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ABSTRACT

Optimal power flow (OPF) is one of the key electric power
system optimization problems. “Moment” relaxations from
the Lasserre hierarchy for polynomial optimization globally
solve many OPF problems. Previous work illustrates the abil-
ity of higher-order moment relaxations to approach the con-
vex hulls of OPF problems’ non-convex feasible spaces. Us-
ing a small test case, this paper focuses on the ability of the
moment relaxations to globally solve problems with objective
functions that have unconstrained minima at infeasible points
inside the convex hull of the non-convex constraints.

Index Terms— Optimal power flow, convex relaxation

1. INTRODUCTION

Solutions to optimal power flow (OPF) problems provide
minimum cost operating points for electric power systems
in terms of a specified objective function, subject to equality
constraints dictated by the non-linear power flow equations
and inequalities representing engineering limits. OPF prob-
lems are generally NP-Hard [1,2], even for tree networks [3],
and may have multiple local optima [4]. A wide variety of
convex relaxation techniques have recently been applied to
OPF problems [1, 5–11]. Convex relaxations lower bound
the optimal objective value, can certify problem infeasibility,
and, for some OPF problems, provide the global solution.

Recognizing that OPF problems are polynomial optimiza-

tion problems facilitates the application of “moment relax-
ations” from the Lasserre hierarchy [12]. Moment relaxations
generalize the semidefinite programming (SDP) relaxation
proposed in [1] in order to solve a broader class of OPF prob-
lems at the computational cost of larger SDPs [13–18]. With
increasing order in the Lasserre hierarchy, the moment relax-
ations provably converge to the global optima of a class of
polynomial optimization problems that satisfy certain techni-
cal conditions [12], which includes OPF problems [19].
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Recent work [13, 20] has investigated the ability of
second- and third-order moment relaxations to approach
the convex hulls of several OPF problems for which the first-
order relaxation (or, equivalently, the SDP relaxation of [1])
has a non-zero relaxation gap (i.e., there is a gap between the
global solution to the non-convex problem and the solution to
the first-order relaxation). For these problems, approaching
the convex hulls of the OPF problems’ non-convex feasible
spaces enables the relaxations to find the global optima.

Some OPF problems have objective functions that are
non-linear in the power generation (e.g., convex quadratic
generation costs). The unconstrained minimum of such an
objective function may lie inside the convex hull of the fea-
sible space defined by the OPF problem’s constraints, but
outside of the feasible space itself. For such cases, tightening
the constraints of convex relaxations to more closely approx-
imate the convex hull of the OPF problem’s constraints is not

sufficient to close the relaxation gap.
In [20], example OPF problems using the three-bus sys-

tem from [21] illustrate the ability of the moment relaxations
to closely approximate the convex hulls of non-convex fea-
sible spaces. Importantly, the moment relaxations also glob-
ally solved cases where a quadratic generation cost function
was minimized at a point inside the convex hull of the fea-
sible space, but outside the feasible space itself. In [20], this
ability was incorrectly attributed to the non-linear relationship
between the power injections and voltage phasors. (In fact,
the moment relaxations have a linear relationship between the
lifted variables and the expressions for power generation.)

This paper uses a modified version of the three-bus test
case from [21] to show how the constraints and objective
in the moment relaxations interact. This interaction enables
global solution (zero relaxation gap) of problems where the
objective has an unconstrained minimizer at an infeasible
point inside the convex hull of the feasible space. In con-
trast to constraint-tightening methods, e.g., [9, 10, 22, 23], the
second-order moment relaxation globally solves this problem.

This paper is organized as follows. Section 2 overviews
the OPF problem. Section 3 describes the Lasserre hierarchy
of moment relaxations in the context of the OPF problem.
Section 4 presents this paper’s main contribution: an illustra-
tion showing how the second-order moment relaxation glob-



ally solves an OPF problem where the objective function has
its minimum at an infeasible point inside the convex hull of
the constraints’ feasible space. Section 5 concludes the paper.

2. OPTIMAL POWER FLOW OVERVIEW

Consider an n-bus power system, where N := {1, . . . , n} is
the set of all buses and G is the set of generator buses. Let
PDi + jQDi represent the active and reactive load demand at
each bus i ∈ N . Let Vi := Vdi + jVqi represent the voltage
phasors in rectangular coordinates at each bus i ∈ N . Su-
perscripts “max” and “min” denote specified upper and lower
limits. Buses without generators have maximum and mini-
mum generation set to zero (i.e., Pmax

Gi = Pmin
Gi = Qmax

Gi =
Qmin

Gi = 0, ∀i ∈ N \ G). Let Y := G + jB denote the
network admittance matrix.

The active power and reactive power generated at bus i,
PGi := fPi (Vd, Vq) and QGi := fQi (Vd, Vq), respectively,
are related to the voltages through the power flow equations:

fPi :=PDi+
n∑

k=1

Vdi (GikVdk−BikVqk)+Vqi (BikVdk+GikVqk)

(1a)

fQi :=QDi+
n∑

k=1

Vqi (GikVdk−BikVqk)−Vdi (BikVdk+GikVqk) .

(1b)
The squared voltage magnitude at bus i is

fV i (Vd, Vq) := V 2
di + V 2

qi. (2)

Each generator has a convex quadratic generation cost:

fCi (Vd, Vq) = c2,k (fPi (Vd, Vq))
2 + c1,kfPi (Vd, Vq) + c0,k.

(3)
The OPF problem formulation considered in this paper is

min
Vd,Vq

∑

i∈G

fCi (Vd, Vq) subject to (4a)

Pmin
Gi ≤ fPi (Vd, Vq) ≤ Pmax

Gi ∀i ∈ N (4b)

Qmin
Gi ≤ fQi (Vd, Vq) ≤ Qmax

Gi ∀i ∈ N (4c)
(

V min
i

)2 ≤ fV i (Vd, Vq) ≤
(

V max
i

)2 ∀i ∈ N (4d)

Vq1 = 0. (4e)

Constraint (4e) sets the reference bus angle to zero.

3. MOMENT RELAXATIONS

The moment relaxations are developed by applying the
Lasserre hierarchy of SDPs [12] to the OPF problem (4) [13–
17]. Development of the moment relaxations requires sev-
eral definitions. Define the vector of real decision vari-
ables x ∈ R

2n as x :=
[

Vd1 . . . Vdn Vq1 . . . Vqn

]⊺

.
A monomial is defined using a vector α ∈ N

2n of expo-
nents: xα := V α1

d1 V α2

d2 · · ·V α2n
qn . A polynomial is h (x) :=

∑

α∈N2n hαx
α, where hα is the real scalar coefficient corre-

sponding to the monomial xα.

Define a linear functional Ly {h} which replaces the
monomials xα in a polynomial h (x) with scalar variables yα:

Ly {h} :=
∑

α∈N2n

hαyα. (5)

For a matrix h (x), Ly {h} is applied componentwise.

Consider, e.g., the vector x =
[

Vd1 Vd2 Vq1 Vq2

]⊺

corresponding to the voltage components of a two-bus sys-
tem, and the voltage-magnitude-constraintpolynomialh (x) =

− (0.9)
2
+V 2

d2+V 2
q2. ThenLy {h} = − (0.9)

2
y0000+y0200+

y0002. Thus, Ly {h} converts a polynomial h (x) to a linear
function of the ‘lifted” variables y.

For the order-γ relaxation, define a vector xγ consisting
of all monomials of the voltage components up to order γ:

xγ :=
[

1 Vd1 . . . Vqn V 2
d1 Vd1Vd2 . . .

. . . V 2
qn V 3

d1 V 2
d1Vd2 . . . V γ

qn

]⊺

. (6)

The moment relaxations enforce positive semidefinite
constraints on so-called moment and localizing matrices. The
symmetric moment matrix Mγ {y} is composed of entries yα
corresponding to all monomials xα up to order 2γ:

Mγ {y} := Ly

{

xγx
⊺

γ

}

. (7)

Symmetric localizing matrices are defined for each con-
straint of (4). For a polynomial constraint h (x) ≥ 0 of degree
2η, the localizing matrix is:

Mγ−η {h y} := Ly

{

hxγ−ηx
⊺

γ−η

}

. (8)

See [13, 20] for example moment and localizing matrices.
The order-γ moment relaxation of the OPF problem (4) is

min
y

Ly

{

∑

i∈G

fCi

}

subject to (9a)

Mγ−1

{(

fPi − Pmin
i

)

y
}

� 0 ∀i ∈ N (9b)

Mγ−1

{(

Pmax
i − fPi

)

y
}

� 0 ∀i ∈ N (9c)

Mγ−1

{(

fQi −Qmin
i

)

y
}

� 0 ∀i ∈ N (9d)

Mγ−1

{(

Qmax
i − fQi

)

y
}

� 0 ∀i ∈ N (9e)

Mγ−1

{(

fV i −
(

V min
i

)2
)

y
}

� 0 ∀i ∈ N (9f)

Mγ−1

{(

(V max
i )

2 − fV i

)

y
}

� 0 ∀k ∈ N (9g)

Mγ {y} � 0 (9h)

y00...0 = 1 (9i)

y⋆⋆...⋆ρ⋆...⋆ = 0 ρ = 1, . . . , 2γ. (9j)

where � 0 indicates that the corresponding matrix is posi-
tive semidefinite and ⋆ represents any integer in [0, 2γ − 1].
The constraint (9i) enforces the fact that x0 = 1. The con-
straint (9j) corresponds to the angle reference Vq1 = 0; the ρ
in (9j) is in the index n+ 1, which corresponds to Vq1.1

1The angle reference constraint (4e) can alternatively be used to elimi-
nate all terms corresponding to Vq1 to reduce the size of the matrices.



The order-γ relaxation yields a single global solution
upon satisfaction of the rank condition

rank (Mγ {y}) = 1. (10)

The global solution V ∗ to the OPF problem (4) is then de-
termined by a spectral decomposition of the diagonal block
of the moment matrix corresponding to the second-order
monomials (i.e., |α| = 2, where | · | indicates the one-norm).
Specifically, let η be a unit-length eigenvector corresponding
to the non-zero eigenvalue λ of [M1{y}](2:k,2:k), where k =
2n+1 and subscripts indicate the vector entries in MATLAB
notation. Then the vector V ∗ =

√
λ
(

η1:n + jη(n+1):2n

)

is
the globally optimal voltage phasor vector.

Generally, the relaxation order γ must be greater than or
equal to half the highest degree among all objective and con-
straint polynomials. For OPF problems, the quadratic cost of
active power generation yields a quartic polynomial in Vd and
Vq . While this suggests that γ ≥ 2, the first-order relaxation
(i.e., γ = 1) is formulated by minimizing

∑

i∈G
ωi, where ωi

is an auxiliary variable defined for each generator i ∈ G, and
adding the second-order cone constraints

(1− c1,i Ly {fPi} − c0,i + ωi)

≥
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

(1 + c1,i Ly {fPi}+ c0,i − ωi)

2
√
c2,i Ly {fPi}

]∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

∀i ∈ G (11)

where || · ||2 denotes the vector two-norm.

4. ILLUSTRATIVE EXAMPLE

This section builds on [20] using an OPF problem adopted
from the three-bus system in [21]. The feasible space for this
problem is non-convex. The chosen objective function has
its unconstrained minimum at an infeasible point in the inte-
rior of the constraints’ convex hull. In contrast to other relax-
ations, the second-order moment relaxation globally solves
this problem. Note that the moment relaxations do not apply
any “artificial” modifications to the OPF problem (e.g., the
moment relaxations do not use “penalty” terms).

Fig. 1 shows the one-line diagram for the three-bus sys-
tem. Voltages and line parameters are given in per unit.
The generators have no reactive power limits. Table 1
gives the coefficients for the generators’ quadratic cost func-
tions. The resulting objective equals (PG1 − 650 MW)

2
+

500 (PG2 − 35 MW)2, which has an unconstrained mini-
mizer at (PG1, PG2) = (650, 35) MW.

The colored regions in Figs. 2a and 2b show the feasi-
ble spaces for the first- and second-order moment relaxations,
with the colors representing the generation cost and the light
black lines representing constant cost contours. The feasi-
ble space for the non-convex OPF problem is denoted by the
heavy black curve and the global solution is at the green star.

These feasible spaces were constructed using a grid in the
PG1–PG2 plane with a 0.5 MW spacing. At each grid point,

1

V1 = 1

θ1 = 0◦

PG1 ∈ [300, 1200] MW

R12 + jX12

= 0.15 + j0.1

2

V2 = 1.3

PG2 ∈ [0, 50] MW

PD2 + jQD2

= 30 MW + j0 MVAr

R13 + jX13

= 0.1 + j0.05

3
P3 = 0

Q3 = 0

R23 + jX23

= 0.001 + j0.05

Fig. 1. Three-Bus System Adopted From [21]

Table 1. Generator Cost Functions

Bus c2,k ($/MWh2) c1,k ($/MWh) c0,k ($/hr)

1 1 -1300 422500

2 500 -35000 612500

the first- and second-order relaxations (with objective coeffi-
cients given in Table 1) were solved with the additional con-
straints that the first-order relaxation’s representation of the
power flow equations was consistent with the specified grid
point (i.e., for the grid point (PG1, PG2) = (P ◦

G1, P
◦
G2), both

the first- and second-order moment relaxations were solved
after augmenting with the constraints M0 {(fPi − P ◦

Gi) y} =
Ly {fPi − P ◦

Gi} = 0, i = 1, 2). The cost shown by the colors
in Figs. 2a and 2b corresponds to

∑

i∈G
ωi for the first-order

relaxation (cf (11)) and
∑

i∈G
Ly {fCi} for the second-order

relaxation. Note that the second-order relaxation’s cost func-
tion (9a) depends on terms with |α| = 2, which appear in
both the first- and second-order relaxations, and terms with
|α| = 4, which appear only in the second-order relaxation.

The solution to the first-order relaxation occurs at the
blue square at (PG1, PG2) = (650, 35) MW in Fig. 2a,
which does not match the global solution at the green star
at (PG1, PG2) = (537.2, 32.4) MW. In contrast to the first-
order relaxation, Fig. 2b shows that the second-order relax-
ation yields the global solution at the green star.

Observe that the unconstrained minimizer of the objec-
tive function is at the blue square in Fig. 2a. This point is
within the convex hull of the OPF problem’s constraints (i.e.,
the convex hull of the black curve), but is not in the feasi-
ble space itself (i.e., it is not on the black curve). A convex
relaxation must enclose the feasible space of the non-convex
problem. Thus, approaches for tightening the constraints of
a convex relaxation can at best obtain a feasible space that
matches the convex hull of the non-convex problem’s con-
straints. If the objective function has an unconstrained min-
imum at an infeasible point that is in the convex hull of the
non-convex problem’s constraints, tightening the constraints
cannot (by itself) yield a solution with zero relaxation gap.

This has the following interpretation in the context of the
three-bus problem. The solution to the first-order relaxation at
the blue square in Fig. 2a has a non-zero relaxation gap to the
global optimum at the green star. Tightening the relaxation’s
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(a) First-Order Relaxation’s Feasible Space for the Three-Bus System
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(b) Second-Order Relaxation’s Feasible Space for the Three-Bus System

Fig. 2. A projection of the feasible spaces, in terms of active power generation, for the first- and second-order moment re-
laxations of the three-bus system in Fig. 1. The colors represent the generation cost, with the light black lines showing cost
contours. The feasible space of the OPF problem (4) is shown by the heavy black line. The global solution to the OPF prob-
lem (4) corresponds to the green star. The first-order relaxation’s solution at the blue square has a non-zero relaxation gap.
Conversely, the interaction of the higher-order terms in the constraints and objective function of the second-order relaxation
results in the least-cost point in the relaxation’s feasible space being the global solution to the OPF problem (4) at the green star.

constraints (using, e.g., the techniques in [9, 10, 22, 23]) can
pare down the resulting feasible space toward the convex hull
of the non-convex problem’s feasible space (i.e., the convex
hull of the black curve in Fig. 2a).2 However, constructing a
relaxation that achieves the convex hull of the OPF problem’s
feasible space is not sufficient for globally solving this prob-
lem since the relaxation can still choose the point at the blue
square rather than the green star in Fig. 2a.

Focusing on the constraints alone is not sufficient for this
problem; the objective function must be considered. One rel-
evant technique adds a penalty term to the objective in an at-
tempt to obtain a feasible solution [24, 25]. The approach
in [24] penalizes the total reactive power generation.3 Penal-
ization approaches require the choice of penalty coefficients.
It is not obvious how to obtain appropriate coefficient val-
ues for all problems, and the best known penalty coefficient
(33.76× 103 $/(MVAr-hr)) for the three-bus problem results
in a feasible point with an optimality gap of 11.8%.4

The second-order moment relaxation globally solves the
OPF problem in Fig. 1 without using a penalty term or any
other “artificial” modifications. This capability is understood
in the interaction of the constraints and the objective of the
second-order relaxation. Fig. 2b shows the feasible space of
the second-order relaxation, which appears to match the con-
vex hull of the OPF problem’s constraints. Importantly, de-

2Applying bound tightening [22] to the first-order moment relaxation
augmented with the QC relaxation [9] yields a relaxation whose feasible
space closely matches the convex hull of this OPF problem’s constraints.

3The resulting SDP is no longer a relaxation of the original OPF prob-
lem. A solution to the penalized problem which satisfies (10) is a feasible

point for the original problem whose worst-case optimality gap can be calcu-
lated using the lower bound from a relaxation.

4No penalization tested with the related more general approach in [25]
was found to substantially improve on this result.

spite the fact that the cost function of the OPF problem has an
unconstrained minimizer in the interior of the convex hull of
the constraints (i.e., the blue square in Fig. 2a), the cost func-
tion of the second-order relaxation in Fig. 2b is minimized at
the OPF problem’s global optimum at the green star.

The points inside the convex hull of the feasible space are
feasible in the second-order moment relaxation. (The rank
condition (10) is not satisfied, but there exist higher-rank ma-
trices which are feasible in (9) that yield the corresponding
power injections inside the convex hull.) The key observa-
tion, which can be seen in the colors and contours in Fig. 2b,
is that the higher-order terms (i.e., terms with |α| = 4) in the
objective function (9a) result in a high cost for the points that
are infeasible in the original OPF problem (4). The interac-
tion of the second-order relaxation’s constraints and objective
function (i.e., the functions involving the higher-order terms
with |α| = 4) result in the global solution at the green star be-
ing the lowest cost point within the second-order relaxation’s
feasible space. Thus, the second-order relaxation can globally
solve problems for which the objective function is minimized
at an infeasible point in the convex hull of the OPF problem’s
constraints. Relaxations which focus solely on the constraints
cannot be exact for such problems.

5. CONCLUSION

This paper illustrated the capabilities of moment relaxations
using a small OPF problem for which the objective function
has its unconstrained minimum at an infeasible point in the
interior of the convex hull of the OPF problem’s constraints.
The second-order moment relaxation’s ability to globally
solve this problem is understood through the interaction of
the relaxation’s constraints and objective function.
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