-

straint. This provides additional computational advantages

when combined with the approach of selectively applying the

higher-order relaxation constraints [33]. See [39] for detailed

numerical results demonstrating speed increases between a

factor of 1.13 and 18.70 compared to the moment relaxations.

Fig. 7 shows the feasible space of active power injections

for the second-order mixed SDP/SOCP relaxation. This figure

was produced using the same gridding procedure employed

in Fig. 6. The relaxation is exact for the specific loading

condition P2 = P3 = 0 considered in Section IV and for

nearby loading conditions (see the zoomed-in view of the

feasible space shown in Fig. 7b). However, in contrast to the

moment relaxations implemented with SDP constraints alone,

illustrated in Fig. 6, the mixed SDP/SOCP relaxation was not

exact for all scenarios. This is evident by the points that lie in

the “hole” in the feasible space (i.e., the points in Fig. 7a

that are not in Fig. 6a).8 As expected, mixed SDP/SOCP

relaxations are generally not as tight as the moment relaxations

in (13) which use only SDP constraints.

VII. CONCLUSION

An SDP relaxation globally solves many OPF problems

which do not satisfy any existing sufficient conditions that

assure exactness of the relaxation. This motivates the de-

velopment of broader sufficient conditions, with a common

conjecture being that some physical characteristics of the

OPF problem can determine success or failure of the SDP

relaxation. This paper has presented a small example OPF

problem with two equivalent formulations. The SDP relaxation

globally solves only one of the two formulations. This suggests

that strictly physically based sufficient conditions for exactness

of the SDP relaxation of the OPF problem cannot predict the

relaxation’s success or failure for all OPF problems.

The inability to develop universal, physically based suffi-

cient conditions for success of the SDP relaxation motivates

researching more sophisticated convex relaxations. We use the

small example problem to illustrate two recently developed

convex relaxation hierarchies: “moment” relaxations from the

Lasserre hierarchy for polynomial optimization and a mixed

SDP/SOCP hierarchy derived by relaxing the higher-order

constraints in the moment relaxations. Both of these hierar-

chies generalize the SDP relaxation in order to enable global

solution of a broader class of OPF problems.

8The feasible spaces for the third- and fourth-order mixed SDP/SOCP
relaxations also had points in this hole.
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