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Occlusion detection 

 Occlusion edges help image feature selection, once occlusion 

boundaries are established – the depth of the region can be determined 

 This is very useful in Simultaneous localization and mapping (SLAM) 

problems in robotics applications for indoor environments, object 

recognition, grasping, obstacle avoidance in UAV applications, etc.  
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A voxel map and the corresponding geometric edges for a hallway 

  This page contains no technical data and is not subject to the EAR or the ITAR. 



Range edge 

Occlusion detection 

 Occlusion edges depend on the gradient of the depth image which is 

very sensitive to noise in the depth map  

 The depth map derived from a single image is very noisy and has large 

errors.   

 In our work, we are estimating the occlusion edges directly rather than 

estimating depth first and then calculating occlusion edges.  Secondly 

there are additional cues other than depth which contribute to 

establishing occlusion edges that our technique is taking advantage of. 
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Deep Neural Nets and Convolutional Neural Nets 

 Convolutional filters to generate feature 

maps from data 

 Subsampling or pooling for dimension 

reduction and higher order feature 

generation   
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Occlusion detection from Freiburg dataset 

 Use readily available dataset for demonstrating occlusion edge 

detection from Computer Vision Group at Technische Universität 

München (TUM) 

 Partition the trajectory into training and test datasets for the neural nets 
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Reference: http://vision.in.tum.de/data/datasets/rgbd-dataset/download  
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Problem setup 
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Input: RGB+D information from 

consecutive video frames (640x480) 

captured by mobile sensor 

Deep Convolutional Neural Network 

Output: Occlusion edges 
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Training process 

No occlusion  

patch 
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patch 

Center-pixel 

based labels Partition into 32x32 patch examples 

Training and Testing processes 

Network Training 

Testing process 
Trained Network 

32x32 patches generated 

with fixed stride 

Prediction of patch 

(Center-pixel) label 
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Post-processing for Occlusion edge reconstruction 

Testing and post-processing 
Trained Network 

32x32 patches generated 

with fixed stride 

Prediction of patch 

(Center-pixel) label 

Prediction 

confidence from 

softmax posterior 

Prediction confidence converted 

to patch-wide label using a 

Gaussian kernel (with Full Width 

at Half Maximum - FWHM)   

Gaussian labels are fused in 

a mixture model to generate 

smooth occlusion edges 
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Experimental setup 

 Nvidia Tesla K40 GPU with 2880 cores and 12 GB device RAM 

 Initial pre-processing for dividing dataset into training and test and 

extracting small images (32x32) from large frames (480x640) 

 Image size fixed at 32x32 with number of channels depending on the 

experiment 

 4 channels for RGBD  

 3 channels for RGB 

 6 channels for RGBD + optical flow (UV) 

 Ground truth consists of labelled edges by using only the depth sensor 
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Optical flow pre-processing 
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Results 
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Data Channels Patch 

stride 

Training 

dataset 

Testing 

dataset 

Test error 

(averaged over 

80-100 epochs) 

Computation 

time/epoch 

RGBD (1 frame) 4 4 56354 500000 15.35 1m 21s 

4 8 14278 316167 18.76 2m 17s 

RGB (1 frame) 3 4 56354 500000 16.43 1m 2s 

3 8 14278 316167 18.72 1m 42s 

RGBDUV 6 4 56354 500000 15.18 1m 22s 



Post-processing Results 

 Input: RGBD image (32x32x4), stride 8 
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 Input: RGBD image (32x32x4), stride 4 
Performance improves with  

higher granularity of fusion 
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Post-processing Results 

 Input: RGB image (32x32x3), stride 8 
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 Input: RGB image (32x32x3), stride 4 
Performance improves with  

higher granularity of fusion 

Overall detection confidence  

deteriorates without D channel 
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RGBD and optical flow (RGBDUV) Results 
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Conclusion 

 Deep CNN can extract significant occlusion edge features from only 

RGB channels (i.e., without the depth sensor information). Occlusion 

detection accuracy increases when we introduce optical flow. 

 

 Deep Convolutional Neural Nets (Deep CNN) for multi-modal fusion 

applied to occlusion detection 

 

 The trade-off between high resolution patch analysis and frame-level 

computation time is critical for real-time robotics applications 

 

 Currently investigating multiple time-frames of RGB input in order to 

extract structure from motion 
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Questions 
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