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1 Introduction

The philosophical discussion about logical constants has only recently moved
into the substructural era. While philosophers have spent a lot of time dis-
cussing the meaning of logical constants in the context of classical versus in-
tuitionistic logic, very little has been said about the introduction of substruc-
tural connectives. Linear logic, affine logic and other substructural logics offer
a more fine-grained perspective on basic connectives such as conjunction and
disjunction, a perspective which I believe will also shed light on debates in
the philosophy of logic. In what follows I will look at one particularly in-
teresting instance of this: The development of the position known as logical
inferentialism in view of substructural connectives. I claim that sensitivity to
structural properties is an interesting challenge to logical inferentialism, and
that it ultimately requires revision of core notions in the inferentialist litera-
ture. Specifically, I want to argue that current definitions of proof theoretic
harmony give rise to problematic nonconservativeness as a result of their insen-
sitivity to substructurality. These nonconservativeness results are undesirable
because they make it impossible to consistently add logical constants that are
of independent philosophical interest.

2 Background

When Prior (1961) introduced the mock-connective tonk, he hoped to show
that merely defining inference rules for a new logical constant is not sufficient
to determine its meaning. In short, that logical inferentialism is false.! Sim-
ply because tonk is equipped with a pair of natural deduction introduction
and elimination rules it does not follow that we have succesfully stipulated
the semantic content of the operator. Prior’s tacit assumption is that if a
constant—Ilike tonk—trivializes the system, then it cannot be meaningful. Its
stipulation semantically misfires.

Prior’s tonk is not a decisive objection against inferentialism, but it does
present its proponents with some difficult choices. On the one hand, one can opt
for an all-inclusive approach on which any set of inference rules, no matter how
blatantly inconsistent, can succesfully fix the meaning of the logical constant
in question. This is the attitude that Dummett (1991) styled Wittgensteinan,
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1Logical inferentialism is a thesis limited to the semantics of logical constants, in contrast
to the universal inferentialism of, say, Brandom (1994).
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if only losely connected to Wittgenstein. On the other hand, we can accept
Prior’s objection but attempt to identify criteria for successful stipulation. On
the former approach tonk is perfectly meaningful, albeit still inconsistent; on
the latter, tonk is the very litmus test for an adequate set of constraints on
inference rules. Whatever the constraints, tonk ought to be excluded.

Belnap (1962) was an early attempt at devising a set of constraints on which
ill-behaved connectives such as tonk are ruled out. Belnap suggests that what
is wrong with tonk is that it is not a conservative extension of any (transitive)
consistent system. Prawitz (1971) and Dummett (1991) followed up Belnap’s
criteria by offering more fine-grained analyses of the conditions under which a
connective and its associated introduction and elimination rules can be conser-
vatively added to an antecedent system.

In the subsequent literature there is a great deal of discussion of how con-
servativeness follows from normalization theorems (and the subformula and
separability corollaries). Following Prawitz’s insight that the intuitionistic con-
nectives satisfy the inversion principle, a number of authors have subscribed to
the view that an adequate constraint on meaningful logical constants is a local
constraint on the associated inference rules, rather than a global constraint
on the entire system. As such, conservativeness and normalisation are mere
symptoms of an underlying property of the inference rules.

In the last couple of decades, highly successful work has been done on gen-
eralizing Prawitz’s inversion principle. Schroeder-Heister (1984), von Plato
(2001), Tennant (2002) have all discussed a generalization of natural deduction
rules which facilitates a language-independent account of inversion. Schroeder-
Heister (2004, 2007), Read (2000, 2010), and Francez and Dyckhoff (2012) have
applied these very generalizations to give a constraint on inference rules—a con-
straint which after Dummett is known as proof theoretic harmony.? As a result
we have a better grasp of the connections between the inversion principle, nor-
malization, and—ultimately—consistency; there is now a better understanding
of the connections between natural deduction and sequent calculus (see espe-
cially von Plato, 2001); and harmonious inference rules have been given for a
range of new connectives, including modalities (e.g. Read, 2012). Even more
importantly, Dummett and Prawitz’s revisionary project of giving a justifica-
tion of intuitionistic logic has run into serious problems (see Weir, 1986; Milne,
1994; Read, 2000; Rumfitt, 2000).

3 The Context of Deducibility

One motivation for moving from a global constraint to local constraints on
inference rules is that the former is highly dependent on what Belnap calls ‘the
antecedent context of deducibility’:

It seems to me that the key to a solution lies in observing that even
on the synthetic view, we are not defining our connectives ab initio,
but rather in terms of an antecedently given context of deducibility,
concerning which we have some definite notions. By that I mean

2For Dummett on harmony, see Dummett (1991, ch. 9). Schroeder-Heister prefers the
term ‘definitional reflection’ but his constraints are nevertheless closely related.
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that before arriving at the problem of characterising connectives, we
have already made some assumptions about the nature of deducibil-
ity. That this is so can be seen immediately observing Prior’s use
of transitivity of deducibility in order to secure his ingenious result.
But if we note that we already have some assumptions about the
context of deducibility within which we are operating, it becomes
apparent that by a too careless use of definitions, it is possible to
create a situation in which we are forced to say things inconsistent
with those assumptions (Belnap, 1962).

Cook (2005) has already explored a non-transitive consequence relation for
which tonk is a conservative extension. Similarly, Restall (2007) has discussed
the contextual sensitivity of Belnap’s other criterion: uniqueness. In both cases
the moral is the same. The global properties engendered by introducing new
logical constants largely depend on prior choices about the structural properties
of the deducibility relation, for example: Is it transitive? Does it satisfy weak-
ening (is it monotonic)? Is it single- or multiple-conclusion? My contention is
that not only are they right about this; the context of deducibility is equally
important for the proper formulation of local constraints.

In fact, Dummett (1991, pp. 205-6) contains an early discussion of such
structural properties. He considers the difference between a classical disjunc-
tion and a quantum logic disjunction. Dummett observes that whereas classical
V-elimination allows (possibly distinct) auxiliary formulae in each subderiva-
tion (the minor premises), its quantum counterpart is restricted to subderiva-
tions where the conclusion follows from the discharged assumptions alone (i.e.
the disjuncts). More precisely:

T4 B Al (B
AV B c? C g AVB CC C ovm

The two elimination rules give rise to different classes of theorems, e.g. the law
of distributivity is derivable in classical logic, but not in quantum logic. Nev-
ertheless, the introduction rules are the same in each case, and The inversion
principle gives the same conversion for both rules:

I [A" [A]"
A 11, I, 1]4_-[1
Ava, ¢ C.om
C - C

where ¢ € {1,2}. Prawitz’s inversion principle and Dummett’s notion of proof
theoretic harmony is by and large insensitive to structural properties. This is
also true for most subsequent work on harmony and related constraints. My
discussion will focus on general elimination harmony and the work of Read
(2000, 2010); Francez and Dyckhoff (2012), but the general insight applies
equally well to the harmony notion advocated by Tennant (1997, 2007).
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4 General Elimination Harmony

The idea of generalizing Prawitz’s inversion principle rests on an idea developed
by Martin-Lof (1984), Prawitz (1978), and Schroeder-Heister (1984). The elim-
ination rules for each connective are put into a general elimination form which
unifies the treatment of elimination rules.® The general form follows the shape
of the standard disjunction elimination rule, VE (contexts now suppressed for
simplicity):

AVB ¢ ¢

E)(uw
c (VE)(u)

Put informally, VE says that whatever can be derived independently from each
of the grounds for introducing the major premise A V B (i.e. the premises A
and B respectively) can be derived directly from the major premise itself. That
is simply an instance of the inversion principle.

In fact, other connectives can also be given in a general elimination form,
one for which the new rules are equivalent to the standard rules. Conjunction,
for example, has the following two general elimination rules:*

[A]" B

AANB O AANB C
C C

We now see the explicit duality with disjunction: There are two elimination
rules because, as opposed to disjunction, conjunction has a single introduction
rule with two premises. The standard conjunction elimination rules result
from a simplification where C' = A and C' = B respectively. Indeed, they are
equivalent since we can derive the generalized rule from the standard rules by
a simple permutation:

ANB ANB
4 B

C C
Following Read (2000) and Read (2010) we can give schemata for harmoniously
inducing a set of general elimination rules from a set of introduction rules.?
The schemata have as instances the above examples and a number of other

connectives. Furthermore, it is an immediate consequence that the elimination
rule of tonk is not harmonious with respect to the introduction rule.

3Sometimes referred to as disjunction elimination like rules (del-rules) or parallel rules.

4There is a corresponding notion of general introduction rules in Negri (2002) that we
will not discuss here.

5Note that Read’s schemata for general elimination harmony is somewhat revised from
Read (2000) to Read (2010). I return to the difference below.
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The details are as follows: Each connective A has a finite set Z of n intro-
duction rules, where each such rule has a finite number m of premises.5

oo, Qny  --- Oy,

0 0

The introduction rule set Z harmoniously induces a finite set £ of m elimination
rules:

o] o o, e o, "

L BRI 54 L4

5 5 (u)

Here § is the major premise (and normally a formula containing a principal
occurrence of the connective A in question). For every premise 1 < ¢ < m in the
introduction rules there is an ith elimination rule in £ such that it has exactly
one (subderivational) minor premise for each introduction rule 1 < j < n in
Z. For each such elimination rule 1 < ¢ < m, the jth minor premise has (an
arbitrary formula)  as conclusion, and «a;, as assumption. When the general
elimination rule is applied, each such a;, assumption in the minor premises
is discharged. That is simply observing the idea of the inversion principle:
Whatever can be derived independently from all the possible grounds of an
expression, can be be derived directly from the expression itself.

It is fairly straightforward to see that both the standard rules for V and the
general elimination rules for A are instances of the schemata. We will therefore
say that they are GFE-harmonious. Similarly, it is evident that the inference
rules for tonk are not G E-harmonious.

The schemata and the notion of GE-harmony can be extended to sets of in-
troduction rules which themselves are hypothetical. For example the standard
introduction rule for the intuitionistic conditional. Since this involves some
further machinery, however, I set it aside for now (but see Read, 2000 and
Read, 2010 for this and other extensions). For our purposes it is sufficient to
consider simple variations of the two connectives A and V that we have already
looked at.

5 Shared Contexts and Independent Contexts

Substructural connectives have received lots of attention in a sequent calcu-
lus framework, but are less frequently studied with natural deduction rules.
In sequent calculus, there is a well-known distinction between context-sharing
(additive) and context-independent (multiplicative) rules.” Let A and ® be the
context-sharing and context-independent variants of conjunction:

rAa=c oy [=A T=B g,
F,AQ/\A1:>C I'sAAB

6 An infinite number of introduction rules should not in principle be excluded, but note
that this will potentially yield infinitary elimination rules.
"The distinction originally came to prominence in Girard (1987).
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F,A,B:>C (LA) F1:>A I's=18B

C (RA)
FA@B:>C F17F2:>A®B

Notice how the right top-most rule has the same context I' in each premise
sequent. It is crucial that in a substructural setting the auxiliary formulae I
are multisets, i.e. it matters how many copies of a single formula A occurs. It
is therefore significant that in the conclusion sequent there is only one copy of
I" occurring. Contrast the right bottom-most rule where each premise sequent
has possibly distinct contexts I'; and T'y; in the sequent conclusion both (mul-
tiset) contexts are preserved. The top-most, context-sharing rule smacks of
contraction, i.e. the structural sequent rule which allows one to collapse copies
of the same formula:

A A=C
NA=C

In a natural deduction setting there is no explicit contradiction rule. Instead
there is a corresponding policy for discharging assumptions, namely that mul-
tiple copies of the same assumption can be discharged with a single application
of a hypothetical rule.®

Furthermore, the left-most conjunction rules also come apart. In the top-
most context-sharing rule we are forced to make a choice going from bottom to
top: Either preserve the right or the left conjunct, not both. If, on the other
hand, we wanted to preserve both conjuncts going upwards we would have to
first apply the contraction rule to the conjunction in the conclusion sequent.
With the context-independent counterpart, however, we can freely bring with
us a copy of each conjunct upwards.

These features of the two rule pairs can also be found in the rules for other
connectives. For disjunction, the corresponding rules are simply the duals of
conjunction (albeit in multiple-succedent form rather than single-succedent).
In fact, we can generalize the properties to other connectives as well, but that
won’t matter for our discussion.

Although less discussed in the proof theoretic literature, the distinction also
exists for natural deduction rules. There are several versions of linear logic in
natural deduction, but here I follow Negri (2002). She shows one way to im-
plement the distinction while staying reasonably close to the standard Prawitz
style tree presentations. Here are the context-sharing rules for conjunction:

re re L, [A]* L, [B]"
A B AAB O ANB  C
ANB C c

The characteristic feature of the context-sharing A is the labels « attached to
the contexts of its introduction rule. This notation is used as heuristic for the
fact that after the application of the additive rule, the contexts must be treated
as a single context. Recall the additive conjunction rules in sequent calculus:

8The correspondence has been made formal through a translation between natural deduc-
tion and sequent calculus derivations in von Plato (2001).
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There is no need for the label since after the application of AR the contexts
are merged into one copy. The label a indicates that whenever a formula A
in one copy of I' is discharged, an A copy in the other occurrence of I' is also
discharged. Similarly, whenever an open assumption in one copy is substituted
for a derivation ending with the same formula, an identical substitution is
performed on the other copy.

As a result, when an assumption in I' is discharged by another rule ap-
plication later in the derivation, we have a form of contraction (or multiple
discharge): Two copies of the formula are discharged, one in each copy of T'.

In contrast, consider the following multiplicative rules for conjunction:

Lo Iy I, [A, B

A B A®B c
A®B C

Corresponding to sequent calculus, the multiplicative conjuntion ® only has
one elimination rule, and its introduction rule may be applied with (possibly)
distinct assumptions I'g and I';.

It should be obvious that these two connectives are proof theoretically dis-
tinct. Yet, in the presence of vacuous and multiple discharge of assumptions
(e.g. in classical logic) they become equivalent. In fact, we can then derive
the context-sharing rules for ® and the context-independent rules for A. For
example, using two copies of A A B we can derive the context-independent
elimination rule for the additive connective A:

AL, (B2

ANB C
ANB T o
C

1)

Second, with vacuous discharge the context-sharing elimination rules are deriv-
able for ®. Simply opt to discharge only one conjunct in each case:

4] 3]

A®B C A®B C
C C

Nevertheless, it should be no surprise that the rules for A and ® give rise to
distinct conversions via the inversion principle:

re e 1, re e 1,
I, I, X,[A4] YA o 1L, %,[B] ¥ B
A B 11, —_—— A B 11, ——
AAB  C 0, ANB C he

c e c c e C
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Ty T4
FO Fl HO Hl
HO H1 F, [A, B] T A B
A B T, N
ANB C 1L,

c e c

Notice that after the uppermost reduction step for the additive conjunction it
becomes explicit that there is only one copy of I'. In contrast, the reduction
step for the multiplicative conjunction keeps both contexts.

There is nothing surprising about the above: The conversions behave differ-
ently in a way reminiscent of how cut applications are pushed for the corre-
sponding inference rules in sequent calculus. What is interesting, however, is
that GE-harmony as articulated by Read (2000, 2010); Francez and Dyckhoff
(2012) do not contain the resources to keep these connectives apart. This is a
problematic omission.

In Read (2000, pp. 130-32) the theory of GE-harmony induces the context-
independent elimination rule from the context-independent introduction rule.
That appears sensible in light of the above. However, in Read (2010), and
Francez and Dyckhoff (2012) the theory of GE-harmony is revised, and the
schemata now provides the two context-sharing rules as the elimination rules
induced by the context-independent introduction rule. The reason for this
change is not substructural considerations, however, but problems with other
connectives.

Admittedly, the asymmetry causes no problems in the presence of standard
discharge policies, and this is what the authors had in mind. My only point
here is that there are situations in which a mismatch between context-sharing
and -independent does matter. In fact, there are systems in which a lack of
substructural finesse will cause considerable harm. Specifically, it will engen-
der nonconservativeness results that will make certain legitimate connectives
inconsistent extensions of the systems in question. This, I argue, is sufficient
motivation to take the substructural challenge to logical inferentialism seriously.

6 Structural Nonconservativeness

For simplicity, let us take as our starting point a system in which neither
multiple nor vacuous discharge are permissible policies for assumptions. We
then introduce a conjunction which is governed by asymmetric inference rules,
i.e. a context-sharing introduction rule, and a context-independent elimination
rule:

re re I,[A,B]"

A B AnNB C w
ANB c

Now let us assume that there is a derivation from two copies of A to some
conclusion C. Recall that there is no multiple discharge in the antecedent
system, and therefore no immediate way in which the above derivation entails
the existence of a derivation from one copy of A to the same conclusion C":
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A A A
C ~ C

Moreover, the following is an instance of the context-independent elimination
rule for M:

F7 [A7 A]l

ANA C

1
c &

With the context-sharing introduction rule, then, we can extend the above to
the following perilous derivation:

I, [A A}
A A :
ANA C
c

If we let T be simply A, both the premises of the introduction rule are trivial,
and after its application they are treated as one premise. The latter fact is
merely the characteristic feature of the context-sharing introduction rule. What
this means is that there is now a derivation directly from a single copy of A to
the conclusion C'. Contraction is admissible.

We can drive the point home with two concrete examples.

EXAMPLE 1. Assume that prior to the introduction of the conjunction M the
system only contained a conditional — governed by the two standard rules:

(A
~ i = (D A—’thA (+B)

As per our hypothesis that the antecedent system is contraction-free, the con-
ditional rules do not allow multiple discharge of assumptions. But with the
introduction of the conjunction, we have the return of explicit multiple dis-
charge. We can now extend the previous derivation with an application of the
conditional rules:

[A°]? (A2
: © D[4 Al
A A :
ANA ¢ o
C_
A—=C A

C
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The derivation is now blatantly from one copy of A to C, with the original
two assumptions of A treated as one discharged assumption in the application
of — I (with index 2). Since both A and C' are arbitrary we can now make
this move with any formulae in the language. This is a form of structural
nonconservativeness—multiple discharge becomes admissible with the intro-
duction of a new connective.

EXAMPLE 2. A more startling example of structural nonconservativeness re-
sults if we instead consider a less standard connective, e, read ‘bullet’ (see
Read, 2000, p. 141):

[.]u [Ji]u
| «o &
C

J'_ oE)(u
5 (oD(w) (o E) (u)

The inference rules for e are GE-harmonious by the standards of Read (2000).
Yet Read acknowledges that not only do the rules fail to normalize, they lead
straight to triviality in the presence of multiple discharge and ez falso quodlibet
for 1. In short, contrary to what Dummett and Prawitz assumed, harmony
does not entail consistency.

It is all the more remarkable that a connective like e does indeed normal-
ize in the absence of multiple discharge of assumptions. The inference rules
are perfectly consistent in contraction-free systems. All the more problematic,
then, that when the conjunction M is added to the system, the result is incon-
sistency.” In other words, the upshot is more than just the admissibility of
contraction; the resulting system can derive anything.

It is important to note that the type of nonconservativeness result in question is
a direct result of mixing context-sharing and context-independent rules. If we
were to combine the context-independent introduction and elimination rules,
the problematic derivation would not be possible. The context-independent
introduction rule would still leave us with two separate copies of the assumption
A, in which case no contraction has occurred. Similarly, using exclusively
context-sharing rules would not lead to nonconservativeness. It is only because
of the reckless combination of inference rules that the policies for discharging
assumptions are indirectly altered.

The admissibility of contraction is nothing new in sequent calculus. The
above sort of derivation has a more familiar sequent counterpart:

A=A A=A gy AA=C
A= ANA ANA=C o
A=C

Again, the RM application is context-sharing (note how two copies of A are
collapsed into one), while the LM rule application is context-independent. After
an application of Cut we have transformed a sequent of the form A, A = C
into one of the form A = C. A case of contraction, if anything is. Indeed,

9See Read (2012) for details on the derivation that leads to inconsistency.
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the particular inference rules for conjunction is used in G3 systems of classical
logic precisely to make contraction admissible. In contrast, the more common
G1 systems have an explicit contraction rule.!”

Conclusion

For all that is said so far, perhaps one might want to reply with a shrug: The
examples are artificial, and have little if any impact on philosophical debates.
But that contention is simply wrong, and the attitude is unfortunate. Set-
ting aside the principle that proof theoretic harmony should apply generally
to connectives of all persuasions, there are still ample reasons to take them
seriously in the philosophy of logic.!' Substructural connectives are already
commonplace in the relevant logic literature, but have now permeated a num-
ber of philosophical discussions. In formal epistemology, substructural systems
have been used by van Benthem (2008) and Sequoiah-Grayson (167); in de-
bates about vagueness substructural systems have been advocated by Zardini
(2008) and Cobreros et al. (2012); and in formal semantics Barker (2010) has
used substructural connectives to model free choice permission. The example
I am mostly interested in strikes closer to home, however.

EXAMPLE 3. Contraction-free systems have received a lot of attention in dis-
cussions of set-theoretic and semantic paradoxes. Two recent substructural
approaches are Petersen (2000) and Zardini (2011), but the strategy goes back
to Curry (1942) and a number of works by Ross Brady. The observation com-
mon to their work is that unrestricted comprehension (for set theory) and
unrestricted truth predicates (for theories of truth) can be consistently added
to contraction-free systems. These logical constants can be given a natural
deduction form as follows:

A (TI) & (TE)
T(A) A
O(t) (AE) t € Azd(x) )
t € A\x®(z) D(t)

It is obviously a controversial philosophical issue whether such unrestricted
rules are appropriate for our theories of truth and properties respectively. But
precisely because this an ongoing philosophical concern, we cannot have it
short-circuited by a harmony constraint which excludes them. On the contrary,
the logical inferentialist ought not impose constraints which fail to preserve the
substructural nuances required for these philosophical theories.

A theory of proof theoretic harmony that is insensitive to substructural
differences is in danger of permitting structural nonconservativeness, e.g. ad-
missibility of contraction. The result is a theory which renders inconsistent
connectives whose inference rules are philosophically motivated and perfectly
well-behaved in the appropriate context of deducibility. What we are left with

10See Troelstra and Schwichtenberg (2000, p. 77) for details.

1 Full disclosure: My position is that structural properties are indeed part of the meaning
of logical connectives, and that proof theoretic semantics therefore has to reflect it (see
Hjortland, 2012a). For the opposite view, see e.g. Paoli (2003).
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is what I call the substructuralist challenge to logical inferentialism: A re-
articulation of proof theoretic harmony in substructural terms.'?
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