
The Token Based Switch: per-packet access
authorisation to optical shortcuts

Mihai-Lucian Cristea1, Leon Gommans1, Li Xu1, and Herbert Bos2

1 University of Amsterdam, The Netherlands,{cristea, lgommans, lixu}@science.uva.nl
2 Vrije Universiteit Amsterdam, The Netherlands, herbertb@cs.vu.nl

Abstract. Our Token Based Switch (TBS) implementation shows that a packet-
based admission control system can be used to dynamically select a fast end-
to-end connection over a hybrid network at gigabit speeds. TBS helps high-
performance computing and grid applications that require high bandwidth links
between grid nodes to bypass the regular Internet for authorised packets by es-
tablishing shortcuts on network links with policy constraints. TBS is fast and safe
and uses the latest network processor generation (Intel IXP2850) and the Fairly
Fast Packet Filter software framework.

1 Introduction

Grid and other high-performance applications tend to require high bandwidth end-to-
end connections between grid nodes. Often the requirements are for several gigabits per
second. When spanning multiple domains, fibre optic networks owners must cooperate
in a coordinated manner in order to provide high-speed end-to-end optical connections.
Currently, the administrators of such connections use paper-based long-term contracts.
There exists a demand for a mechanism that dynamically creates these fast end-to-end
connections (termedlightpaths) on behalf of grid applications. The use of lightpaths
is also envisaged for applications that are connected through hybrid networks [1]. A
hybrid network contains routers and switches that accept and forward traffic at layers 1,
2, or 3. In other words, hybrid networks consist of traditional (layer 3) routed networks
which allow for optical (layer 1 or 2) shortcuts for certain parts of the end-to-end path.
Currently, the peering points between routed networks of the Internet Service Providers
(ISPs) by way of the Border Gateway Protocol (BGP) policies determine statically what
traffic bypasses the (slow) routed transit network and which links they will use to do
so. However, when considering hybrid networks interconnected over long distances,
we would like the peering points to play a more active/dynamic role in determining
which traffic should travel over which links, especially since multiple links often exist
in parallel. Therefore, an important role for the peering points is path selection and
admission control for the links.

Figure 1 shows a hybrid network composed of three ISPs interconnected through
routed networks (Internet) and also through two optical links managed by different
owners. The connections across the optical links is via the peering points (PPs). An
example of such a connection may be a high-bandwidth transatlantic link.

UsersX andY on the left access servers on the right. We want them to bypass the
routed Internet and use optical shortcuts instead. However, while not precluded by the

model, we do not require each user to have an individual relation with each ISP and
shortcut along the path. Indeed, the link owners should not normally have a notion of
which specific IP addresses are allowed to access the link. Instead, we expectISPA

(say, the organisation, department or research group) to have a contract with the link
owners and decide locally (and possibly at short timescales) who should get access to
the links in domains that are not under its control. For scalability, the model allows the
system to be federated along more levels, whereISPA contacts the authorisation at the
next level, which in turn contacts a server at a higher level still, etc. In practice, the
number of levels is expected to be small (often one).

PP PPPP PP

user X

networks
routed

(compute)

server 1

datastore
server 2

PP point
peering

Legend:

border router
BGP

�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������

ISP BISP A ISP C

user Y
Link owner 2Link owner 1

Internet

rogue
user

Fig. 1. Peering in hybrid networks: end-to-end lightpaths.

A flexible way of bypassing the routed Internet is to haveISPA tag traffic fromX
andY with some sort of token to signal to remote domains that they should be pushed
across the optical shortcuts. At the same time, we want to prevent rogue users (e.g.,
theISPB client indicated in the figure) to tag their packets with similar tokens to gain
unauthorised access to the shortcuts.

In principle, the signalling of peering requests to the peering pointsPPs can be
done eitherout-of-band, or in-band, or both as described in theAuthorisation Authen-
tication Accounting(AAA) framework (RFC 2904) [2]. Inout-of-bandsignalling there
is an explicit control channel toPPs, separate from the data channel(s). In an in-band
mechanism, the admission control is based on specific data inserted into the communi-
cation channel. We opt forin-bandsignalling for reasons of flexibility resulting from
the per-packet granularity. Specifically, we insert tokens into each packet as proof of
authorisation. Tokens are a simple way to authorise resource usage which may convey
different semantics. For instance, we may specify that only packets with the appropriate
token are allowed to use a pre-established network connection in a specific time-frame
and embed these tokens in the packets of an application distributed over many IP ad-
dresses.

However, our tokens differ from common flow identifiers (e.g., ATM VPI/VCI pairs,
MPLS labels, and IPv6 flow labels) in that they cannot be tampered with and that they
may be associated with arbitrary IP addresses. In essence, tokens are like IPsec authen-

tication headers (AH [3]) except that we aim for authentication that is more efficient in
computation and more flexible than IPsec standard (we can authenticate various fields
from Ethernet or IP headers by using a customised mask). In addition, the application
domain is different in sense that our TBS system serves applications distributed over
many IP addresses.

Tokens bind packet attributes to an issuing attribute authority (e.g., an AAA server
in our case). Tokens could be acquired and subsequently used anonymously. Moreover,
a token can bind to differrent semantics (e.g., a user, a group of users, or an institute)
and decouples time of authorisation from time of use. In the switch described in this
paper, tokens are used to select shortcuts and different tokens may cause packets to be
switched on different links, but in principle they could also be used to enforce other
QoS-like properties, such as loss priorities.

This paper describes both the design of the Token Based Switch (TBS) and its im-
plementation on high-speed network processors. TBS introduces a novel and rather
extreme approach to packet switching for handling high-speed link admission control
to optical shortcuts. The main goal of this project was to demonstrate that the TBS is
feasible at multi-gigabit link rates. In addition it has the following goals:1© path se-
lection with in-band admission control (specific tokens gives access to shortcut links),
2© external control for negotiating access conditions (e.g., to determine which tokens

give access to which links), and3© secured access control.

The third goal is also important because part of the end-to-end connection may con-
sist of networks with policy constraints such as those meant for the research application
domain in theLambdaGrid. Moreover, a critical infrastructure needs protection from
malicious use of identifiers (e.g., labels in (G)MPLS, header fields in IPv4, or flowID in
IPv6). For these reasons, our token recognition uses cryptographic functions, for exam-
ple, to implement the Hash function based Message Authentication Code (HMAC) (see
RFC2104 [11]). An external control interface is required to negotiate the conditions that
give access to a specific link. Once an agreement has been reached, the control interface
should accept an authorisation key and its service parameters that will allow packets to
access the owner’s link. To operate at link speeds we push all complex processing to the
hardware. In our case we use a dual Intel IXP2850 with on-board crypto and hashing
units.

Several projects address the issue of setting up lightpaths dynamically (e.g., UCLP,
DWDM-RAM [4]), and others look at authorisation (e.g., IP Easy-pass [5]). However,
to our knowledge, no solutions exist that support both admission control and path selec-
tion for high speed network links in an in-band fashion for setting up safe, per-packet-
authenticated, optical short-cuts. In addition, our approach makes it possible to set up
multiple shortcuts on behalf of applications that span multiple domains. As a result, a
multi-domain end-to-end connection can be transparently improved in terms of speed
and number of hops by introducing shortcuts.

The remainder of this paper is organised as follows. Section 2 discusses the TBS
architecture. Section 3 explains implementation details. The system is evaluated in Sec-
tion 4. Related work is discussed throughout the text and summarised in Section 5.
Finally, conclusions are presented in Section 6.

2 Architecture

At present, many techniques can be used to build end-to-end network connections with
some service guarantees. For instance, Differentiated Service (DiffServ) [6] manages
the network bandwidth by creating per hop behaviors inside layer-3 routers, while Multi
Protocol Label Switching (MPLS) [7] establishes a path using label switched routers.
However, a more radical approach that is typically adopted for layer-1 switches, uses
the concept of alightpath [8]. In this paper, alightpath is defined as an optical uni-
directional point-to-point connection with effective guaranteed bandwidth. It is suitable
for very high data transfer demands such as those found in scientific Grid applica-
tions [9]. In order to set up a lightpath, a control plane separate from the data forwarding
plane is used on behalf of such applications. For multi-domain control, a mechanism
is needed that respects local policies and manages the network domains to set up the
end-to-end connection (usually composed of multiple lightpaths) on demand.

2.1 High-level overview

Figure 2 shows the architecture used for setting up alightpathusing token based net-
working.

In a nutshell, the process is as follows. On behalf of a subset of its users,ISPA gen-
erates a Link Access Request (LAR) message to use a particular link (from the available
links of its peering point) for a certain period of time1©. The details of LAR genera-
tion based on user requests are beyond the scope of this article. Interested readers are
referred to [10]. The LAR is sent to the AAA server of peering point A2©. The AAA
server fetches a policy from the policy repository that validates the request3©. Next,
a key (TokenKey) is generated and sent toISPA and peering point A4©. ISPA may
use the key to create a token for each packet that should use the link. The token will
be injected in the packets which are then forwarded to the peering point. The entity
responsible for token injection is known as the token builder. On the other side, peering
point A uses the sameTokenKeyasISPA to check the incoming token-annotated pack-
ets. In other words, for each received packet, peering point A creates a local token and
checks it against the embedded packet token. The packet is authenticated when both to-
kens match. An authenticated packet is then forwarded to its corresponding fibre-optic
link 5©. All other packets are transmitted on a ‘default’ link that is connected to the
transit network 6©. The entity responsible for token checking and packet switching is
known as the token based switch.

AAA

Server 3

4

2

Token

Switch

5

6

Token

Builder

ISPA

1

User App1

User App2

Link Admission
Policy Repository

Token Key

Link Access Request

to Transit Network

Fibre−optic Link 2

Fibre−optic Link 1

Link Admission Request

to other PP’s

BGP Router

Peering Point A

Fig. 2. Token based networking architecture.

When a packet arrives at the token switch, we must find the appropriate key to use
for generating the token locally. Which key to use is identified by fields in the packet
itself. For instance, we may associate a key with a IP source and destination pair, so all
traffic between two machines are handled with the same key. However, other forms of
aggregation are possible. For instance, we may handle all traffic between two networks
with the same key, or all machines participating in a Grid experiment, etc. In general,
we allow the key to be selected by means of anaggregation identifier, embedded in the
packet. The aggregation identifier is inserted in the packet together with the token by
the ISP to signal the key to use.

2.2 Token principles

Compared to other mechanisms (such as certificates), a token is a general type of trusted
and cryptographically protected proof of authorisation with flexible usage policies. A
token created for an IP packet is essentially the result of applying an HMAC algorithm
over a number of packet fields as illustrated in Figure 3 and explained below. An HMAC
algorithm is a key-dependent way to create a one-way hash (see RFC2401 [11]). In our
implementation we opted for a strong proof of authorisation by means of HMAC-SHA1.
It may be possible to use more lightweight algorithms such as RC5 which is also used
by IP EasyPass [5]. However, we wanted to evaluate the performance that could be
achieved with strong authentication. We believe that using RC5 or similar algorithms
would only make it scale better.

ETH crc

�������������
�������������
�������������

�������������
�������������
�������������

���
���
���

���
���
���

�������
�������
�������

�������
�������
�������

���
���
���

���
���
���

	
	
	

hdr_len tot_len ttl hdr_chk,sip,dip
Mask:

ETH crc

Token Key
(20 bytes)

HMAC−SHA1 (20 bytes)
Token

Legend:

hdr_len=header length
dip = destination IP
sip = source IP

tot_len=total IP length
hdr_chk=IP checksum
ttl = time to live

�������������
�������������
�������������

�������������
�������������
�������������

ETH header IP header Dataframe:
Ethernet

ETH header IP header Options
(24 bytes)

Data

to encrypt
Data

(64bytes)

Fig. 3. Token creation.

To evaluate the TBS principles, we developed a prototype that stores the token in
each packet’s IP option field (as defined in RFC 791). An IP option can be of variable
length and its field will be ignored by normal routers. Although some routers have a
slower processing path for the IP option packets than simple IP packets (because higher
level headers will be at different positions in the packet), we noticed that our TBS sys-
tem works well in high speed, important and pricey sites (e.g., ISPs, grid nodes inter-
connection points) where all systems and also routers are updated to the state-of-the-art
hardware. We stress, however, that the IP option implementation is for prototyping pur-
poses. More elegant implementations may use a form of MPLS-like shim headers.

Figure 3 shows the process of token creation and insertion in the IP option field. In
our prototype, the HMAC-SHA1 algorithm generates the unique token (20 bytes) that
will be injected into the packet’s IP option field. As an IP option field has a header of

two bytes, and network hardware systems commonly work most efficiently on chunks
of four or eight bytes, we reserve 24 bytes for the IP option field. In order to ensure
the token uniqueness for packets, we need to include fields that are different in every
packet. Therefore, a part of the packet data will be included together with the packet
header in the HMAC calculation. We mention that some of the first 64 bytes of an Eth-
ernet frame are masked in order to make the token independent of the IP header fields
which change when a token is inserted (e.g., header length, total length, IP checksum)
or when the packet crosses intermediate routers (e.g., TTL). The mask also provides
flexibility for packet authentication, so that one could use the (sub)network instead of
end node addresses, or limit the token coverage to the destination IP address only (e.g.,
by selectively masking the IP source address).

3 Implementation details

The Token Based Switch (TBS) proposes to perform secured lightpath selection on-
the-fly by means of packet based authentication. Therefore, packet checking at high
speeds (Gbps) is crucial in our context. The latest generation of Network Processor
Units (NPUs) includes crypto units and provides a suitable solution for packet authen-
tication in a TBS system. Although the NPUs are powerful hardware specifically de-
signed for packet processing at high speeds, they consist of a complex architecture (e.g.,
multi-RISC cores and shared memory controlled by a central GPU). Therefore, building
software applications on NPUs is a challenging task. As explained below, we use Intel
IXP2850 NPUs as our hardware [12] and extend the Fairly Fast Packet Filter (FFPF)
software framework [13] to ease implementation of our software.

3.1 Hardware platform

Our prototype uses the IXDP2850 development platform (see Figure 4), consisting of
dual IXP2850 NPUs1© & 2©, ten gigabit fibre interfaces3©, a loopback fabric in-
terface 4© and fast data buses (SPI, CSIX). Each NPU has several external memories
(SRAM, DRAM) and its own PCI bus for the control plane (in our setup it connects to
a slow 100Mbps NIC). In addition, each 2850 NPU contains on-chip 16 multi-threaded
RISC processors (µEngines) running at 1.4GHz, a fast local memory, lots of registers
and two hardware crypto units for encryption/decryption of commonly used algorithms
(e.g., 3DES, AES, SHA-1, HMAC).

SRAM
SRAM

SRAM

DRAM
DRAM

DRAM

Egress NPU
IXP2850

Ethernet

100 Mbps

PCI 64/66

Chip
Interface

Fabric

2

SRAM
SRAM

SRAM

DRAM
DRAM

DRAM

IXP2850
Ingress NPU

Ethernet
100 Mbps

PCI 64/66

3

10 x 1Gb/s

4

1

CSIXSPI

Fig. 4. IXDP2850 development platform.

As illustrated in Figure 4, the incoming packets are received by the Ingress NPU
(via the SPI bus). These packets can be processed in parallel with the help ofµEngines.
The packets are subsequently forwarded to the second NPU via the CSIX bus. The
second NPU can process these packets and then decide which will be forwarded out of
the box (via the SPI bus) and which outgoing link will be used.

3.2 Software framework: FFPF on IXPs

The Fairly Fast Packet Filter (FFPF) is a flexible software framework designed for
high-speed packet processing. FFPF supports both commodity PCs and IXP network
processors natively and has a highly modular design. FFPF was designed to meet the
following challenges. First, it exploits the parallelism offered by multiple cores (e.g., the
host CPU and the IXP’sµEngines). Second, it separates data from control, keeping the
fast-path as efficient as possible. Third, FFPF avoids packet copies by way of a ‘smart’
buffer management system. Fourth, the FFPF framework allows building and linking
custom packet processing tasks inside the low-level hardware (e.g., theµEngines of
each NPU). For example, a packet processing application may be built by using the
FFPF framework as follows. The application is written in a simple packet processing
language known as FPL [14], and compiled by the FPL-compiler. Then, the applica-
tion’s object code is linked with the FFPF framework and loaded into the hardware
with the help of the FFPF management tools. Most of the complexity of programming
low-level hardware (e.g., packet reception and transmission, memory access) is hidden
behind a friendly programming language.

3.3 Token Based Switch

The TBS application consists of two distinct software modules: the token builder and
the token switch (see also Figure 2). In our prototype, the modules are implemented on
a single hardware development system (IXDP2850) although in reality they are likely
to be situated in different locations. Therefore, our implementation consists of a demo
system as shown in Figure 5.

PBuf PBuf

Gig0−9
Rx

compute IP checksum
TX()

TokenBuilder
token =HMAC(masked 64B)

Ku
0

SIP,DIP

2
1

KT:SRAM[]

Tx
Gig 0−9

Ku
0

SIP,DIP

2
1

KT:SRAM[]
Np

30 1 2 4 5 6 7 8 9Gigabit ports:

RxTx
TokenSwitch

if (token != HMAC(masked 64B)
Tx(port 8)

else
Tx(port Np)

Ingress NPU Egress NPU

Fig. 5. Token Based Switch using a dual IXP2850.

The token builder application module is implemented on twoµEngines in the Ingress
NPU, while the token switch module is implemented on twoµEngines in the Egress

NPU. Although the mapping can be easily scaled up to moreµEngines, we use only
two µEngines per application module because they provide sufficient performance al-
ready. As we will see in Section 4, the bottleneck is the limited number of crypto units.

Thetoken builder application implements the token principles as described in Fig-
ure 3. FFPF automatically feeds the token builder module with packet handles. The
token builder retrieves the first 64 bytes of the current packet from a shared packet
buffer memory (PBuf) into local registers and then applies a custom mask over these
bytes in order to hide unused fields like IP header length, IP total length, etc. The ap-
plication also retrieves a proper token key (K) from a local KeysTable by looking up
an aggregation identifier (e.g., a flow may be identified by the IP source address and/or
IP destination address pair, or other aggregates). The aggregation identifier also de-
termines which fields to use in the authentication (the mask). Next, an HMAC-SHA1
algorithm is issued over the first (masked) 64 bytes of packet data usingK (20 bytes)
as encryption key. The encryption result (20 bytes) is then ‘inserted’ into the current
packet’s IP option field. This operation involves shifting packet data to make space for
the option field. It also involves re-computing its IP checksum because of the IP header
modification. Once the packet has been modified it is scheduled for transmission. In
this prototype, the ingress NPU packets are transmitted out to the egress NPU via a fast
bus.

The token switch application implements the token switch machine from the sys-
tem architecture (see Figure 2). FFPF automatically feeds the token switch module with
packet handles. The token switch checks whether the current packet has the appropriate
IP option field, and extracts the first 64 bytes of the original packet data and the token
key value from the option field into local registers. Next, it applies a custom mask over
the 64 bytes of data. The application also retrieves a proper token key from its local
KeysTable. If no entry is found in the KeysTable the packet cannot be authorised and it
will be sent out to a default port (e.g., port 8) for transmission over a (slow) routed con-
nection. Otherwise, an HMAC-SHA1 algorithm is issued over the 64 bytes of data and
using the token key value (20 bytes) as encryption key. The encryption result is com-
pared to the built-in packet token. When they match, the packet has been successfully
authorised and it will be forwarded to its authorised port (Np).

4 Evaluation

Figure 6 shows the system setup used for proving the concepts of token based switching
[15].

The two IXP2850 NPUs (Ingress and Egress) boot from a Linux boot server ma-
chine. At run-time we use FFPF for the control path (running on the Linux server and
both embedded linux NPUs). Three other linux machines (Rembrandt 6, 7 and 8) serve
as clients and are each connected via gigabit fibre to an NPU gigabit port. In order
to find out the maximum data rate the proposed system can handle, we evaluate the
following scenario:

– An UDP traffic stream was generated (using theiperf tool) from Rembrandt6 to
port 6 of the IXDP2850;

– A key was set for authorising traffic (Rembrandt6→ 7) to end up on port 7 and
another key was set for (Rembrandt 7→ 6) to end up on port 6;

– Unauthorised traffic goes to the default port (port 8);
– To prove that authorised traffic ends up on port 7 and unauthorised traffic ends

up on port 8, Rembrandt7 and 8 were connected to the IXDP2850 ports 7 and 8,
respectively. We used thetcpdump tool on Rembrandt7 and 8 for listening to their
gigabit ports.

Egress

Internet

Ingress

6

7

8

Gateway
10/100Mbps switch

rembrandt6

rembrandt7

rembrandt8Intel IXDP2850

Linux

BootServer

Fig. 6. Token Based Switch demo.

The performance of the above test is shown in Figure 7.a. It has two charts:1© ‘data
received’ which represents the received rate in the IXDP2850 box and2© ‘successfully
switched data’ which denotes the rate that the TBS could handle properly using just a
single thread for processing. The ‘data received’ chart is low for small packets because
of the Gigabit PCI card limitation used in the Rembrandt6 PC for traffic generation. So,
for small packets it reflects the limitations of the traffic generator rather than those of the
TBS. The second chart, ‘Successfully switched data’, is lower than the first one for high
speeds because here we are using a single threaded implementation. The multithreaded
version coincides exactly with the ‘data received’ chart and is thefore not visible.

a© running in hardware b© running in cycle accurate simulator

Fig. 7. Token Based Switch performances

While we cannot predict the real performance for speeds above 1 Gbps without per-
forming measurements with a high-speed traffic generator, we estimated the outcome
by using the Intel’s cycle accurate IXP simulator running in debug mode. Table 1 shows
the cycle estimation for a 150 bytes packet processed by each software component from
the Data path (Rx, Tx, RxCSIX, Tx CSIX, TokenBuilder and TokenSwitch). Table 1.a
illustrates the cycles spent for one packet in each software module of the FFPF imple-
mentation on IXP2850. These modules are optimised for multithreading packet pro-
cessing (e.g., receiving, storing, transmitting). The first row in Table 1.b contains the
cycles spent for one packet in a single threaded version of the token builder and token
switch modules. We note that these values are high because all subtasks (e.g., encryp-
tion, token insertion, checksum computation) run linearly (no parallelism involved at
all) and use only one crypto unit each. This single threaded version gives the perfor-
mance shown in Figure 7.a. The next rows illustrate various implementations of the
multithreading version. Although we should expect better performance when we in-
crease parallelism (e.g., more threads, or moreµEngines), having only two crypto units
available per NPU limits the performance to the value of roughly 2000 cycles (the token
switch module spends its time mostly on authentication, while the token builder module
does also token insertion in the packet).

Note that our prototype implements each TBS module (token builder and token
switch) on only one NPU of the IXDP2850 hardware system. The reason this was done
is that we have only one of these (expensive) IXDP2850 devices available in our lab.
In a real setup, however, each TBS module may use the full dual-NPU IXDP2850 for
building or checking tokens and therefore the system performance is expected roughly
to double compared to our presented figures, mainly because we would benefit from the
availability of four crypto units.

Table 1.Cycle budget.

FFPF moduleµEngine cycles
Rx 408
Tx CSIX 276
Rx CSIX 504
Tx 248

TBS TokenBuilderTokenSwitch
single threaded 5777 3522
4 threads, 1µEngine 3133 2150
8 threads, 1µEngine 3000 2100
4 threads, 2µEngines 2600 2100
8 threads, 2µEngines 2500 2000

(a) FFPF on IXP2850 overhead (b) TBS overhead

Using the cycle estimation given in Table 1, we express the throughput as a func-
tion of the packet size, number of threads and number ofµEngines: rate=f(packet size,
threads,µEngines) without taking into account additional contention. The estimated
throughput for our multithreaded version goes up to roughly 2Gbps (Figure 7.b).

We also measured the latency introduced by our Token Based Switch system. The
token builder application (the whole Ingress NPU chain) takes 13.690 cycles meaning
a 9,7µs processing time (introduced latency), and the TokenSwitch application (the
whole Egress NPU chain) takes 8.810 cycles meaning a 6,2µs latency. We mention that
aµEngine in the IXP2850 NPU runs at 1400MHz.

5 Related work

In addition to commercial solutions for single domain provider-controlled applications
such as Nortel DRAC, Alcatel BonD, some research is also underway to explore the
concept of user-controlled optical network paths. One of the leading software packages
is the User Controlled Lightpath Provisioning (UCLP) [16]. UCLP currently works in a
multi-domain fashion, where all parties and rules are pre-determined. Truong et al [17]
worked on policy-based admission control for UCLP and implemented fine-grained
access control.

Some interesting work in the optical field is also done in Dense Wavelength Division
Multiplexing-RAM [4, 18], where a Grid-based optical (dynamic) bandwidth manager
is created for a metropolitan area. Our approach is different in the sense that we provide
a mechanism todynamicallyset upmultiple shortcutsacross a multi-domain end-to-
end connection. Therefore, an end-to-end connection can be easily improved in terms
of speed and hop count by introducing ‘shortcuts’ based on new user’s agreements.

IP Easy-pass [5] proposed a network-edge resource access control mechanism to
prevent unauthorised access to reserved network resources at edge devices (e.g., ISP
edge-routers). IP packets that are special demanding, such as real-time video streams,
get an RC5 encrypted pass appended. Then, at edge-routers, a linux kernel validates the
legitimacy of the incoming IP packets by simply checking their annotated pass. Unlike
our work, the solution aims at fairly low link rates. While our solution shares the idea of
authentication per packet (token), we use a safer encryption algorithm (HMAC-SHA1)
and a separate control path for key management (provided by AAA servers). In addition,
we demonstrate that by using network processors we are able to cope with multi-gigabit
rates.

Most related to our TBS is Dynamic Resource Allocation in GMPLS Optical Net-
works (DRAGON) framework [19]. This ongoing work defines a research and experi-
mental framework for high-performance networks required by Grid computing and e-
science applications. The DRAGON framework allows dynamic provisioning of multi-
domain network resources in order to establish deterministic paths in direct response to
end-user requests. DRAGON’s control-plane architecture uses GMPLS as basic build-
ing block and AAA servers for authentication, authorisation and accounting mecha-
nism. Thereby, we found a role for our TBS within the larger DRAGON framework
and we currently work together to bring the latest TBS achievements into DRAGON.

6 Conclusions and future work

This paper presents our implementation of the Token Based Switch application on Intel
IXP network processors, which allows one to select an optical path in hybrid networks.
The admission control process is based on token principles. A token represents the
right to use a pre-established network connection in a specific time frame. Tokens allow
separation of the (slow) authorisation process and the real-time usage of high-speed
optical network links. The experimental results show that a TokenSwitch implementa-
tion using the latest Network Processor generation can perform packets authorisation at
multi-gigabit speeds.

Acknowledgements

This work was supported by the GigaPort NG and the EU IST NextGrid projects. The
authors wish to thank to Harry Wijshoff and Dejan Kostic for their feedback and Lennert
Buytenhek for his advice and support.

References

1. Winkler, L.: The hybrid optical and packet infrastructure (HOPI) testbed. Internet2 whitepa-
per (April 2004)

2. Vollbrecht, J., Calhoun, P., Farrel, S., Gommans, L., Gross, G., Bruin, B., de Laat, C., Hol-
drege, M., Spence, D.: RFC2904, AAA Authorization Framework. IETF (2000)

3. Kent, S., Seo, K.: Security Architecture for the Internet Protocol. RFC 4301 (Proposed IPsec
Standard) (December 2005)

4. Figueira, S., Naiksatam, S., Cohen, H.: DWDM-RAM: Enabling Grid Services with Dy-
namic Optical Networks. In: Proc. of the SuperComputing, Phoenix, Arizona (Nov 2003)

5. Wang, H., Bose, A., El-Gendy, M., Shin, K.G.: IP Easy-pass: a light-weight network-edge
resource access control. IEEE/ACM Transactions on Networking13(6) (2005)

6. Blake, S., D.Black, Carlson, M., Davies, E., Wang, Z., Weis, W.: RFC2475, An Architecture
for Differentiated Services. IETF (1998)

7. Rosen, E., Viswanathan, A., Callon, R.: RFC3031, Multiprotocol Label Switching Architec-
ture. IETF (2001)

8. DeFanti, T., de Laat, C., Mambretti, J., Neggers, K., Arnaud, B.S.: TransLight: a global-scale
LambdaGrid for e-science. Commun. ACM46(11) (2003) 34–41

9. de Laat, C., Radius, E., Wallace, S.: The rationale of current optical networking initiatives.
Future Generation Computer Systems19(6) (Aug 2003) 999–1008

10. Gommans, L., Dijkstra, F., de Laat, C., Taal, A., Wan, A., T., L., Monga, I., Travostino, F.:
Applications drive secure lightpath creation across heterogeneous domains. IEEE Commu-
nications Magazine44(3) (March 2006) 100–106

11. Bellare, M., Canetti, R., Krawczyk, H.: RFC2104, HMAC: Keyed-Hashing for Message
Authentication. IETF (1997)

12. Intel Corporation: Intel IXP2xxx Network Processor. IXP NPs product brief (2005)
13. Bos, H., de Bruijn, W., Cristea, M., Nguyen, T., Portokalidis, G.: FFPF: Fairly Fast Packet

Filters. In: Proceedings of OSDI’04, San Francisco, CA (December 2004)
14. Cristea, M.L., de Bruijn, W., Bos, H.: Fpl-3: towards language support for distributed packet

processing. In: Proceedings of IFIP Networking, Waterloo, Canada (May 2005)
15. Gommans, L., Travostino, F., Vollbrecht, J., de Laat, C., Meijer, R.: Token-based authoriza-

tion of connection oriented network resources. In: Proc. GRIDNETS, San Jose, CA, USA
(Oct 2004)

16. Wu, J., Campbell, S., Savoie, J., Zhang, H., Bochmann, G., Arnaud, B.: User-managed end-
to-end lightpath provisioning over ca*net 4. In: Proceedings of the National Fiber Optic
Engineers Conference, Orlando, FL, USA (Sep 2003)

17. Truong, D., Cherkaoui, O., ElBiaze, H., Aboulhamid, M.: A Policy-based approach for User
Controlled Lightpath Provisioning. In: Proc. of NOMS, Seoul, Korea (Apr 2004)

18. Figueira, S., Naiksatam, S., Cohen, H.: OMNInet: a Metropolitan 10Gb/s DWDM Photonic
Switched Network Trial. In: Proceedings of Optical Fiber Communication, Los Angeles,
USA (Feb 2004)

19. Lehman, T., Sobieski, J., Jabbari, B.: DRAGON: A Framework for Service Provisioning in
Heterogeneous Grid Networks. IEEE Communications Magazine44(3) (March 2006)

