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Single Camera Structure and Motion
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Abstract—A reduced order nonlinear observer is proposed for the
problem of “structure and motion (SaM)” estimation of a stationary object
observed by a moving calibrated camera. In comparison to existing work
which requires some knowledge of the Euclidean geometry of an observed
object or full knowledge of the camera motion, the developed reduced
order observer only requires one camera linear velocity and corresponding
acceleration to asymptotically identify the Euclidean coordinates of the
feature points attached to an object (with proper scale reconstruction)
and the remaining camera velocities. The unknown linear velocities are
assumed to be generated using a model with unknown parameters. The
unknown angular velocities are determined from a robust estimator
which uses a standard Homography decomposition algorithm applied
to tracked feature points. A Lyapunov analysis is provided to prove the
observer asymptotically estimates the unknown states under a persistency
of excitation condition.

Index Terms—Motion from structure (MfS), persistency of excitation
(PE), structure and motion (SaM), structure from motion (SfM).

I. INTRODUCTION

The objective of the classic “structure from motion (SfM)” problem
is to estimate the Euclidean coordinates of tracked feature points at-
tached to an object (i.e., 3-D structure) provided the relative motion
between the camera and the object is known. The converse of the SfM
problem is the “motion from structure (MfS) problem where the rela-
tive motion between the camera and the object is estimated based on
known geometry of the tracked feature points attached to an object. An
extended problem proposed in this technical note is “structure and mo-
tion (SaM) where the objective is to estimate the Euclidean geometry
of the tracked feature points as well as the relative motion between the
camera and tracked feature points. The SaM problem is a fundamental
problem and some examples indicate that SaM estimation is only pos-
sible up to a scale when a pinhole camera model is used. To recover the
scale information, either the linear camera velocities or partial informa-
tion about the structure of the object, e.g., a known length between two
feature points in a scene is required (cf. [1]–[3]). In this technical note,
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a partial solution to the SaM problem is presented, where the objective
is to asymptotically identify the Euclidean 3-D coordinates of tracked
feature points and the camera motion, provided at least one linear ve-
locity of the camera is known. The angular velocity is estimated using a
filter. The estimated angular velocity and a measured linear velocity are
combined to estimate the scaled 3-D coordinates of the feature points.

Solutions to the SfM, MfS, and the SaM problems can be broadly
classified as offline methods (batch methods) and online methods (iter-
ative methods). References and critiques of batch methods can be found
in [4], [5] and the references therein. Batch methods extract an image
data set from a given image sequence and then the 3-D structure is re-
constructed from the data set. These methods are usually based on non-
linear optimization, projective methods, or invariant-based methods.
Often batch methods lack an analytical analysis of convergence, with
the exception of results such as [6], [7] using convex optimization tech-
niques. The main drawback of batch methods is that they cannot be used
to execute online/real-time tasks. Thus, the need arises for iterative or
online methods with analytical guarantees of convergence.

Online methods typically formulate the SfM and MfS problems as
a continuous differential equation, where the image dynamics are de-
rived from a continuous image sequence (see [1], [3], [8]–[12] and the
references therein). Online methods often rely on the use of an Ex-
tended Kalman filter (EKF) [1], [13]. Kalman filter based approaches
also lack a convergence guarantee and could converge to wrong solu-
tions in practical scenarios. Also, a priori knowledge about the noise
is required for such solutions. In comparison to Kalman filter-based
approaches, some researchers have developed nonlinear observers for
SfM with analytical proofs of stability. For example, a discontinuous
high-gain observer called identifier-based observer (IBO) is presented
for structure estimation in [12] under the assumption of known camera
motion. In [8], a discontinuous sliding-mode observer is developed
which guarantees exponential convergence of the states to an arbitrarily
small neighborhood, i.e., uniformly ultimately bounded (UUB) result.
A continuous observer which guarantees asymptotic structure estima-
tion is presented in [9] under the assumption of known camera motion.
An asymptotically stable reduced-order observer is presented in [14]
to estimate the structure given known camera motion. Under the as-
sumption that a known Euclidean distance between two feature points
is known, a nonlinear observer is used in [3] to asymptotically identify
the camera motion. In contrast to these approaches, the method in this
technical note does not assume any model knowledge of the structure
and only requires one linear velocity and the corresponding accelera-
tion.

Various batch and iterative methods have been developed to solve the
SaM problem upto a scale, such as [15], [16]. However, in comparison
to SfM and MfS results, sparse literature is available where the SaM
problem is formulated in terms of continuous image dynamics with as-
sociated analytical stability analysis. In [17], an algorithm is presented
to estimate the structure and motion parameters up to a scaling factor.
In [18], a perspective realization theory for the estimation of the shape
and motion of a moving planar object observed using a static camera
up to a scale is discussed. Recently, a nonlinear observer is developed
in [10] to asymptotically identify the structure given the camera mo-
tion (i.e., the SfM problem) or to asymptotically identify the structure
and the unknown time-varying angular velocities given all three linear
velocities. In [1], [2] structure and linear velocities are estimated given
partial structure information such as length between two points on an
object, which may be difficult in practice for random objects. In an-
other recent result in [19], the IBO approach in [12] is used to esti-
mate the structure and the constant angular velocity of the camera given
all three linear velocities, which may not be possible in practical sce-
narios such as a camera attached to a unmanned vehicle where sideslip

velocities may not be available. The problem of estimating structure,
time varying angular velocities, and time varying linear velocities of
the camera without knowledge of partial structure information remains
an unsolved problem.

The technical challenge presented by the SaM problem is that the
image dynamics are scaled by an unknown factor, and the unknown
structure is multiplied by unknown motion parameters. As described in
the following sections, the challenge is to estimate a state in the open
loop dynamics that appears nonlinearly inside a matrix that is multi-
plied by a vector of unknown linear and angular velocity terms [see
(6)]. By assuming that the velocities are known, or some model knowl-
edge exists, previous online efforts have been able to avoid the problem
of separately estimating multiplicative uncertainties. The contribution
of this work is a strategy to segregate the multiplicative uncertainties,
and then to develop a reduced order nonlinear observer to address the
SaM problem where the structure (i.e., the properly scaled relative Eu-
clidean coordinates of tracked feature points), the time-varying angular
velocities, and two unknown time-varying linear velocities are esti-
mated (i.e., one relative linear velocity is assumed to be known along
with a corresponding acceleration). The result exploits an uncertain lo-
cally Lipschitz model of the unknown linear velocities of the camera.
The strategic use of a standard Homography decomposition is used to
estimate the angular velocities, provided the intrinsic camera calibra-
tion parameters are known and feature points can be tracked between
images. A persistency of excitation (PE) condition is formulated, which
provides an observability condition that can be physically interpreted as
the known camera linear velocity should not be zero over any small in-
terval of time, and the camera should not be moving along the projected
ray of a point being tracked. A Lyapunov-based analysis is provided
that indicates the SaM observer errors are globally asymptotically reg-
ulated provided the PE condition is satisfied. By developing a reduced
order observer to segregate and estimate the multiplicative uncertain-
ties, new applications can be addressed including: range and velocity
estimation using a camera fixed to a moving vehicle where only the
forward velocity/acceleration of the vehicle is known.

II. EUCLIDEAN AND IMAGE SPACE RELATIONSHIPS

Consider a moving camera that views four or more planar1 and non-
collinear feature points (denoted by � � ��� �� � � � �� �� �� � �) lying
fixed in a visible plane �� , attached to an object in front of the camera.
Let �� be a static coordinate frame attached to the object. A static
reference orthogonal coordinate frame ��

� is attached to the camera
at the location corresponding to an initial point in time �� where the
object is in the camera field of view (FOV). After the initial time, an
orthogonal coordinate frame�� attached to the camera undergoes some
rotation ����� � �	�	� and translation �
� ��� �

� away from ��

� .
The Euclidean coordinates ������ � � of the feature points ex-

pressed in the current camera frame �� and the respective normalized
Euclidean coordinates ����� �

� are defined as

������ � 
 
����� 
����� 
����� �
�
�

����� �

�����


�����

� ���

� ���
�

�

� (1)

The constant Euclidean coordinates and the normalized coordi-
nates of the feature points expressed in the camera frame ��

� are
denoted by ���

� � �, and ��

� � �, respectively, and are given
by (1) superscripted by a “�.” Consider a closed and bounded set

1Four planar points are needed to compute the homography. The homography
can also be computed with eight non-coplanar and non-collinear feature points
using the “virtual parallax” algorithm [20].
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� � �. Auxiliary state vectors ��� � ����� � �
�

�� � �
�

�� �
� � � and

����� � �������� ������� �������
� � � are constructed from (1) as
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�
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�
�

�

�

�� �
�

�

�

�

�
�

�
� (2)

The corresponding feature points ��

� and ����� viewed by the
camera from two different locations (and two different instances in
time) are related by a depth ratio ����� ����������� � and a
Homography matrix 	��� � ��� as2

�� � ��	��

� � (3)

Using projective geometry, the normalized Euclidean coordinates ��

�

and ����� can be related to the pixel coordinates in the image space as


� � ��� � 
�� � ���

� (4)

where 
���� � ��� � � � ��
� is a vector of the image-space feature point

coordinates ������ ���� � defined on the closed and bounded set
� � �, and � � ��� is a constant, known, invertible intrinsic
camera calibration matrix [22]. Since � is known, (4) can be used to
recover�����, which can be used to partially reconstruct the state ����.

Assumption 1: The relative Euclidean distance ������ between the
camera and the feature points observed on the target is upper and lower
bounded by some known positive constants (i.e., the object remains
within some finite distance away from the camera).

Remark 1: The definition in (2) along with Assumption 1 can
be used to conclude that ����� remains in a set � defined as
� � ��� � �

�
� �� � ���� where ���� �

�
� denote known pos-

itive bounding constants. Likewise, since the image coordinates are
constrained (i.e., the target remains in the camera field of view) the
relationships in (1), (2), and (4) along with the fact that � is invertible
can be used to conclude that ��� 	 �������� 	 �

�
� � 	 �������� 	 �

�
where ���� ���� �

�
� �

�
� denote known positive bounding constants3.

Furthermore, the velocity parameters of the camera are bounded by
constants.

III. PERSPECTIVE CAMERA MOTION MODEL

At some spatiotemporal instant, the camera views a point � on the
object. The point � can be expressed in the coordinate system 
� as

�� � �� 	����� (5)

where ���� is a vector from the origin of the static coordinate system
�� , attached to the object at the point �. By differentiating (5), the
relative motion of � can be expressed as [22], [23]


�� � ���� ��	 �

where ����� is defined in (1), ���� � ��� denotes a skew symmetric
matrix formed from the angular velocity vector of the camera ���� �
���� ��� ���

� � � , and ���� � ���� ��� ���
� � � denotes the linear

velocity of the camera. The sets � and � are closed and bounded sets

2The homography matrix can be decomposed to obtain a rotation and scaled
translation of the camera between two views. The decomposition of the homog-
raphy leads to two solutions, one of which is physically relevant. More details
about the homography decomposition and how to obtain the physically relevant
solution can be found in [21], [22].

3For the remainder of this technical note, the feature point subscript is
omitted to streamline the notation.

such that� � � and � � �. Using (2) and (5), the dynamics of the
partially measurable state ���� can be expressed as


�� � ���  ����� ��  ������ 	 �� 	 ������  ����


�� ����  �������  �� 	 ������ 	 ������ 	 ����


�� �  �����  ������ 	 ������ (6)

where ����� and ����� can be measured through the transformation in
(4).

IV. STRUCTURE AND MOTION ESTIMATION

A. Estimation With a Known Linear Velocity

In this section, an estimator is designed for the perspective dynamic
system in (6), where the angular velocity is considered unknown and
only one of the linear velocities (i.e., ��)4 and respective acceleration
(i.e., 
��) is available. Moreover, an uncertain dynamic model of the
linear velocity ���� is assumed to be available as [8], [10]


�	��� � ���	� ���	��� � ��� �� (7)

where ���	� �� � is a known locally Lipschitz function of unknown
states.

To facilitate the design and analysis of the subsequent observer, a
new state ���� � � � � ������ � ����� ����� � �����

� , is de-
fined where � is a closed and bounded set. After utilizing (6) and (7),
the dynamics for ������ ����� can be expressed as


�	 � �����	  �����  ������	 	 ���	��	��� � ��� ��� (8)

From (6) and (8) the dynamics of the known states ������ ����� and the
unknown state ���� � � �� �� �� �

� are


��

��

�
���� � �

���� � �


�� �� � �

��
��
��

	
������ 	 �� 	 ������  ����
�� 	 ������ 	 ������ 	 ����

��� �� ���

(9)

and


��

��

��

�

�����  �����  ����� ��
������  �����  ������� 	 �������
������  �����  ������� 	 �������

������� �� � �

� (10)

Since ����� and ����� are measurable, from (1) and (4) the Euclidean
structure ����� can be estimated once the state ����� is determined.
Since the dynamics of the outputs �����, ����� are affine in the un-
known state ����, a reduced order observer can be developed based
on this relationship for the unknown state ����. The subsequent devel-
opment is based on the strategy of constructing the estimates ����
� �� �� �� �

� � �. To quantify the SaM estimation objective, an
estimation error ����� � � ��� ��� ��� �

� � � is defined as

����� � ��  �� ��  �� ��  �� �
� � (11)

Assumption 2: The function ���	� �� �� � ��� �� is locally Lip-
schitz where �����  ����� � �����  ��� and �����  ����� �
�����  ��� where �� and �� are Lipschitz constants.

4An observer can be developed with any of the three linear velocities known.
In this technical note, � � is assumed to be known w.l.o.g.
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Remark 2: The linear velocity model in (7) (and in the results in
[8], [10]) is restricted to motions that are satisfied by Assumption 2;
yet, various classes of trajectories satisfy this assumption (e.g., straight
line trajectories, circles, some periodic trajectories, etc.).

Assumption 3: The function ����� ��� ��� defined in (9) sat-
isfies the persistency of excitation condition, i.e., ��, � � � �
���

�
�� ����� �� ������ ������������������ �� ������	� � �
 �� �

��
Remark 3: Assumption 3 is violated iff � ��� �� � ��� ����� � �

or ����� � �� ����� � �. That is, Assumption 3 is valid unless there
exists a time �� such that for all � � �� the camera translates along the
projected ray of an observed feature point.

Assumption 4: The linear camera velocities ���� are upper and lower
bounded by constants.

Remark 4: The following bounds can be developed using Assump-
tion 1, Remark 1 and the definitions of ����� and �����:

����� � �� � ����	� ����� � �� � ����	�

Step I: Angular Velocity Estimation: Solutions are available in lit-
erature that can be used to determine the relative angular velocity be-
tween the camera and a target [3]. To quantify the rotation mismatch
between ��

� and ��, a rotation error vector �� ��� � � is defined by
the angle-axis representation as

�� ���������� (12)

where ����� � � represents a unit rotation axis, and ����� �
denotes the rotation angle about ����� that is assumed to be confined
to region �� � ����� � �. The angle ����� and axis ����� can
be computed using the rotation matrix ����� obtained by decomposing
the Homography matrix ���� given by the relation in (3). Taking time
derivative of (12) yields

��� � ��� (13)

where ����� � ���� denotes an invertible Jacobian matrix [3]. A
robust integral of the sign of the error (RISE)-based observer ������ �
� is generated in [3] as

���� ���� 	 
����
����� 	
�

�

��� 	 
����
��	� 	 �

�� � ������
��� (14)

where �� , �� � ��� are positive constant diagonal gain matrices,
and 
����� �

� quantifies the observer error as 
����� �� � ���� A
Lyapunov-based stability analysis is provided in [3] that proves

�������� �������	 � �� ��	
 (15)

and that all closed-loop signals are bounded. Based on (13) and (15),
the angular velocity can be determined as

����� � �
��
�

������� �� ��	
� (16)

An angular velocity estimation error 
���� � �

 
������ 
������ 
����� �
� is defined as 
����� � ������ ��������� �

��� �� ��� As shown in [3], the angular velocity estimator given by
(14) is asymptotically stable; thus, the angular velocity estimation
error 
�����	 � as ��	
.

Step II: Structure Estimation: A reduced order observer for ���� is
designed as

���
���
���

�

���
���
���

	 �
�

� 
� �� �

�

��

��

(17)

where the state vector  ��� ��� ��� �
� is updated using the following

update law:
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�
����� �� �� �

� ��� ����� � �

����� � �

���
���
���

	
�������� 	 �� 	 ������� � �����
��� 	 ������� 	 ������� 	 �����


� �� ����

	 �

�� �� �� �
�

�

�

� (18)

In (18), � � , ������ are given by (16), and ���� ��� is defined in
(9). Differentiating (11) and using (9), (10), (17) and (18) yields the
following closed-loop observer error dynamics:

�
��
�
��
�
��

�

��� 	 ������
��

����
�� 	 �����
��

����
�� 	 �����
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	 ���
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���

���

	
�������� 	 �� 	 ������� � �����

��� 	 ������� 	 ������� 	 �����
�

���

���
�

Using the output dynamics from (9), the error dynamics can be
rewritten as

�
� � ���� �� ��� ��� ���� ����� ��� ��� ��� ���

����
� 
� 	����� ��� 
�� �

Using Assumption 2, following relationship can be developed:

���� �� ��� ��� ���� ����� ��� ��� ��� ��� � �
�	  ���� ��� ��� 
�� (19)
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where
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���� � ����� � ������ � ������ �
� ��
�

(20)

such that �	
� ������ � �, and

����	 ��	 �
	 ��� �

������ � ������ ���
������ � ������ ���
������ � ������ ���

� (21)

Using (19) the error dynamics can be written as

��
 � ��
 � ��� �
 � ������	 ��	 ��� � ����	 ��	 �
	 ���� (22)

The results from the angular velocity estimator in Section IV-A-I
prove that ���	 ���	 ����� � therefore, (21) can be used to conclude that
������ � and ������ � as ����.

Theorem 1: If Assumptions 1–4 are satisfied, the reduced order ob-
server in (17) and (18) asymptotically estimates 
��� in the sense that
�
��� �� � as ����.

Proof: The stability of the error system in (22) can be proved
using a converse Lyapunov theorem [24]. Consider the nominal system

��
 � ��
� � ���� �
� (23)

Using Theorem 2.5.1 of [25] the error system in (23) is globally expo-
nentially stable if Assumption 3 is satisfied. Hence, �
��� satisfies the

inequality �
��� � �
���� ���
�� ���� �, where ��, �� �

�,
and �� is directly proportional to  and inversely proportional to �[8],
[25]. Consider a set� �	 �
��� � � �
��� ��
. Using a converse

Lyapunov theorem there exists a function � � ��	�� � ��� that
satisfies

�� �
���
�

�� ��	 �
� � �� �
���
�
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��
�
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����� �
� � � �� �
���
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��

��

� �	 �
��� (24)

for some positive constants ��	 ��	 ��	 �	. Using � ��	 �
� as a Lyapunov
function candidate for the perturbed system in (22), the derivative of
� ��	 �
� along the trajectories of (22) is given by

�� ��	 �
� �
��

��
�

��

��

����� �
� �

��

��

�����
�

�
��

��

��������	 ��	 ��� � ����	 ��	 �
	 �����

Using the bounds in (24) the following inequality is developed:

�� ��	 �
� � ���� � �	�� �

�

� �	� �
 (25)

where � is an upper bound on (20) and
���� � �� �� �����	 ��	 ���� � ����	 ��	 �
	 ���

Fig. 1. State estimation error.

where ������ � as ����. Using Theorem 4.14 of [24] the estimates
of �� and �	 are given by5

�� �
�

�
	 �	 �

���

��� � ��
�� ���� ��� 
���� ����

where � � � is an upper bound on the norm of Jacobian matrix
���
����
, where ��
� is defined in (23). Since �� is directly propor-
tional to the gain , the inequality �� � �	� � ���� �������� � ��

��� ���� ��� 
���� ���� � � � can be achieved by choosing the gain
 sufficiently large. Using (24), (25), and based on the development in
Section 9.3 of [24], the following bound is obtained:

�
��� �
��
��
�	 ��	 �
���� ��
���� �

�
�	
���

�	 ��	
�

�

��
�������� ��� (26)

where a constant convergence rate � � � can be increased by in-
creasing ��. From (26), �
��� � ��, thus �
����, �
����, �
���� �

��. Since �
����, �
����, �
���� � ��, and the fact that 
����, 
����,

���� � �� can be used to conclude that �
����, �
����, �
���� � ��.
Using the result from Section IV-A-I that ��������� � as ����, the

functions �����	 ��	 ���� 	 ����	 ��	 �
	 ��� �� � as ����. Hence,

������ � as ���� and ���� � ��. Since ������ � as ���� and
���� � ��, by the Lebesgue dominated convergence theorem [26]
�������

�

�
��
����������� �

�

�
��
� ������� ��� � ���� �

������� ������ � � (see Theorem 3.3.2.33 of [27]). Lemma 9.6.3

of [24] can now be invoked to show that �
��� �� � as ����. Hence,
the reduced order estimator in (17) and (18) identifies the structure of
observed feature points and unknown camera motion asymptotically.
Since �����, �����, and ����� can be estimated, the motion parameters
����� and ����� can be recovered based on the definition of ����.

V. SIMULATION

In this section, a numerical example is presented to illustrate the
performance of the proposed estimator for estimating depth of a feature

5Note that �

� � � � � �
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point, and linear and angular velocities of the camera. The time-varying
angular motion of the camera is selected as

� � � ���� ���� �
�
	 ���� ���� �

�
	 � 
� �

The linear velocities along the X and Y axes are given by

����	 � �������	 ������	 

�

which conforms to (7). The linear velocity along the Z axis is selected
as

����	 � �����	�

The initial linear velocity along the X and Y axes are selected as

����	 � � � � 
�

and the initial Euclidean coordinates of the first point is

�����	 � � �� �� ��� 
� �

The camera calibration matrix is selected as

� �

��� � ���

� ��� ���

� � �

�

The camera trajectory produces feature point motion in the image
frame. Points are tracked in the image while the camera is moving.
Image coordinates of the first point, and the camera linear velocity
����	 are known. The states of the estimator are initialized to

������	 � ���� �	����	 � ���� �	����	 � ����

The estimator gain is selected as � � ���� Measurement noise with
zero mean and variance of 0.1 is added to the image point vector 

defined in (4) and the linear velocity ����	 using Matlab’s “randn()”
command. Asymptotic convergence of the estimation error is shown in
Fig. 1 in the presence of noisy measurement inputs.

VI. CONCLUSION

A reduced order observer is developed for the estimation of the struc-
ture (i.e., range to the target and Euclidean coordinates of the feature
points) of a stationary target with respect to a moving camera, along
with two unknown time-varying linear velocities and the angular ve-
locity. The angular velocity is estimated using Homography relation-
ships between two camera views. The observer requires the image co-
ordinates of the points, a single linear camera velocity, and the cor-
responding linear camera acceleration in any one of the three camera
coordinate axes. Under a physically motivated PE condition, asymp-
totic convergence of the observer is guaranteed. Having at least some
partial motion knowledge and a similar observability condition to the
given PE condition are likely necessary in future solutions to the SaM
problem. However, future efforts could potentially eliminate the need
for any model of the vehicle trajectory (even if uncertain as in this re-
sult) and eliminate the need for an acceleration measurement.
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