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Abstract resented with an additive payoff schema. Making this as-
sumption restricts the sort of games we can describe, but we
are able to say much more about the structure of the game
and how the agents will learn.

In this paper we introduce the class of additive normal form
games, which is a subset of normal form games. In additive
normal form games, the actions of each agent contribute some
amount to the final payoff of all the agents. The contributions N
of the agents are assumed to be additive. We discuss the nec- Definitions

essary and sufficient conditions for a normal form game to It is necessary to begin with a formal definition of what it

be an additive normal form game and show exactly how a  means for a normal form game to hdditivewith n agents
normal form game may be converted to our additive repre- andm actions available to each agent.

sentation. We observe that additive games always have either o - ]

a dominant strategy equilibrium or weakly dominant strategy Definition 1 An additive normal form game is a tuple =
equilibria, although the equilibria may not always be Pareto (N, M, At ... A™), where

optimal. Various learning techniques are applied to unknown e N is a finite set of, agents

repeated additive games, with Q-learning being the most suc- . . . .
cegsfm_ g Q 9 9 e M is a finite set ofn actions available to each agent

e A’is ann x m real-valued matrix, where thith compo-
. nent of thejth column ofA?, written (A%)y, is the contri-
Introduction bution to the payoff to agemtof actionj taken by theth
Frequently agents are placed in unfamiliar environments in-  agent
habited by other agents. Within these unknown circum-  \wnile the definition specifies that there are exaetlyac-
stances, an agent wants to learn how to best respond 10 theyjong available to each agent, this need not always be the
other agents. Such a situation may be modelled by a re- c456 We assume that there are exaetigctions in order to
peated normal form game with a payoff matrix that is un- - gimpjify the representation of the actionsias m matrices.
known to the agents. , We shall now explicitly define thpayoff vectorof an ad-
Stochastic learning theory has been studied by Bush and gjtive normal form game. The payoff vector is a real-valued
Mosteller (1955) and applied by Arthur (1993) to the multi-  yector representing the payoff of all the agents, where the

armed bandit problem. Posh (1997) examined cycling prop- ;i component of the vector represents the payoff to agent
erties of a stochastic learning algorithm for< 2 normal

form games where the agents know neither their own nor Definition 2 Letvectors' = (sy,...,s,) € M", called the

their opponents’ payoff matrix. action vector, represent the actions taken by each agent, with
In this paper we will generalize to agents with a set of s P€ing the action of agerit ;I'he payoff vector in the nor-

actions available to each agent, but we will make the rather Mmal form game = (N, M, A*,..., A") is given by

strong assumption that the payoff matrixadditive The 7= Z Al

formal definition of what it means for a normal form game 8i

to be additive is reserved for later in the paper, but it es- ieN
sentially means that if an agent takes an action, the action ~We have defined a compact representation of an additive
will contribute some amount to the payoff of all the other normal form game. The number of elementstih ..., A"
agents, including her own. After taking an action, the agent is n*m. It is useful to define another matrid, which we
becomes aware of her payoff, which is the sum of all the will call the sum-matrix The sum-matrix has dimension
contributions to her payoff by all agents. The details of what
is common knowledge among the agents is reserved for later.
Although it is reasonable that the actions taken by agents n times
contribute some amount to each other’s payoff, it is not al- and hasvm™ elements. The element,, ., . is the pay-
ways the case that these contributions are additive. Many off for agenti when the agents take the action vectos
important games, such as Matching Pennies, cannot be rep-(sq, ..., sy).

m X -+ XmXn
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Definition 3 The sum-matrix4 for a given additive normal
form gameG = (N, M, Al,... A")isanm x --- x m xn
real-valued matrix where thes,, . . ., s, %) elementis given

by
Asl,...}s",i = Z (A;,)z

i'eEN

To simplify our notation, we will definely ; = A, s,
whens = (s, ..., s,). Note that a matrix with the dimen-
sions of the sum-matrix may represeamty arbitrary normal
form game withn agents andn actions available to each
agent.

In this paper, we will be looking specifically at repeated
additive normal form games, so the payoff vecicand the
action vectors'is parameterized by In our repeated games,
we will assume that the matrice$', ..., A™ remain con-
stant.

Before we start our analysis, we must define explicitly
what is known by the agents while playing this game repeat-
edly. Everything about the structure of the game is common
knowledge, except for the payoff matricds, ..., A", Af-
ter each round, a given agent receives only her total payoff
and has no knowledge of what actions the other agents took,
what payoffs the other agents received, or what contributed
to her total payoff.

Properties

In this section we will discuss some of the interesting prop-
erties of additive normal form games. We will discuss when
it is possible to use our additive form to analyze general nor-
mal form games, and we will look at some equilibrium prop-

It is easy to show the forward implication of this theo-
rem, namely that the sum-matrix of an additive normal form
game has the property of constant difference. Using the def-
initions above, we find that the constant difference in payoff
for agenti when takings; ands, after cancelling most of
the terms in the two summations, is simply

(A%,)i = (A%

The implication in the other direction may be shown by
defining the matricesi!,..., A™ in terms of an arbitrary
normal form game matrixd that has the constant difference
property.

Theorem 2 Any normal form game with a constant differ-
ence payoff matrixd may be represented as an additive nor-
mal form game> = (N, M, AL, ..., A") where

e N is the same set of agents as in the original normal
form game

M is the set ofn actions available to each agent

(A_Z;)Z = Al.,..,j """" 1,4 — ALM’LZ', where theth index inA

of the first term on the right hand sidejis

(A_Zj)(z+1) modn — Al,...,j,...,l,(i+1) mod n s whereith index
of Aisj

(A%); = 0, for all other values of, j, andk

While the proof for the above theorem is rather tedious,
it is not difficult to see why the above construction is justi-
fied. For each agent, the contribution of the first action to
her payoff is 0, which was selected arbitrarily to simplify
the mathematics. It is up to the other agents to contribute to
the sum specified in the normal form game matrix. One way

erties inherent in the structure of additive games and issues Of ensuring that ageritreceives the proper payoff from the

of optimality.

Conversion to additive form

As mentioned earlier, not all normal form games may be rep-
resented as an additive normal form game. At first glance, it
is not obvious why Matching Pennies cannot be represented
as an additive normal form game but Prisoner’s Dilemma
can. Itis important to determine exactly when a normal form

game can be represented as an additive normal form game,

and so we introduce the property odnstant differencén
general normal form games.

Definition 4 A normal form game represented by matrix
A is defined to have the property of constant difference if
and only if for all < and action vectorysy,...,s,) and

(sh,...,s) the following equality holds,
ASl,n-’Si,anmi - AS1,~-~’S§,,-~-~,Smi
= "45’1 ..... Siyeens st T As/1 ..... EVRRNCAR

Informally, constant difference means that no matter what
actions the other agents take, the difference in payoff to an
agent when taking two different actions is constant. This
definition leads us to the following theorem.

Theorem 1 A normal form game is an additive normal form
game if and only if the payoff matrix for the game has the
property of constant difference.

other agents is to simply make is so that agént1) mod n
pays the full amount and the other agents contrilouté/e
use the constant difference property for agemith A; 1 ;
as a reference point to find the amount agemntributes to-
wards her own payoff for each action.

We will demonstrate this construction with an example.
Suppose we have a normal form game mattithat has the
constant difference property. We know, for instance, that the
(2,3,3,2) element of this matrix is given by

Az 332 = (A})2 + (43)2 + (43)2
Using the construction described in our theorem, we know
that
(Aé)z + (A§)2 + (A§)2 =Ai212+A1312—A11,1,2
Using the constant difference property, we can also say that
Arp12+A1312—A1112=A2332—A2132+A1212
We know that
A2132 = (A3)2 + (AD)2 + (A3)2 = A1 2,10
Substituting this back into the previous equation, we find
that
Azz32—As132+A121,2
Aszs2—A1212+ A121,2
Az 332

Az33.2



So, we see that if we use the construction described in our Optimality

theorem to convert to an additive structure, we can still get \ve may look at the outcome of an additive normal form
the value in the Original matrix back with the constant dif- game in terms of 0pt|ma||ty We may app'y the genera' def-
ference property. _inition of Pareto optimalityto additive games.

We further demonstrate the use of ou_rl theorem bé/dqs_lng Definition 6 An action vectos™ € M™ in an additive nor-
our construction to convert Prisoner’s Dilemma to additive mal form game — (N, M, A, ... A"} is Pareto optimal

Iﬁ)r(m. Prisoner’s Dilemma s represented by the payoff ma- if and only if for all action vectorg’ = 3* and for all agents
(1,1) (4,0 i€ N,As; > Ag ; implies that there exists an agehe N
(0:4) (3: 3) :| for WhomAg*J- > Ag”j.

First, we check that the matrix has the property of constant  Informally, an action vector is Pareto optimal if there is
difference, and indeed it does. Now, we apply the described N0 way to make any agent better off without making another

construction to get agent worse off. N
We have already seen an additive normal form game
Al = [ (1) _41 } where the dominant strategy equilibrium is not Pareto op-
timal, namely the Prisoner’s Dilemma game. The dominant
and strategy i1, 1), but the Pareto optimal outcomes &2e2),
42— [ 1 4 } (1,2), and(2, 1).
0 -1 In an arbitrary additive game with more agents and more

The mapping from normal form games with constant dif- actions, it is likely that the dominant strategy equilibrium is
ference is not unigue, the construction defined in our theo- not Pareto optimal because the contributions of the agents

rem is perhaps the simplest. are independent of each other. Therefore, Pareto optimality
o ] is an important issue to consider when agents are learning

Equilibrium properties unknown additive games.

The standard definition of dominance applied to pure strate-

gies in general normal form games is the following. Learning

Definition 5 Given a normal form gamé&' = (N, M, A)* Now that we have an understanding of some of the signifi-

the pure strategy; dominates the pure strategy for agent cant properties of additive normal form games, we may dis-

i € Nifand only if cuss ways in which the set of agents may learn these games

in a repeated setting. As specified earlier, the agents have
no initial knowledge about their actions or their payoffs, just
that they haven actions from which to select and that their
final payoff depends on the sum of the contributions from
the other agents.

There are many issues involved in learning an unknown

Asl,...,sz‘,.“,sn,i > Asl,...,si,...,s",z’

A dominant strategyfor agent: is a pure strategy that
dominates all other strategies. We may also speak of strate-
gies that areveakly dominanvhere we replace the in the
definition with >, which allows there to be multiple weakly

dominant strategies. We now apply these definitions to ad- additive normal form game. At some point, an agent needs

ditive normal form games. . ;
- ] to explore her different actions. It would make no sense for
Theorem 3 Additive normal form games have either one  an agent to select an action and simply stick with it for eter-
dominant strategy or multiple weakly dominant strategies pjty However, after a period of time, it is important that the
for each agent. The dominant strategy (or weakly dominant sejection of actions becomes less random so that the agent
strategies) for agentis given by can focus on playing the action that seems to provide the
arg max(A%); best reward. Of course, the agent must take into account
jeM that the other agents are also learning, and so selecting the

The theorem above follows directly from the constant dif-  same action could potentially provide very different rewards
ference property of the sum-matrix. in different rounds.

If we make the assumption thatl}); # (A%,), for all
1 andk # k', then each agent will have a dominant strat- Urn learning scheme
egy. If all agents play their dominant strategy, it is said that - pogch (1997) uses an urn scheme for learning unkrown
they are at alominant strategy equilibriumFor example, matrix games, which seems to be well suited foagents
in the Prison_er’s Dilem_ma game describe_c_i e_arlier the acyion learning unkné)wn additive games. The urn scheme assumes
vector(1, 1) is the dominant strategy equilibrium. A domi- oo+ the' payoffs are positive integers. Even if it is not the

nant strategy equilibrium is also a pure stratégsh equi- 556 that the payoffs are restricted to positive integers, the
librium. In this equilibrium, no agent would receive a higher analysis remains the same. The urn initially contains balls

payoff by unilaterally deviating from her dominant strategy. 5 ‘correspond to each action. At every round, the agent

There may also be mixed-strategy Nash equilibrium, butwe g jects a ball at random from the urn and takes the corre-

will focus on dominant strategy equilibrium. sponding action. The agent then places in the urn the same
!Note that the definition uses the tugla’, M, A) to represent number of balls of that type as was received as a payoff.

a general normal form game, which is essentially equivalent to the The urn |eaming_ rule is particularly ap_pealing !n Iea_rn-
representatiofiN, A1, ..., A,,u1,. .., u,) used in other papers. ing unknown additive games because it is self-reinforcing,



meaning good actions are played more frequently. Also, if  The action an agent selects at each round is based on an
all agents are using this learning process, the selection of estimation of the payoff. The estimation of the payoff is
actions becomes stable over time. given by the functior) : M — R, which is updated at each

To see how well the urn scheme works for agents trying round. After selecting action € M and receiving payoff,
to learn an unknown additive game, simulations were run the agent updates the expected payoff of taking that action
oq two a2gents playing Prisoner's Dilemma. The matrices according to the following rule,
A' andA“ (created using the construction described earlier) Q) — Qs) + alr — Q(s))

were altered by adding 1 to every element in the matrices so
that it would work with the urn scheme. wherea € [0, 1] is the learning rate, which may be param-

The first set of Prisoner's Dilemma simulations, of one  gterized by timet. It is desirable that the learning rate de-
million iterations each, started with one ball for each ac- reases over time.
tion at the first iteration. It turns out that different simula- Much has been written on various methods of selecting an
tions (with different random number seeds) had the agents’ gction based o) (s) (Kaelbling, Littman, & Moore 1996).
strategies converging to different action vectors. The incon- gpe selection strategy that is well suited for learning addi-

sistency in what the agents learn is undesirable; we want tiye games is calle@oltzmann exploration Agents select
them to learn to play the best action available to them. The theijr actions according to the distribution

inconsistency is due to the fact that the jar starts with one
ball for each action. Whatever ball is randomly selected at eQ()/T

the first round is given tremendous weight in being selected W

in the next round. For example, suppose we select a ball at s'eM

the first round and we receive a payoff of 6. We then replace where T is the temperatureparameter that controls the
the ball with 6 balls of the same type. At the next round, we amount of randomness in the exploration. Itis best when us-
are 6 times more likely to choose the same action again than ing Boltzmann exploration on additive games to reduce the
to explore the unknown action that might provide an even temperature only gradually at first. The problem with the

P(s) =

greater payoff.

In the second set of simulations for Prisoner’s Dilemma,
the urns were initialized with 50 balls of each type. The
agents in all of the simulations converged on the unique
dominant strategy equilibrium, namefy, 1). To summa-
rize the results, the number of iterations it took until both
agents were playing their dominant strat®g¥: of the time
varied widely but was generally in the 100,000s, but a few
times it was as low as 120,000 in one simulation.

Simulations were also run on two player games with 6
actions available to each player. The matrices were the fol-

lowing,
1 _ |0 1 05 2 6
A {1 4 0 3 2 2]

0 4 3 2 3 4
115 1 6 3

We see that the dominant strategy equilibrium is given by
the action vecto(6,5). It took the agents on the order of
one hundred million iterations to learn to play their dominant
strategiess0% of the time.

While the urn learning scheme is easy to visualize and
simple to implement, it would be beneficial to have some
way to control how quickly agents learn and how much they
explore.

and
yr [

Q-learning
Q-learning, which is a type of reinforcement learning, has

urn simulations was that the rate of exploration attenuated
too quickly and the agents converged on actions that were
not dominant. After a certain point, however, it is impor-
tant that the temperature drops to a point where there is very
little exploration; once an agent believes she has found her
dominant strategy, she wants to play it as much as possible.

Both the learning rate and the exploration rate must be
tuned in order to get good learning performance. Simula-
tions of Q-learning with the temperature fixed at a constant
value did extremely poorly compared to the urn scheme.
Constant learning rates, however, did not do as poorly.

Simulations were run on Prisoner’s Dilemma using this
Q-learning scheme with Boltzmann exploration witft) =
0.1 andT'(t) = t~'/%. Other definitions for(t) and7'(t)
may have been better, but tuning these functions remains
somewhat of a black art. In most simulations, the agents ei-
ther predominantly playl, 1) or (3, 3). The firstis the dom-
inant strategy, and the other is the Pareto optimal outcome
that provides a higher payoff to both agents than the dom-
inant strategy equilibrium. However, in all simulations the
agents eventually converged to the dominant strategy equi-
librium. Frequently, the agents appear to have converged on
(2,2) up until around the millionth move when the agents
shift to consistently playingl, 1). Although(2, 2) might be
“pbetter” for both agents thafl, 1), it is unstable. Fluctua-
tions from (2, 2) cause the agents to fall into the dominant
strategy equilibrium.

As expected, simulations run on the two player game with
6 actions available to each agent required the temperature to

been applied to general stochastic games with much successdecrease much more slowly. The same learning rate was

(Kaelbling, Littman, & Moore 1996). A simplified version
of Q-learning is quite appropriate in the domain of unknown
additive normal form games. Q-learning allows you to con-
trol both the rate of learning and exploration, which we had
no control over in the urn scheme.

used, but the temperature was set td7lje) = t~1/%. The
agents generally found the dominant strategy equilibrium
(6,5) quickly, and when they temporarily settled @6 3)
they eventually switched t(6, 5) after three million or so
iterations.
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Analysis of normal form games have, in general, been lim-
ited to studyin@ x 2 matrix games, is mostly due to the com-
plexity of representing the payoffs of more than two players.
In this paper, we introduce the idea of additive games where
the payoffs may be represented simplyrbgectangular ma-
trices with a total of2?m elements as opposed to the:”
elements required to describe a general normal form game.

We showed that for a normal form game to be able to be
represented as an additive game, the payoff matrix must have
the property of constant difference. This is a rather strong
assumption, but many important games have this property.
It is conceivable that many real-life situations may be, at the
very least, approximated by additive games.

Additive games have the property of having a dominant
strategy equilibrium, provided that we assume that no two
actions played by an agent contribute the same amount to
the agent. Otherwise, there will be multiple weakly dom-
inant strategy equilibria. We expect that intelligent agents
will converge to such an equilibrium. We also discussed the
issue where the dominant strategy equilibrium is not Pareto
optimal, but we found experimentally that agents that use the
learning techniques described in this paper always seem to
leave their Pareo optimal play in favor of the dominant strat-
egy equilibrium. Higher-order stategies, such as “Tit-for-
Tat” may be used in games such as Prisoner’s Dilemma (Ax-
elrod & Hamilton 1981; Axelrod 1984). Further research is
needed to determine exactly how such higher-order strate-
gies would work in am player additive game where the
payoffs are initially unknown.

The decomposition of payoffs to contributions from other
agents allows us to analyze games much more easily. The
simplicity of the representation will lead to an increased
ability to model the interaction of many agents with many
actions.
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