
Learning to Drive a Bicycle using Reinforcement Learning and Shaping

Jette Randløv
CATS, Niels Bohr Institute,
University of Copenhagen,

Blegdamsvej 17,
DK-2100 Copenhagen Ø, Denmark

randlov@nbi.dk

Preben Alstrøm,
alstrom@cats.nbi.dk

Abstract

We present and solve a real-world problem of
learning to drive a bicycle. We solve the prob-
lem by online reinforcement learning using the
Sarsa(

�
)-algorithm. Then we solve the compos-

ite problem of learning to balance a bicycle and
then drive to a goal. In our approach the rein-
forcement function is independent of the task the
agent tries to learn to solve.

1 Introduction

Here we consider the problem of learning to balance on a
bicycle. Having done this we want to drive the bicycle to
a goal. The second problem is not as straightforward as it
may seem. The learning agent has to solve two problems
at the same time: Balancing on the bicycle and driving to
a specific place. Recently, ideas from behavioural psychol-
ogy have been adapted by reinforcement learning to solve
this type of problem. We will return to this in section 3.

In reinforcement learning an agent interacts with an envi-
ronment or a system. At each time step the agent receives
information on the state of the system and chooses an ac-
tion to perform. Once in a while, the agent receives a re-
inforcement signal � . Receiving a signal could be a rare
event or it could happen at every time step. No evalua-
tive feedback from the system other than the failure sig-
nal is available. The goal of the agent is to learn a map-
ping from states to actions that maximizes the agent’s dis-
counted reward over time [Bertsekas and Tsitsiklis, 1996,
Sutton and Barto, 1998]. The discounted reward is the sum������	��
 � �
��� � , where
 is the discount parameter.

A lot of techniques have been developed to find near opti-
mal mappings on a trial-and-error basis. In this paper we
use the Sarsa(

�
)-algorithm, developed by Rummery and

1. Initialize all eligibility traces � ����� .
2. Set � ��� .
3. Choose action ��� .
4. If ��� � then learn� � � � ���	� �"!$# �%���	� �
	& ��' & ���	�)(*�*���	� .
5. Calculate +-, & � with respect to the chosen action.
6. Update accumulating traces as�*� �
 � �*���	� �.+/, & � .

Update replacing traces as�*�103254 �76 +/, & � if +-, & �98�:�<;
 � �*���	�50=2*4 otherwise.
7. Perform action, receive reinforcement-signal.
8. If the system has entered a terminal state, then� >?�	��@ and jump to point 3.
9. Otherwise perform the learning (point 4) with& � ��� .

Figure 1: The Sarsa 0 � 4 -algorithm.

Niranjan [Rummery and Niranjan, 1994, Rummery, 1995,
Singh and Sutton, 1996, Sutton and Barto, 1998], because
empirical studies seem to suggest that this algo-
rithm is the best so far [Rummery and Niranjan, 1994,
Rummery, 1995, Sutton and Barto, 1998]. Figure 1 shows
the Sarsa(

�
)-algorithm. We have modified the algorithm

slightly by cutting of eligibility traces that fall below @ � �BA
in order to save calculation time. For replacing traces we
allowed the trace for each state-action pair to continue un-
til that pair occurred again, contrary to Singh and Sutton
[Singh and Sutton, 1996].

2 Learning to balance on a bicycle

Our first task is to learn to balance. At each time step the
agent receives information about the state of the bicycle,

the angle and angular velocity of the handle bars, the an-
gle, angular velocity and acceleration of the angle from the
bicycle to vertical. For details of the bicycle system we
refer to appendix A.

The agent chooses two basic actions. What torque should
be applied to the handle bars,

����� '�� N ;)� N ; ��� N � ,
and how much the centre of mass should be displaced
from the bicycle’s plan, 	 �
� '�� cm ;)� cm ; ��� cm � —a
total of 9 possible actions. Noise is laid on the choice
of displacement, to simulate an imperfect balance, 	 �
	 agents choice � 2�� , where � is a random number within # ' @�
%@ (
and 2 is the noise level measured in centimeters. We use2 � � cm.

Our agent consists of 3456 input neurons and 9 output neu-
rons, with full connectivity and no hidden layers. The
learning rate is ! � ����� . The continuous state data is
discretised by non-overlapping intervals in the state-space,
such that there is exactly one active neuron in the input
layer. This neuron represent state information for all the
different state variables. The discrete intervals (boxes) are
based on the following quantization thresholds:

The angle the handle bars are displaced from normal, ��� � ,� ��� � , � @ , ��� � radians.

The angular velocity of the angle, ���� � , � � , ��� radi-
ans/second.

The angle from vertical to bicycle, ��� � , � 0.06,
�

0.15,� ��! �" radians.

The angular velocity, ��#� � , � 0.25,
�

0.5,
���

radi-
ans/second.

The angular acceleration, $��� � , � � , ��� radians/second
�
.

0

100

200

300

400

500

600

700

800

900

1000

0 1000 2000 3000 4000 5000 6000 7000 8000

S
ec

on
ds

Trial

Figure 2: Number of seconds the agent can balance on the
bicycle, as a function of the number of trials. Average of 40
agents. (After the agent has learned the task, 1000 seconds
are used in calculation of the average.)

Figure 2 shows the number of seconds the agent can bal-
ance on the bicycle as a function of the number of trials.
When the agent can balance for 1000 seconds, the task is
considered learned. Here

� � ���&%'� and
 � �(� %'% . Sev-
eral CMAC-systems (also know as generalized grid cod-
ing) [Watkins, 1989, Santamaría et al., 1996, Sutton, 1996,
Sutton and Barto, 1998], were also tried, but none of them
gave the agent a learning time below 5000 trials.

Figure 3: The first 151
trials seen from above.
The longest path is 7
meters.

Figures 3 and 4 show the move-
ments of the bicycle at the be-
ginning of a learning process
seen from above. Each time the
bicycle falls over it is restarted
at the starting point. At each
time step a line is drawn be-
tween the points where the
tyres touch the ground.

Both accumulating and replac-
ing eligibility traces were tried.
The results are shown in fig-
ure 5. The results found sup-
port the general conclusions
drawn by Singh and Sutton
[Singh and Sutton, 1996]: Re-
placing traces make the agent
perform much better than con-
ventional, accumulating traces.
Long traces help the agent best.

3 Shaping

The idea of shaping, which is borrowed from behavioural
psychology, is to give the learning agent a series of rela-
tively easy problems building up to the harder problem of
ultimate interest [Sutton and Barto, 1998]. The term origi-
nates from the psychologist Skinner [Skinner, 1938], who
studied the effect on animals, especially pigeons and rats.

To train an animal to produce a certain behavior, the
trainer must find out what subtasks constitute an approx-
imation of the desired behavior, and how these should
be reinforced [Staddon, 1983]. By rewarding successive
approximations to the desired behavior, pigeons can be
brought to pecking a selected spot [Skinner, 1953, p. 93],
horses to do clever tricks in a circus like seemingly recog-
nize flags of nations or numbers and to do calculation
[Jørgensen, 1962, pp. 137-139], and pigs to perform com-
plex acts as eating breakfast at a table and vacuuming
the floor [Atkinson et al., 1996, p. 242]. Staddon notes
that human education as well is built up as a process of
shaping if behavior is taken to include “understanding”
[Staddon, 1983, p. 458].

Figure 4: The same route as figure 3 a little later. Now the
agent can balance the bicycle for 30–40 meters. The agent
starts each trial in a equilibrium position 0 � ; �� ; � ; �� ; $��4 �0 � ;)� ;)�<; �<; � 4 . During the first trials it learns to avoid dis-
turbing this unnecessarily, i.e. it learns to keep driving
straight forward. Now the most difficult part of the learning
remains: To learn to come safe though a dangerous situa-
tion. A weak (random) preference for turning right (instead
of left) is strengthened during the learning as the agent gets
better at handling problematic situations and therefor re-
ceives less discounted punishment than expected.

Shaping can be used to speed up the learning process for
a problem or in general to help the reinforcement learning
technique scale to large and more complex problems. But
there is a price to be paid for faster learning: We must give
up the tabula rasa attitude that is one of the attractive as-
pects of basic reinforcement learning. To use shaping in
practice one must know more about the problem than just
under which conditions an absolute good or bad state has
been reached. This introduces the risk that the agent learns
a solution to a problem that is only locally optimal.

There are at least three ways to implement shaping in rein-
forcement learning: By lumping basic actions together as
macro-actions, by designing a reinforcement function that
rewards the agent for making approximations to the desired
behavior, and by structurally developing a multi-level ar-
chitecture that is trained part by part.

Selfridge, Sutton and Barto showed that transferring
knowledge from solving an easy version of a problem such
as the classical pole mounted on a cart can ease learning a
more difficult version [Selfridge et al., 1985].

McGovern, Sutton and Fagg have tested macro-actions in a
gridworld and found that in some cases they accelerate the
learning process [McGovern et al., 1997].

Dorigo, Colombetti and Borghi have worked with
shaping for real robots [Dorigo and Colombetti, 1993,
Colombetti et al., 1996, Dorigo and Colombetti, 1997].
They use reinforcement learning as a mean to translate
suggestions from an external trainer. The trainer is a
programme in itself with a high-level representation of
the desired behavior that provided immediate reinforce-
ment. For instance in the “The Hamster Experiment”
[Colombetti et al., 1996] the robot’s task is to collect
pieces of food (colored cans) and bring them to its nest.
The trainer provides the agent with a reinforcement signal
for approaching the food. This signal is proportional to the
decrease in the distance between the robot and the pieces
of food. The training of the agent boils down to translating
the high-level trainer to a low-level control programme.
This method of shaping by a trainer has a number of
advantages as well as disadvantages. The agent does not
have to solve the delayed reinforcement problem. But on
the other hand, the programmer of the trainer must know
in advance what high-level behavior is desired, and to such
a degree that the trainer can judge how well a single move
fits into the desired behavior.

Mataric has studied the possibility of putting implicit do-
main knowledge into the agent by construction a more
complex reinforcement function than commonly used
[Mataric, 1994]. Again the theory was tested on a real robot
moving cans to a nest. Here the constructed function did

0

2000

4000

6000

8000

10000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Le
ar

ni
ng

 ti
m

e

Lambda
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Lambda

Figure 5: Learning time for different values of
�

for accumulating eligibility traces (left) and replacing traces (right). Each
point is an average of 30 simulations.

not eliminate the need for solving the delayed reinforce-
ment problem.

Gullapalli has studied two implementations of shaping
[Gullapalli, 1992]. In the first the complexity of the con-
trol task is gradually increased during learning, and the re-
inforcement function used is changed accordingly. In this
way most of a training run is used in learning the approx-
imation to the current target behavior. This system was
used to make a simulated robot hand perform a series of
key strokes on a calculator. The actual task consisted of six
subtasks. Secondly Gullapalli considered structural shap-
ing: An incremental development of the learning system
where a multi-level architecture is trained in parts.

Gerald Tesauro’s Backgammon playing agent achieved
master level play through self-play [Tesauro, 1992,
Tesauro, 1994, Tesauro, 1995]. This can be considered as
a very succesfull example of the use of shaping. Self-play
is a sort of shaping, since at first the agent plays against a
nearly random opponent and thereby solves an easy task.
The complexity of the task then grows as the agent gets
better at playing.

In Gullapalli’s experiments [Gullapalli, 1992] and
Selfridge, Sutton and Barto’s [Selfridge et al., 1985],
as well as in Dorigo, Colombetti and Borghi’s
[Colombetti et al., 1996, Dorigo and Colombetti, 1997],
the agent received a different reinforcement signal over
time for the same behavior. This is not in agreement with
the original inspiration of the reinforcement signal as being
a hardwired signal inside the brain of a animal. To solve
this problem, we need the reinforcement function to be
independent of what task the agent tries to learn to solve.
Our approach in general is to let the most basic tasks result
in the lowest reinforcement signals and more advanced
tasks correspond to larger signals.

Signal for not moving

Signal for walking

Signal for crawling

Signal for rolling

Signal for running

Figure 6: Reinforcement signals
for the movements of a child-
robot.

Say, we want a robot
to learn to move
forward like a child
(see figure 6). As a
child grows stronger
it discovers more
complex and faster
ways of moving.
Performing each
way of moving can
be seen as a task
that is more difficult
than the former.
The robot starts
by learning to roll.
Having done so, it
might discover how to crawl. The reinforcement signal for
crawling is greater than rolling, and greater than what the
agent expects to receive, and therefore it acts as a reward.
Later after having learned to walk, failing to walk and
falling back on crawling makes the robot receive a smaller
reinforcement signal than it expected, and the internal
reinforcement signal becomes negative—that is the signal
acts as a punishment.

Can these basic ideas of shaping be applied to reinforce-
ment learning, and make it possible to solve a complex
problem with more than one goal? We will now turn to
a practical study of these theoretical issues.

4 Learning to drive to a goal using shaping

We want to study shaping on the composite problem of
learning to balance a bicycle and then drive to a goal. In
contrast to other experiments with shaping, we want the
agent to be totally in charge of when to switch task. When

< -0.15
-0.15 - -0.06

-0.06 - 0
0 - 0.06

0.06 - 0.15
> 0.15

state. 0
1

2
3

4
5

6
7

8

action

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

weight

0
5

10
15 0

1
2

3
4

5
6

7
8

-0.35
-0.3

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

state

action

weight

Figure 7: The weight, from the � -oriented input neurons (left) and the weights from the angle oriented input neurons
(right). Note the difference of the scale.

one drives a bicycle in the morning to the institute and hits
a hole in the road, one instantaneously forgets about where
to go and focus attention on the balance. We want the agent
to be able to switch task equally swiftly when it find the sit-
uation appropriate.

The bicycle starts out at the origin heading west. The goal
is a circular spot (10 meter radius) positioned 1000 meters
to the north of the starting point.

We enlarge our basic network by 20 more input neurons,
with full connectivity to the 9 output neurons. The angle
between the driving direction and the direction to goal is
discretised by @ ��� intervals, one for each neuron. Now
there are exactly two active neurons in the agents input
layer—one for the state of the bicycle and one for the driv-
ing direction relative to the goal. The learning rate for
the weights from the angle-input neurons is chosen to be
0.01—much smaller than the rate for the other weights,
in order to reflect the different time scales in the learning
tasks: We do not want the weights in the angle oriented part
to grow large while the agent learns to balance the bicycle.
The odds are against these weights ending up containing
anything useful.

The reinforcement function is independent of the task the
agent tries to learn to solve. If the bicycle falls over, the
agent always receives ' @ , if the agent reaches the goal
it is rewarded by � � ��� � @ , and otherwise the agent re-
ceives � � 0�� '��

�
� 4	� ��� � � � � � , where � � is the angle be-

tween the driving direction and the direction to goal mea-
sured in radians. The agent is punished when driving away
from the goal and rewarded when driving towards it. This
reinforcement function is inspired by the signal used by
Colombetti, Dorigo and Borghi [Colombetti et al., 1996]
mentioned earlier. Note that the agent still have to solve
the delayed reinforcement problem. As one can see, the

numerical value of this signal is quite small. We tried
larger values, which made the agent learn to drive in the
correct orientation without being able to balance. After a
few hundred trials the agent at the starting point immedi-
ately threw the bicycle to the right. The positive reinforce-
ment it received due to the correct orientation in several
time steps was large enough to make up for the punishment
from falling.

5

10

15

20

25

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

N
o.

 o
f s

uc
ce

s

Trial

Figure 8: Number of times an agent drives the bicycle to
the goal for twelve agents.

Figure 8 shows the number of times twelve agents reach
the goal. In a typical learning process it takes the agent
1700 trials to learn to balance (i.e. drive more than 1000 s
without falling), and after about 4200 trials it gets to the
goal for the first time. After a total of approximately 5700
trials it drives to the goal more or less every time.

Figure 7 shows the values of some of the important weights

after learning. The � -weights shown are an average of
weight values around � � � , �� � � , �� � � and $� � � .
If the agent drives along in balance, the weights with val-
ues in the relatively flat upper area are active for the bal-
ance oriented input neurons, and the values of the an-
gle oriented neurons matter for the choice of action. The
weights belonging to the balance oriented input neurons
makes the agent prefer action 3, 4 and 5 (which corresponds
to
� � �), but the weights belonging to the angle oriented

neurons decide which one. But if the state of the bicycle
enters an area of unbalance, the balance oriented input neu-
rons have far greater differences in values of the weights,
and as a result the angle oriented input neurons do not make
any difference for the choice of action. In other words: The
agent swiftly shifts attention from the task of finding the
goal to the task of balancing the bicycle if required.

Figure 9: A typical route when the agent reaches the goal
for the first time.

Figure 9 and 10 shows routes from the starting point to the
goal (the grey circle on the y-axis). The first drives to the
goal can be as long as 200 km, but the agent soon learns to
drive to the goal driving “only” 7 km. A driving distance
as short as 1680 m has been observed.

Figure 10: Already after 10 drives to the goal the agent
navigates a little better.

The goal is not reached just by coincidence. The probabil-
ity for hitting the goal at random is quite small. An estimate
for the time required to reached the goal by doing a corre-
lated random walk is @ � � � time steps. (The bee line from
the starting point to the goal is

� � � ��@ ��� time steps.) In other
words: If the agent had to solve the problem of learning to
drive to the goal without access to the shaping reinforce-
ment signal, i.e. the tabular rasa approach, it would take
enormous amounts of time before it hits the goal for the
first time and experiences the reward for getting there.

We agree with Mataric [Mataric, 1994] that these hetero-
geneous reinforcement functions have to be designed with
great care. In our first experiments we rewarded the agent
for driving towards the goal but did not punish it for driv-
ing away from it. Consequently the agent drove in circles
with a radius of 20–50 meters around the starting point.
Such behavior was actually rewarded by the reinforcement
function, furthermore circles with a certain radius are phys-
ically very stable when driving a bicycle because of the
cross terms in eqs. (2) and (3) in the appendix.

5 Conclusion

Our results demonstrate the utility of reinforcement learn-
ing on a difficult, dynamical real world problem. It is pos-
sible to learn to balance a bicycle by pure reinforcement
learning with only one (rare) reinforcement signal. Further-
more it is possible to learn a solution to the double problem
of balancing on the bicycle and driving to a goal by com-
bining reinforcement learning with shaping. The applica-
tion of shaping accelerated the learning process immensely.
Without shaping, it would not have been practical to wait
for the agent to discover the goal and the reward for getting
there.

Acknowledgements

We would very much like to thank Andrew G. Barto for
several good discussions and stimulating ideas.

References

[Atkinson et al., 1996] Atkinson, R. L., Atkinson, R. C., Smith,
E. E., Bem, D. J., and Nolen-Hoeksema, S. (1996). Hilgard’s
Introduction to Psychology. Harcourt Brace College Publish-
ers, 12’th edition.

[Bertsekas and Tsitsiklis, 1996] Bertsekas, D. P. and Tsitsiklis,
J. N. (1996). Neuro-Dynamic Programming. Athena Scien-
tific.

[Colombetti et al., 1996] Colombetti, M., Dorigo, M., and
Borghi, G. (1996). Robot shaping: The hamster experi-
ment. Technical Report TR/IRIDIA/1996-6, Université Libre
de Bruxelles.

[Dorigo and Colombetti, 1993] Dorigo, M. and Colombetti, M.
(1993). Robot shaping: Developing autonomous agents though
learning. Technical Report TR-92-040, International Com-
puter Science Institute, Berkeley. Labeled: To appear in Ar-
tificial Intelligence Journal.

[Dorigo and Colombetti, 1997] Dorigo, M. and Colombetti, M.
(1997). Précis of “Robot Shaping: An Experiment in Behavior
Engineering”. Adaptive Behavior, 5(3–4). Précis of the book
from MIT Press, Oct. 1997.

[Gullapalli, 1992] Gullapalli, V. (1992). Reinforcement Learn-
ing and Its Application to Control. PhD thesis, University of
Massachusetts. COINS Technical Report 92–10.

[Jørgensen, 1962] Jørgensen, J. (1962). Psykologi – paa biolo-
gisk Grundlag. Scandinavian University Books. Munksgaard,
København.

[Mataric, 1994] Mataric, M. J. (1994). Reward functions for ac-
celerated learning. In Cohen, W. W. and Hirsh, H., editors,
Machine Learning: Proceedings of the Eleventh International
Conference. Morgan Kaufmann, CA.

[McGovern et al., 1997] McGovern, A., Sutton, R. S., and Fagg,
A. H. (1997). Roles of macro-actions in accelerating reinforce-
ment learning. In 1997 Grace Hopper Celebration of Women
in Computing.

[Rummery, 1995] Rummery, G. A. (1995). Problem Solving with
Reinforcement Learning. PhD thesis, Cambridge University
Engineering Department.

[Rummery and Niranjan, 1994] Rummery, G. A. and Niranjan,
M. (1994). On-line Q-learning using connectionist systems.
Technical Report CUED/F-INFENG/TR 166, Engineering De-
partment, Cambridge University.

[Santamaría et al., 1996] Santamaría, J. C., Sutton, R. S., and
Ram, A. (1996). Experiments with reinforcement learning in
problems with continuous states and action spaces. Technical
Report 96-088, COINS.

[Selfridge et al., 1985] Selfridge, O. G., Sutton, R. S., and Barto,
A. G. (1985). Training and tracking in robotics. In Proceed-
ings of the Ninth International Joint Conference in Artificial
Intelligence, pages 670–672. Morgan Kaufmann, CA.

[Singh and Sutton, 1996] Singh, S. P. and Sutton, R. S. (1996).
Reinforcement learning with replacing eligibility traces. Ma-
chine Learning, 22:123–158.

[Skinner, 1938] Skinner, B. F. (1938). The Behavior of Organ-
isms: An Experimental Analysis. Prentice Hall, Englewood
Cliffs, New Jersey.

[Skinner, 1953] Skinner, B. F. (1953). Science and Human Be-
havior. Collier-Macmillian, New York.

[Staddon, 1983] Staddon, J. E. R. (1983). Adaptive Behavior and
Learning. Cambridge University Press.

[Sutton, 1996] Sutton, R. S. (1996). Generalization in reinforce-
ment learning: Successful examples using sparse coarse cod-
ing. In Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E.,
editors, Advances in Neural Information Processing Systems,
volume 8, pages 1038–1044. The MIT Press, Cambridge.

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998).
Introduction to Reinforcement Learning. MIT Press/Bradford
Books.

[Tesauro, 1992] Tesauro, G. (1992). Practical issues in temporal
difference learning. Machine Learning, 8:257–277.

[Tesauro, 1994] Tesauro, G. (1994). TD-Gammon, a self-
teaching backgammon program, achieves master-level play.
Technical report, IBM, Thomas J. Watson Research Center,
Yorktown Heights, NY 10598.

[Tesauro, 1995] Tesauro, G. (1995). Temporal difference learn-
ing and TD-Gammon. Communications of the ACM, 38.

[Watkins, 1989] Watkins, C. J. (1989). Learning from Delayed
Rewards. PhD thesis, Cambridge University.

A Details of the Bicycle Simulation

The bicycle must be held upright within
� @ � � measured

from vertical position. If the angle from the vertical to the
bicycle falls outside this interval, the bicycle has fallen, and

the agent receives punishment ' @ . The Bicycle is mod-
eled by the following non-linear differential equations. One
simplification was made to ease the derivation of the equa-
tions: The front fork was assumed to be vertical, which is
unusual but not impossible. This, however, made the task a
bit more difficult for the agent.

There are two important angles in this problem: The angle
� of the direction of the bicycle from straightforward, and
the angle � the bicycle is tiled from vertical. The conser-
vations of angular momentum of the tyres results in some
important cross terms.

The equations do not model a bicycle exactly, as some sec-
ond order cross effects were ignored during the derivation.
However we believe that the largest problem of transfer-
ring to a real bicycle would be to build hardware that could
withstand falling over a thousand times—not just without
crashing but also without changing and thereby make the
system unstationary.

	���CM

�
�

��

�
cen

Figure 11: The bicycle as seen from behind. The thick
line represents the bicycle. CM is the centre of mass of the
bicycle and cyclist.

The following equations describe the mechanics of the sys-
tem. (See figure 11.) The angle � is the total angle of tilt
of the centre of mass, and is defined as:� def� � � arctan

� 	��� (1)

The angular acceleration $� can be calculated as:

$� � @	
bicycle and cyclist
 � � ����
�� �
'���� � � � 	���� �� �� � ��
���� 0 � 4
��� � � ��� ���� � ��� ��� � � �

� CM
�!�!�

(2)

This equation is the mechanical equation for angular mo-
mentum. The physical contents of the right hand side are
terms for the gravitation, effects of the the conservation of
angular momentum of the tyres and the fictional centrifugal
force. The term

	 ��� �� �� is important for understanding why
it is relative easier to ride a bicycle than to keep the balance
on a bicycle standing still. The cross effects that originate
from the conservation of angular momentum of the tyres
stabilize the bicycle, and this effect is proportional to the
angular velocity of the tyres �� and thereby to the velocity
of the bicycle.

The angular acceleration $� of the front tyre and the handle
bars is:

$� � � ' 	���" �� ��	 �$# (3)

These equations are not an exact analytical description, as
some second (and higher) order terms have been ignored.
The values of � , �� , $� , � , �� are send to the agent at each
time step. The agent returns the value of 	 and the torque�

.

�%� �%

� &� � ' �

Figure 12: Seen from above. The thick line represents the
front tyre.

The front and back tyres follow different paths in a curve
with different radii (see figure 12). The front tyre follows

the longest path. The radius for the front tyre is:

� � � &� ��� � 0 � � ' � 4 � � &� ��
�� � � (4)

And for the back tyre:

� � & ��� ��� ��� " � ' ��� ��� � &� �	� � � � (5)

For the CM the radius can be calculated as:

� CM
� � 0 & '�
%4 � � & �0 �	� � � 4 � �
�� (6)

The equations of the position of the tyres for the front tyre:��� �� � ��� ��� ���� ��� �� � ��� ���
� � 	 �
 ' ��
�� 0�� � ��� ��
���� 0�� � � 4 ��� � ��
�� 0 " � ��	��� 4 4� � � 0�� � ��� ��
���� 0�� � � 4 ��� � ��
 � 0 " � ��	��� 4 4 �

And for the back tyre:� � � ��� ��� ��� � � � � ��� ���
��� 	 � � ' ��
�� 0�� � ��
���� 0�� 4 ��� � ��
�� 0 " � ��	��� 4 4��� � 0 � � ��
���� 0�� 4 ��� � ��
�� 0 " � ��	��� 4 4 �

We estimated the values of the moments of inertia to:

	
bicycle and cyclist

� @ �
�
��� � � � ��� 0 � � 	 CM 4 � (7)

The various moments of inertia for a tyre was estimated to
(see figure 13):

	���� � ��� � � (8)	 ��" � �

�
� � � � (9)	 �$# � @
�
� � � � (10)

Table 1 shows the values of the parameters used for the
bicycle system.

I

Idc

dl

Idv

Figure 13: Axis for moments of inertia for a tyre.

Notation Value
 Horizontal distance between the
point, where the front wheel
touches the ground and the CM.

66 cm

CM The Centre of Mass of the
bicycle and cyclist as a total

	 The agent’s choice of the
displacement of the CM
perpendicular to the plan of the
bicycle

	 CM The vertical distance between
the CM for the bicycle and for
the cyclist.

30 cm�
Height of the CM over the
ground

94 cm

& Distance between the front tyre
and the back tyre at the point
where they touch the ground

111 cm� �
Mass of the bicycle 15 kg� �
Mass of a tyre 1.7 kg� �
Mass of the cyclist 60 kg� Radius of a tyre 34 cm

�� The angular velocity of a tyre �� � " �
�

The torque the agent applies on
the handlebars� The velocity of the bicycle 10 km/h

Table 1: Notation and values for the bicycle system.

