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Abstract

In this paper we introduce the class of additive normal form
games, which is a subset of normal form games. In additive
normal form games, the actions of each agent contribute some
amount to the final payoff of all the agents. The contributions
of the agents are assumed to be additive. We discuss the nec-
essary and sufficient conditions for a normal form game to
be an additive normal form game and show exactly how a
normal form game may be converted to our additive repre-
sentation. We observe that additive games always have either
a dominant strategy equilibrium or weakly dominant strategy
equilibria, although the equilibria may not always be Pareto
optimal. Various learning techniques are applied to unknown
repeated additive games, with Q-learning being the most suc-
cessful.

Introduction
Frequently agents are placed in unfamiliar environments in-
habited by other agents. Within these unknown circum-
stances, an agent wants to learn how to best respond to the
other agents. Such a situation may be modelled by a re-
peated normal form game with a payoff matrix that is un-
known to the agents.

Stochastic learning theory has been studied by Bush and
Mosteller (1955) and applied by Arthur (1993) to the multi-
armed bandit problem. Posh (1997) examined cycling prop-
erties of a stochastic learning algorithm for2 × 2 normal
form games where the agents know neither their own nor
their opponents’ payoff matrix.

In this paper we will generalize ton agents with a set of
actions available to each agent, but we will make the rather
strong assumption that the payoff matrix isadditive. The
formal definition of what it means for a normal form game
to be additive is reserved for later in the paper, but it es-
sentially means that if an agent takes an action, the action
will contribute some amount to the payoff of all the other
agents, including her own. After taking an action, the agent
becomes aware of her payoff, which is the sum of all the
contributions to her payoff by all agents. The details of what
is common knowledge among the agents is reserved for later.

Although it is reasonable that the actions taken by agents
contribute some amount to each other’s payoff, it is not al-
ways the case that these contributions are additive. Many
important games, such as Matching Pennies, cannot be rep-

resented with an additive payoff schema. Making this as-
sumption restricts the sort of games we can describe, but we
are able to say much more about the structure of the game
and how the agents will learn.

Definitions
It is necessary to begin with a formal definition of what it
means for a normal form game to beadditivewith n agents
andm actions available to each agent.

Definition 1 An additive normal form game is a tupleG =
(N,M,A1, . . . , An), where

• N is a finite set ofn agents
• M is a finite set ofm actions available to each agent
• Ai is ann×m real-valued matrix, where thekth compo-

nent of thejth column ofAi, written(Ai
j)k, is the contri-

bution to the payoff to agentk of actionj taken by theith
agent

While the definition specifies that there are exactlym ac-
tions available to each agent, this need not always be the
case. We assume that there are exactlym actions in order to
simplify the representation of the actions asn×m matrices.

We shall now explicitly define thepayoff vectorof an ad-
ditive normal form game. The payoff vector is a real-valued
vector representing the payoff of all the agents, where the
ith component of the vector represents the payoff to agenti.

Definition 2 Let vector~s = (s1, . . . , sn) ∈ Mn, called the
action vector, represent the actions taken by each agent, with
si being the action of agenti. The payoff vector in the nor-
mal form gameG = (N,M,A1, . . . , An) is given by

~u =
∑
i∈N

Ai
si

We have defined a compact representation of an additive
normal form game. The number of elements inA1, . . . , An

is n2m. It is useful to define another matrix,A, which we
will call the sum-matrix. The sum-matrix has dimension

m× · · · ×m︸ ︷︷ ︸
n times

×n

and hasnmn elements. The elementAs1,...,sn,i is the pay-
off for agenti when the agents take the action vector~s =
(s1, . . . , sn).



Definition 3 The sum-matrixA for a given additive normal
form gameG = (N,M,A1, . . . , An) is anm×· · ·×m×n
real-valued matrix where the(s1, . . . , sn, i) element is given
by

As1,...,sn,i =
∑
i′∈N

(Ai′

si′
)i

To simplify our notation, we will defineA~s,i = As1,...,sn,i

when~s = (s1, . . . , sn). Note that a matrix with the dimen-
sions of the sum-matrix may representanyarbitrary normal
form game withn agents andm actions available to each
agent.

In this paper, we will be looking specifically at repeated
additive normal form games, so the payoff vector~u and the
action vector~s is parameterized byt. In our repeated games,
we will assume that the matricesA1, . . . , An remain con-
stant.

Before we start our analysis, we must define explicitly
what is known by the agents while playing this game repeat-
edly. Everything about the structure of the game is common
knowledge, except for the payoff matricesA1, . . . , An. Af-
ter each round, a given agent receives only her total payoff
and has no knowledge of what actions the other agents took,
what payoffs the other agents received, or what contributed
to her total payoff.

Properties
In this section we will discuss some of the interesting prop-
erties of additive normal form games. We will discuss when
it is possible to use our additive form to analyze general nor-
mal form games, and we will look at some equilibrium prop-
erties inherent in the structure of additive games and issues
of optimality.

Conversion to additive form
As mentioned earlier, not all normal form games may be rep-
resented as an additive normal form game. At first glance, it
is not obvious why Matching Pennies cannot be represented
as an additive normal form game but Prisoner’s Dilemma
can. It is important to determine exactly when a normal form
game can be represented as an additive normal form game,
and so we introduce the property ofconstant differencein
general normal form games.

Definition 4 A normal form game represented by matrix
A is defined to have the property of constant difference if
and only if for all i and action vectors(s1, . . . , sn) and
(s′1, . . . , s

′
n) the following equality holds,

As1,...,si,...,sn,i −As1,...,s′i,...,sn,i

= As′1,...,si,...,s′n,i −As′1,...,s′i,...,s
′
n,i

Informally, constant difference means that no matter what
actions the other agents take, the difference in payoff to an
agent when taking two different actions is constant. This
definition leads us to the following theorem.

Theorem 1 A normal form game is an additive normal form
game if and only if the payoff matrix for the game has the
property of constant difference.

It is easy to show the forward implication of this theo-
rem, namely that the sum-matrix of an additive normal form
game has the property of constant difference. Using the def-
initions above, we find that the constant difference in payoff
for agenti when takingsi ands′i, after cancelling most of
the terms in the two summations, is simply

(Ai
si

)i − (Ai
s′i

)i

The implication in the other direction may be shown by
defining the matricesA1, . . . , An in terms of an arbitrary
normal form game matrixA that has the constant difference
property.

Theorem 2 Any normal form game with a constant differ-
ence payoff matrixA may be represented as an additive nor-
mal form gameG = (N,M,A1, . . . , An) where

• N is the same set ofn agents as in the original normal
form game

• M is the set ofm actions available to each agent
• (Ai

j)i = A1,...,j,...,1,i−A1,...,1,i, where theith index inA
of the first term on the right hand side isj

• (Ai
j)(i+1) mod n = A1,...,j,...,1,(i+1) mod n, whereith index

of A is j

• (Ai
j)k = 0, for all other values ofi, j, andk

While the proof for the above theorem is rather tedious,
it is not difficult to see why the above construction is justi-
fied. For each agent, the contribution of the first action to
her payoff is 0, which was selected arbitrarily to simplify
the mathematics. It is up to the other agents to contribute to
the sum specified in the normal form game matrix. One way
of ensuring that agenti receives the proper payoff from the
other agents is to simply make is so that agent(i+1)modn
pays the full amount and the other agents contribute0. We
use the constant difference property for agenti with A1,...,1,i

as a reference point to find the amount agenti contributes to-
wards her own payoff for each action.

We will demonstrate this construction with an example.
Suppose we have a normal form game matrixA that has the
constant difference property. We know, for instance, that the
(2, 3, 3, 2) element of this matrix is given by

A2,3,3,2 = (A1
2)2 + (A2

3)2 + (A3
3)2

Using the construction described in our theorem, we know
that

(A1
2)2 + (A2

3)2 + (A3
3)2 = A1,2,1,2 + A1,3,1,2 −A1,1,1,2

Using the constant difference property, we can also say that

A1,2,1,2 +A1,3,1,2−A1,1,1,2 = A2,3,3,2−A2,1,3,2 +A1,2,1,2

We know that

A2,1,3,2 = (A1
2)2 + (A2

1)2 + (A3
3)2 = A1,2,1,2

Substituting this back into the previous equation, we find
that

A2,3,3,2 = A2,3,3,2 −A2,1,3,2 + A1,2,1,2

= A2,3,3,2 −A1,2,1,2 + A1,2,1,2

= A2,3,3,2



So, we see that if we use the construction described in our
theorem to convert to an additive structure, we can still get
the value in the original matrix back with the constant dif-
ference property.

We further demonstrate the use of our theorem by using
our construction to convert Prisoner’s Dilemma to additive
form. Prisoner’s Dilemma is represented by the payoff ma-
trix [

(1, 1) (4, 0)
(0, 4) (3, 3)

]
First, we check that the matrix has the property of constant

difference, and indeed it does. Now, we apply the described
construction to get

A1 =
[

0 −1
1 4

]
and

A2 =
[

1 4
0 −1

]
The mapping from normal form games with constant dif-

ference is not unique, the construction defined in our theo-
rem is perhaps the simplest.

Equilibrium properties
The standard definition of dominance applied to pure strate-
gies in general normal form games is the following.
Definition 5 Given a normal form gameG = (N,M,A)1

the pure strategys∗i dominates the pure strategysi for agent
i ∈ N if and only if

As1,...,s∗i ,...,sn,i > As1,...,si,...,sn,i

A dominant strategyfor agenti is a pure strategy that
dominates all other strategies. We may also speak of strate-
gies that areweakly dominantwhere we replace the> in the
definition with≥, which allows there to be multiple weakly
dominant strategies. We now apply these definitions to ad-
ditive normal form games.
Theorem 3 Additive normal form games have either one
dominant strategy or multiple weakly dominant strategies
for each agent. The dominant strategy (or weakly dominant
strategies) for agenti is given by

arg max
j∈M

(Ai
j)i

The theorem above follows directly from the constant dif-
ference property of the sum-matrix.

If we make the assumption that(Ai
k)i 6= (Ai

k′)i for all
i andk 6= k′, then each agent will have a dominant strat-
egy. If all agents play their dominant strategy, it is said that
they are at adominant strategy equilibrium. For example,
in the Prisoner’s Dilemma game described earlier the action
vector(1, 1) is the dominant strategy equilibrium. A domi-
nant strategy equilibrium is also a pure strategyNash equi-
librium. In this equilibrium, no agent would receive a higher
payoff by unilaterally deviating from her dominant strategy.
There may also be mixed-strategy Nash equilibrium, but we
will focus on dominant strategy equilibrium.

1Note that the definition uses the tuple(N, M, A) to represent
a general normal form game, which is essentially equivalent to the
representation(N, A1, . . . , An, u1, . . . , un) used in other papers.

Optimality
We may look at the outcome of an additive normal form
game in terms of optimality. We may apply the general def-
inition of Pareto optimalityto additive games.

Definition 6 An action vector~s∗ ∈ Mn in an additive nor-
mal form gameG = (N,M,A1, . . . , An) is Pareto optimal
if and only if for all action vectors~s 6= ~s∗ and for all agents
i ∈ N , A~s,i > A~s∗,i implies that there exists an agentj ∈ N
for whomA~s∗,j > A~s,j .

Informally, an action vector is Pareto optimal if there is
no way to make any agent better off without making another
agent worse off.

We have already seen an additive normal form game
where the dominant strategy equilibrium is not Pareto op-
timal, namely the Prisoner’s Dilemma game. The dominant
strategy is(1, 1), but the Pareto optimal outcomes are(2, 2),
(1, 2), and(2, 1).

In an arbitrary additive game with more agents and more
actions, it is likely that the dominant strategy equilibrium is
not Pareto optimal because the contributions of the agents
are independent of each other. Therefore, Pareto optimality
is an important issue to consider when agents are learning
unknown additive games.

Learning
Now that we have an understanding of some of the signifi-
cant properties of additive normal form games, we may dis-
cuss ways in which the set of agents may learn these games
in a repeated setting. As specified earlier, the agents have
no initial knowledge about their actions or their payoffs, just
that they havem actions from which to select and that their
final payoff depends on the sum of the contributions from
the other agents.

There are many issues involved in learning an unknown
additive normal form game. At some point, an agent needs
to explore her different actions. It would make no sense for
an agent to select an action and simply stick with it for eter-
nity. However, after a period of time, it is important that the
selection of actions becomes less random so that the agent
can focus on playing the action that seems to provide the
best reward. Of course, the agent must take into account
that the other agents are also learning, and so selecting the
same action could potentially provide very different rewards
in different rounds.

Urn learning scheme
Posch (1997) uses an urn scheme for learning unknown2×2
matrix games, which seems to be well suited forn agents
learning unknown additive games. The urn scheme assumes
that the payoffs are positive integers. Even if it is not the
case that the payoffs are restricted to positive integers, the
analysis remains the same. The urn initially contains balls
that correspond to each action. At every round, the agent
selects a ball at random from the urn and takes the corre-
sponding action. The agent then places in the urn the same
number of balls of that type as was received as a payoff.

The urn learning rule is particularly appealing in learn-
ing unknown additive games because it is self-reinforcing,



meaning good actions are played more frequently. Also, if
all agents are using this learning process, the selection of
actions becomes stable over time.

To see how well the urn scheme works for agents trying
to learn an unknown additive game, simulations were run
on two agents playing Prisoner’s Dilemma. The matrices
A1 andA2 (created using the construction described earlier)
were altered by adding 1 to every element in the matrices so
that it would work with the urn scheme.

The first set of Prisoner’s Dilemma simulations, of one
million iterations each, started with one ball for each ac-
tion at the first iteration. It turns out that different simula-
tions (with different random number seeds) had the agents’
strategies converging to different action vectors. The incon-
sistency in what the agents learn is undesirable; we want
them to learn to play the best action available to them. The
inconsistency is due to the fact that the jar starts with one
ball for each action. Whatever ball is randomly selected at
the first round is given tremendous weight in being selected
in the next round. For example, suppose we select a ball at
the first round and we receive a payoff of 6. We then replace
the ball with 6 balls of the same type. At the next round, we
are 6 times more likely to choose the same action again than
to explore the unknown action that might provide an even
greater payoff.

In the second set of simulations for Prisoner’s Dilemma,
the urns were initialized with 50 balls of each type. The
agents in all of the simulations converged on the unique
dominant strategy equilibrium, namely(1, 1). To summa-
rize the results, the number of iterations it took until both
agents were playing their dominant strategy90% of the time
varied widely but was generally in the 100,000s, but a few
times it was as low as 120,000 in one simulation.

Simulations were also run on two player games with 6
actions available to each player. The matrices were the fol-
lowing,

A1 =
[

0 1 0 5 2 6
1 4 0 3 2 2

]
and

A2 =
[

0 4 3 2 3 4
1 1 5 1 6 3

]
We see that the dominant strategy equilibrium is given by

the action vector(6, 5). It took the agents on the order of
one hundred million iterations to learn to play their dominant
strategies80% of the time.

While the urn learning scheme is easy to visualize and
simple to implement, it would be beneficial to have some
way to control how quickly agents learn and how much they
explore.

Q-learning
Q-learning, which is a type of reinforcement learning, has
been applied to general stochastic games with much success
(Kaelbling, Littman, & Moore 1996). A simplified version
of Q-learning is quite appropriate in the domain of unknown
additive normal form games. Q-learning allows you to con-
trol both the rate of learning and exploration, which we had
no control over in the urn scheme.

The action an agent selects at each round is based on an
estimation of the payoff. The estimation of the payoff is
given by the functionQ : M → R, which is updated at each
round. After selecting actions ∈M and receiving payoffr,
the agent updates the expected payoff of taking that action
according to the following rule,

Q(s)← Q(s) + α(r −Q(s))

whereα ∈ [0, 1] is the learning rate, which may be param-
eterized by time,t. It is desirable that the learning rate de-
creases over time.

Much has been written on various methods of selecting an
action based onQ(s) (Kaelbling, Littman, & Moore 1996).
One selection strategy that is well suited for learning addi-
tive games is calledBoltzmann exploration. Agents select
their actions according to the distribution

P (s) =
eQ(s)/T∑

s′∈M eQ(s′)/T

where T is the temperatureparameter that controls the
amount of randomness in the exploration. It is best when us-
ing Boltzmann exploration on additive games to reduce the
temperature only gradually at first. The problem with the
urn simulations was that the rate of exploration attenuated
too quickly and the agents converged on actions that were
not dominant. After a certain point, however, it is impor-
tant that the temperature drops to a point where there is very
little exploration; once an agent believes she has found her
dominant strategy, she wants to play it as much as possible.

Both the learning rate and the exploration rate must be
tuned in order to get good learning performance. Simula-
tions of Q-learning with the temperature fixed at a constant
value did extremely poorly compared to the urn scheme.
Constant learning rates, however, did not do as poorly.

Simulations were run on Prisoner’s Dilemma using this
Q-learning scheme with Boltzmann exploration withα(t) =
0.1 andT (t) = t−1/4. Other definitions forα(t) andT (t)
may have been better, but tuning these functions remains
somewhat of a black art. In most simulations, the agents ei-
ther predominantly play(1, 1) or (3, 3). The first is the dom-
inant strategy, and the other is the Pareto optimal outcome
that provides a higher payoff to both agents than the dom-
inant strategy equilibrium. However, in all simulations the
agents eventually converged to the dominant strategy equi-
librium. Frequently, the agents appear to have converged on
(2, 2) up until around the millionth move when the agents
shift to consistently playing(1, 1). Although(2, 2) might be
“better” for both agents than(1, 1), it is unstable. Fluctua-
tions from(2, 2) cause the agents to fall into the dominant
strategy equilibrium.

As expected, simulations run on the two player game with
6 actions available to each agent required the temperature to
decrease much more slowly. The same learning rate was
used, but the temperature was set to beT (t) = t−1/8. The
agents generally found the dominant strategy equilibrium
(6, 5) quickly, and when they temporarily settled on(6, 3)
they eventually switched to(6, 5) after three million or so
iterations.



It is not straightforward how to optimize the general Q-
learning procedure so that it takes advantage of the addi-
tive structure of the game. All agents know that there is a
constant difference between the payoff of their actions, pro-
vided that the other agents keep their actions constant. In the
early iterations of the repeated game, the agents will not be
keeping their actions constant. Suppose an agent measures
the difference between the payoffs of various actions when
the actions of the other agents seem to be stable. The agent
would then select the action where her contribution to her
payoff is greatest. Such a strategy is equivalent to switching
to whatever action provides the greatest total payoff, which
is what Q-learning already does. Hence, the constant differ-
ence property seems to make Q-learning even more success-
ful on additive games than arbitrary non-additive games.

Discussion

Analysis of normal form games have, in general, been lim-
ited to studying2×2 matrix games, is mostly due to the com-
plexity of representing the payoffs of more than two players.
In this paper, we introduce the idea of additive games where
the payoffs may be represented simply byn rectangular ma-
trices with a total ofn2m elements as opposed to thenmn

elements required to describe a general normal form game.
We showed that for a normal form game to be able to be

represented as an additive game, the payoff matrix must have
the property of constant difference. This is a rather strong
assumption, but many important games have this property.
It is conceivable that many real-life situations may be, at the
very least, approximated by additive games.

Additive games have the property of having a dominant
strategy equilibrium, provided that we assume that no two
actions played by an agent contribute the same amount to
the agent. Otherwise, there will be multiple weakly dom-
inant strategy equilibria. We expect that intelligent agents
will converge to such an equilibrium. We also discussed the
issue where the dominant strategy equilibrium is not Pareto
optimal, but we found experimentally that agents that use the
learning techniques described in this paper always seem to
leave their Pareo optimal play in favor of the dominant strat-
egy equilibrium. Higher-order stategies, such as “Tit-for-
Tat” may be used in games such as Prisoner’s Dilemma (Ax-
elrod & Hamilton 1981; Axelrod 1984). Further research is
needed to determine exactly how such higher-order strate-
gies would work in ann player additive game where the
payoffs are initially unknown.

The decomposition of payoffs to contributions from other
agents allows us to analyze games much more easily. The
simplicity of the representation will lead to an increased
ability to model the interaction of many agents with many
actions.
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