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Abstract

This article presents an interactive hand shape recog-
nition user interface for American Sign Language (ASL)
finger-spelling. The system makes use of a Microsoft Kinect
device to collect appearance and depth images, and of the
OpenNI+NITE framework for hand detection and tracking.
Hand-shapes corresponding to letters of the alphabet are
characterized using appearance and depth images and clas-
sified using random forests. We compare classification us-
ing appearance and depth images, and show a combination
of both lead to best results, and validate on a dataset of four
different users.

This hand shape detection works in real-time and is in-
tegrated in an interactive user interface allowing the signer
to select between ambiguous detections and integrated with
an English dictionary for efficient writing.

1. Introduction

This article presents an interactive finger-spelling graph-
ical user interface based on American Sign Language (ASL)
using a Microsoft Kinect device [8]. The proposed system
is capable of classifying finger-spelling hand shapes in real
time (on an off the shelf laptop computer), and overcomes
classification ambiguity by offering an easy way for the user
to select between ambiguous choices. We believe this offers
a novel interface for keyboard-less interaction and for sign
language learning.

Sign language recognition is a very hard problem, and
despite recent progresses automatic sign language recogni-
tion systems are still in their infancy (see, eg, [11, 9]). Typi-
cally, signs are characterized not only hand shapes, but also
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Figure 1. Illustration of the interactive ASL finger-spelling sys-
tem.

hand movements and other non-manual features such as fa-
cial expressions and body posture.

This work focuses on the much simpler problem of rec-
ognizing a limited set of hand shapes, namely the ones
forming the ASL finger-spelling alphabet—as shown in
Fig. 2. Because American finger-spelling is single-handed,
this removes the difficulties of hands occluding one another.
Also, the signs we consider are all static, allowing us to fo-
cus on hand-shape per se, rather than motion. Despite be-
ing a simplified problem, hand shape recognition remains
a challenging one. First, some of the signs in the alphabet
are visually very similar, for example the letters a, e, m, n,
s and t are all signed with a fist-like hand shape, and only
distinguished by the position of the thumb—as illustrated in
Fig. 4. The thumb position itself is barely visible for m and
t, making decision difficult. Second, there is a large amount
of variation in how the sign is done by different persons, and
the hand shape appearance will vary widely depending on
the hand’s pose—this is illustrated for the letter p in Fig. 3.
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Figure 2. ASL finger spelling alphabet. We will ignore the letters
j and z as they involve motion, and rely on dictionary lookup for
those. Reproduced from [15]

Third, the differences between people’s hands and natural
dexterity leads to differences in the execution of signs be-
tween different signers. Finally, for a finger-spelling user
interface to be usable in practice, it needs to run in real-time
(> 10Hz) on commonly available computers.

The most similar previous work is probably the article
by Isaac & Foo [6], who proposed an ASL finger-spelling
recognition system based on neural networks applied to
wavelets features. As in this article, they focus on static
hand shapes, and report a recognition rate of 99% but do not
specify the size of the dataset and number of different sub-
jects. Bergh & Van Gool [14] propose a method that recog-
nises 6 hand poses from a single user. Their system is based
on a concatenation of depth and color-segmented images,
and the recognition uses a combination of Haar wavelets
and neural network. In contrast to this work, we consider 24
different hand–poses provided by ASL, some of them very
similar, across 5 different users. Liwicki & Everingham
[7] attempted British Sign Language (BSL) finger-spelling
recognition using a combination of Histogram of Gradients
(HOG) features and Hidden Markov Models (HMMs). This
is intrinsically different to the present work as BSL is two
handed whereas ASL is single-handed. Ong & Bowden [10]
proposed a hand shape classifier based on boosted classi-
fiers and shape context features, claiming 97.4% recogni-
tion rate on 300 artificial hand shapes.

This article differs from these previous works in several
respects. First we will consider features extracted not only
from standard intensity images, but also from depth images
provided by a Microsoft Kinect device. Depth information
is robust to illumination and skin pigment differences, of-
fering a more reliable detection. Second, we propose a real-
time approach that can recognize 24 of the 26 signs with

(a) sign p (b) user A (c) user A (d) user B

(e) user B (f) user C (g) user D

Figure 3. Illustration of the variability in the dataset, due to small
pose variations, and different users finger-spelling styles. All im-
ages show the bounding boxes extracted for the color image for
the letter p.

a e m n s t
Figure 4. Illustration of the ambiguity in the dataset between dif-
ferent classes. All are represented by a closed fist, and differ only
by the thumb position, leading to higher confusion levels. All ex-
amples are taken from the same user.

very good accuracy across different users. Finally, we em-
bedded our finger-spelling detection into an interactive user
interface that overcomes the ambiguity between signs by
proposing to the user an easy way to choose between plau-
sible hypotheses, and interfacing signing with a dictionary
lookup.

In the following, we start by describing the hand-shape
recognition approach (section 2), before discussing the
dataset and performance (section 3), and then presenting the
user interface (section 4).

2. Methods
In this section we describe how the ASL finger-spelling

hand shapes are learnt and recognized by the system. First,
section 2.1 describes the hand extraction and tracking, then
section 2.2 exposes the extracted hand features and finally,
section 2.3 discusses the classification method. This is il-
lustrated in Fig. 1.

2.1. Hand Extraction & Tracking

The detection and tracking of the user’s hand is depth-
based, and performed using the OpenNI+NITE [2, 12]
framework on a Microsoft Kinect front–end [8]. This li-



(a) color (b) depth (c) scale 0 (d) scale 1 (e) scale 2 (f) scale 3

Figure 5. Illustration of the feature extraction process. a) color
patch extracted around the hand; b) depth patch extracted around
the hand; c-f) responses of the Gabor convolution for each scale,
cumulated over all orientations.

brary provides functions for detecting hands from specified
gestures (eg, ‘wave’), and for tracking detecting hands in
3D space (using the depth image provided by the Kinect).
This tracking only provides a position in space, the hand
is then segmented from the depth image assuming that the
hand is a continuous region which depth varies no more than
20 cm. in space. These segmented pixels were then used to
form bounding boxes around the hand, both in the depth and
color camera image—see Fig. 1A.

Moreover, because we only consider static signs, we dis-
card frames where the hand is moving. This insures that we
do not attempt to classify the transition between two hand-
shapes. In practice, we only consider frames where the hand
velocity is lower than 0.01 and where the depth patch vari-
ance over the lastN = 10 frames is lower than 0.02—those
values were set experimentally for convenience of use, and
can be tuned in a user-specific manner (eg, a more compe-
tent finger-speller may want to reduce the time window).

2.2. Hand shape features

The hand shape features we use are based on Gabor fil-
tering of the intensity and depth images—see Fig. 1B. Once
the hand is detected, both depth and intensity bounding
boxes are resized to 128×128, before being convolved with
a bank of Gabor filters at 4 scales and 4 orientations [5]. The
reason for using a bank of Gabor filters is that they are apt
at capturing the contrast (in depth or intensity) of the image
patch at different scales, and therefore capturing at the same
time the overall shape of the hand and the details of the fin-
gers (see, e.g., Fig. 5c-f, for a depth patch). A 2D Gabor
filter is typically formed by the formula:

g(x, y, λ, σ, θ) = exp

(
x′2 + y′2

2σ2

)
exp

(
i

(
2πx

λ

))
,

(1)
where x′ = x cos θ+ y sin θ and y′ = −x sin θ+ y cos θ, λ
is the wavelength, θ is the orientation and σ is the variance
of the Gaussian envelope. These can be computed real-time
(30 Hz) for 128×128 images, on a typical laptop (Intel Core
i5 M430 processor at 2.27GHz). The convolution results are
arrays of floating point values of the same size as the image,
written as J1 . . . J16. This is illustrated in Fig. 5.

The filter responses are then averaged across overlapping

Gaussian basis functions positioned on a regular 8× 8 grid.

C(i, j, k) =
∑
x,y

Jk(x, y) exp−
(x− xi)

2 + (y − yj)
2

2s2

(2)
where i, j indicate the horizontal and vertical index of the
cell (xi = 16i−8, and yj = 16j−8), k indicates the Gabor
filter index, and s = 8 the width of the Gaussian filter. This
forms a feature vector of dimension 1,024 (= 8×8×4×4)
for both depth and intensity information, and 2,048 for the
joint feature vector.

2.3. Multi-class random forest classification

The learning and classification is performed using a
multi-class random forest. Random forests were intro-
duced by Amit & Geman [3] and later Breiman [4], and
can be viewed as an extension of bagging to classification
trees. Random forest have shown competitive performance
in learning, can handle well large datasets and large feature
space, and can be parallelized for fast training and recall
performance. In this paper, we make use of a version similar
to the one proposed by Breiman, detailed in the following.

A random forest consists of a population of randomized
classification tree Ti, each trained with a random bootstrap
sample Si ⊂ S∗ of the original training data S∗. Each clas-
sification tree is built by recursively partitioning the input
feature space at each node, so as to maximize the reduction
in the entropy of the class distribution. Specifically, at each
node a random subset of feature dimensions are selected,
and over all these dimensions, the threshold leading to the
largest reduction in class distribution entropy is chosen. The
partition ends when all samples that fall in a node are of a
single class, or when a maximal depth is reached. Then this
node is labeled as the majority class in the training samples
it contains. Given a new sample x, this tree will then predict
the class Ti(x) corresponding to the label of the leaf node it
falls into.

Finally, the class predicted by all trees in the forest are
then collated to form a class probability distribution esti-
mate over the 24 target signs. Overall, the forest yields a
confidence that the feature vector x indicates a hand shape
c:

p[c] =
1

N

∑
i<N

δc(Ti(x)), (3)

where N is the number of trees in the forest, Ti(x) is the
leaf of the ith tree Ti into which x falls, and δc(a) is the
Kronecker delta function (δc(a) = 1 iff. c = a, δc(a) =
0 otherwise). This probability distribution is then used to
propose likely candidates to the user—see Fig. 1D.

3. Results
The dataset we used for this work contains over 500 sam-

ples of each sign, recorded from 4 different persons (non-
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Figure 7. Comparison of the performance for all letters, using
appearance information only, depth only, and a combination of
both.

native to sign language), amounting to a total of 48,000
samples. Half of this data was kept for validation purpose
and half was used for training the random forest. The sub-
jects were asked to make the sign facing the Kinect device
and to move their hand around while keeping the hand shape
fixed, in order to collect a good variety of background and
viewing angles—see Fig 6 for an illustration of the variety
in size, background and orientation.

The overall performance is recorded in Fig. 7 when us-
ing appearance (intensity) only, depth only and a combined
feature vector. The best performance is obtained using the
combined vector (mean precision 75%), followed by ap-
pearance (mean precision 73%) and depth (mean precision
69%). The slightly lower performance of depth is com-
pensated by a greater robustness to environmental circum-
stances, like lighting.

Table 1 records the confusion matrix for the detection
of all letters, using a combined feature vector. This shows
small confusion between similar looking hand-shapes, such
as r and u (17%), and also a, e, m and s. The less certain
class is the t with only 37% precision, and significant con-
fusion with s, n, e and a. This is expected as these letters
are signed as a fist that only differs by the thumb position,
that is barely visible in some cases (depending on subject’s
physiognomy and dexterity). In the following we discuss
a graphical user interface that addresses this confusion by
offering to the user the possibility to choose select between
ambiguous candidates as in Fig. 1E.

4. Interactive user interface

This hand shape recognition mechanism is embedded in
an interactive finger-spelling user interface with a Microsoft
Kinect front-end, that runs on a standard laptop under Mi-

Fingerspelling GUI
Proposed letters
(less to more likely)

Selected letter
(closest to the hand)

Previous letters
(delete last sign)

Cancel spelling

Figure 8. Illustration of the finger-spelling user interface. The
letter selection interface: the user can select between plausible
choices by moving his hand in this direction.

crosoft Windows or Linux operating systems. The essential
concept of this interface is to offer the user a chance to see
non-maximal candidates when the classifier has low confi-
dence in its prediction, and to select the correct letter from
a list.

In practice, the hand is detected and tracked using a wav-
ing gesture and tracked using the OpenNI+NITE frame-
work [2, 12]. Once the initial gesture is performed, the hand
is tracked by the software, and finger-spelling can start.

Whenever the user’s hand stops moving, the system en-
ters finger-spelling mode. This is assessed by considering
whether the tracked hand velocity is lower than α = 0.01
(insuring that the hand is not moving), and the cumulated
variance on the depth image over a time window ofN = 10
is lower than β = 0.02 (insuring that the user is not moving
his fingers). These parameters can be tuned to offer fast in-
teraction (ie, quick response to a change in hand shape) to a
skilled finger-speller and simpler interaction for a beginner
(ie, more stable predictions). When this is the case, the hand
patch is processed and hand-shapes are predicted from the
combined feature vector. The most likely hypotheses are
then proposed to the user in a semi-circle above the user’s
hand, allowing for easy selection by a small move of the
hand in the direction of the desired letter. Moreover, down-
ward motions can be used to delete the last letter spelled
(down-right) or cancel spelling and return to the general in-
terface (down-left). This is illustrated in Fig. 8.

When not in spelling mode, the user can move his hand
to different areas of the screen to perform certain actions—
as illustrated in Fig. 9. The top-right corner of the screen
displays the currently spelled word, and the user can val-
idate the word by a wave towards this corner. It is then
added to the currently spelled sentence at the bottom-left
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Figure 6. Illustration of the variety of the dataset. This array shows one image from each user and from each letter, displayed with relative
size preserved. The size, orientation and background can change to a large extent. The full dataset contains approximately 100 images per
user per letter.

a b c d e f g h i k l m n o p q r s t u v w x y
a 0.75 0.05 0.05 0.05 0.10
b 0.03 0.83 0.03 0.03 0.07
c 0.57 0.13 0.03 0.03 0.03 0.07 0.03 0.03 0.03
d 0.37 0.13 0.03 0.07 0.03 0.07 0.17 0.03 0.10
e 0.07 0.03 0.63 0.03 0.03 0.03 0.10 0.07
f 0.30 0.10 0.05 0.35 0.15 0.05
g 0.05 0.05 0.05 0.60 0.20 0.05
h 0.03 0.80 0.03 0.03 0.10
i 0.03 0.03 0.03 0.03 0.73 0.03 0.03 0.03
k 0.03 0.03 0.07 0.03 0.43 0.03 0.03 0.07 0.20 0.03 0.03
l 0.13 0.87
m 0.10 0.03 0.10 0.03 0.03 0.17 0.10 0.03 0.03 0.27 0.07
n 0.17 0.10 0.03 0.03 0.10 0.23 0.07 0.13 0.10 0.03
o 0.10 0.30 0.13 0.03 0.07 0.03 0.07 0.03 0.13 0.07 0.03
p 0.07 0.10 0.03 0.10 0.03 0.57 0.07 0.03
q 0.03 0.07 0.07 0.77 0.03 0.03
r 0.03 0.03 0.03 0.07 0.03 0.63 0.13 0.03
s 0.30 0.13 0.03 0.07 0.13 0.03 0.03 0.17 0.07 0.03
t 0.33 0.13 0.03 0.03 0.07 0.03 0.10 0.20 0.07
u 0.17 0.03 0.10 0.67 0.03
v 0.03 0.03 0.03 0.03 0.87
w 0.03 0.03 0.03 0.37 0.53
x 0.03 0.03 0.17 0.07 0.07 0.20 0.03 0.07 0.10 0.20 0.03
y 0.07 0.07 0.10 0.77

Table 1. Confusion matrix of all considered letters of the alphabet, for a combined feature vector. Rows are targets and sum up to one, and
columns are predictions.

of the screen. The bottom-right corner is used for deleting
the last spelled letter from the word. Finally, when the user
waves his hand towards the top-left corner, he is presented
with word suggestions similar to the letters he spelled, us-
ing the Aspell dictionary library [1], effectively allowing to
overcome the perceptual ambiguity in certain letters, as in
Fig. 10. An example of the useage of this user interface can
be seen in the video supplementing this article [13].

5. Summary & conclusions

In this article we presented a real-time method for hand-
shape recognition using depth information. The proposed
method shows good performance on a significant dataset
including multiple users while the use of depth information
provides a good robustness. The combination of appearance
and depth information was shown to yield the best results.
Moreover, this method is fast enough to be run real-time of
a standard issue laptop. We also demonstrated the system in



Dictionnary suggestions
Accept word

Delete last letterSigned text

Figure 9. Illustration of the global user interface. The top-right
corner validates the currently spelled word, add it to the text with
a space. The bottom-right corner deletes the last letter. Finally,
moving the hand towards the top-left corner displays a list of sim-
ilar words gathered from a dictionary. The spelled text is written
on the bottom-left.

Figure 10. Illustration of the dictionary proposal and the user se-
lection by hand gesture. The proposals corresponding to the cur-
rently spelt word are in blue and the currently selected one (clos-
est to the hand location) is in green, moving the hand closer to the
green word will select it.

an interactive finger-spelling graphical user interface that al-
lows the user to choose between ambiguous hypotheses and
includes a dictionary for quick writing. This offers great
perspectives for the practical integration of finger-spelling
into computer interfaces, and the development of sign lan-
guage learning tools. The current system could be improved
by the inclusion of the two dynamic letters of the ASL al-
phabet, ‘j’ and ‘z’, and by weighting the proposed letters
according to their likelihood in the word being spelled, us-
ing the dictionnary. Another interesting area for future de-
velopment would be user specific adaptation by re-training
the system using the user’s past selections.
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