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Abstract

This article presents a dictionary for Sign Language
using visual sign recognition based on linguistic sub-
components. We demonstrate a system where the user
makes a query, receiving in response a ranked selection of
similar results. The approach uses concepts from linguis-
tics to provide sign sub-unit features and classifiers based
on motion, sign-location and handshape. These sub-units
are combined using Markov Models for sign level recogni-
tion. Results are shown for a video dataset of 984 isolated
signs performed by a native signer. Recognition rates reach
71.4% for the first candidate and 85.9% for retrieval within
the top 10 ranked signs.

1. Introduction
Being able to use a dictionary is a key aspect when learn-

ing a new language, yet all existing sign language dictionar-
ies are complex to navigate due to the lack of universal in-
dexing feature (like the alphabet in written language). This
work attempts to address this by proposing an interactive
video dictionary. The proposed dictionary can be queried
by selecting a video example of the sign, the input query is
matched to a database of 984 signs and a ranked list of the
most similar signs is returned to the user along with linguis-
tic meaning.

In a written language dictionary, words are usually or-
dered alphabetically and the user can look up a word with
ease. In contrast, although there exists various notations
for sign language [13, 10, 8, 3], they are mainly used by
linguists rather than native sign language users. Moreover,
there is no single attribute that can be used to order a sign
language dictionary: it could be ordered by handshape (as
in [3]), motion, location or by some more abstract concept
such as grammatical type, meaning or translation into a spo-
ken language (the latter two being used in books for students
learning sign language). None of these are convenient, mak-
ing the look-up of unknown signs particularly difficult for
the average sign user; therefore an interactive dictionary is

required. In this article, we make use of automatic sign
recognition to query a dictionary and return candidate signs
and their definitions. However, we go beyond mere sign
recognition by basing our dictionary on the underlying lin-
guistic principles. Therefore, this work has the potential to
be further integrated into related sign language fields as an
annotation aid [5].

Previous sign recognition systems using tracking-based,
sub-unit classifiers, typically hard code basic sub-units [9]
and use data driven approaches [7, 18]. From these previ-
ous works, the most similar is that of Wang et al., who cre-
ated an American Sign Language (ASL) dictionary based
on similarity between signs using a Dynamic Space-Time
Warping (DSTW) approach [16]. They used an exemplar
sign level approach and did not use Hidden Markov Mod-
els (HMMs) due to the high quantities of training data they
require. In spite of this, they present results for a dictionary
containing 921 signs and later extend this to much improved
results on 1113 signs [17].

While these techniques can give good sign level results,
they bear little relation to the linguistics of sign language
and offer no bridge between the common user and the lin-
guist. Most recently, Pitsikalis et al. [11] have proposed
a method which uses linguistic labelling to split signs into
their constituent parts. From this they learn models spe-
cific to their signer, which are then combined via HMMs
to create a sign level classifier over 961 signs. In contrast
to these previous works, this article describes an interac-
tive sign language dictionary performing recognition based
on signer independent linguistic sub-units. We show good
performance on a database of 984 signs taken from a Greek
Sign Language (GSL) lexicon. However, since the sub-units
are linguistically based they are applicable to any available
corpus of sign language.

2. Methodology
This section describes the sign recognition framework

used by our interactive dictionary. As a first step, hand
and head trajectories are extracted from the videos using
the method outlined in [12]. These trajectories include not



Figure 1: Overview of the recognition system

(a) Single handed (b) Bimanual:
Synchronous

(c) Bimanual: Together/Apart

Figure 2: Motions detected from tracking

only information about the sign being performed but also
information specific to the signer, an accent of their signing
style. In order to generalise across different signing styles
it is necessary to extract from the base trajectories a sign-
ing transcription. To achieve this, a range of classifiers are
used to describe the sign in terms similar to SigML [6] or
HamNoSys notation [8]1. The output of these classifiers is
then combined using a bank of Markov Models trained to
recognise signs in the lexicon. An overview of this process
is shown in figure 1.

2.1. Motion Features

While hand tracking produces x and y co-ordinates, sign
linguists describe sign motion in conceptual terms such as
‘hands move left’ or ‘dominant hand moves up’ [14, 15]. In
order to link the x,y co-ordinates obtained from the tracking
to the concepts used by sign linguists, rules are employed to
extract HamNoSys based information from the trajectories.
The approximate size of the head is used as a heuristic to
discard ambient motion (that less than 0.25 the head size)
and the type of motion occurring is derived directly from de-
terministic rules on the x and y co-ordinates of the hand po-
sition. The types of motions encoded are shown in figure 2,

1Note that conversion between the two forms is possible. However
while HamNoSys is usually presented as a font for linguistic use, SigML
is more suited to automatic processing.

Figure 3: Example HOGs extracted from a frame

the single handed motions are available for both hands and
the dual handed motions are orientation independent so as
to match linguistic concepts.

2.2. Location Features

Linguistic location characteristics are also abstract from
the base x and y co-ordinates; they happen in relation to
the signer such as ‘at the head’ or ‘by the elbow’. As such
the x and y co-ordinates of the sign location need to be de-
scribed relative to the signer rather than in absolute pixel
positions. This is achieved via quantisation of the values
into a codebook based on the signer’s head position and
scale in the image. For any given hand position (xh, yh)
the quantised version (x′h, y

′
h) is achieved using the quanti-

sation rules shown in equation 1, where (xf , yf ) is the face
position and (wf , hf ) is the face size.

x′ = (xh − xf )/wf

y′ = (yh − yf )/hf (1)

This gives values in the range of y′ ∈ {0..10} and
x′ ∈ {0..8} (for a standard signing space) which can be
expressed as a binary feature vector of size 40.

2.3. Handshape Features

While the motion and location of the signs can be used
for recognition of many examples, it has been shown that
adding the handshape can give significant improvement [9].
Histogram of Gradients (HOG) descriptors have proven ef-
ficient for sign language hand shape recognition [4] and
these are employed as the base feature unit. In each frame,
the signer’s dominant hand is segmented using the x,y po-
sition and a skin model. These image patches are rotated to
their principal axis and scaled to a square, 256 pixels in size.
Examples of these image patches are shown in figure 3 be-
side the frame from which they have been extracted. HOGs
are calculated over these squares at a cell size of 32 pix-
els square with 9 orientation bins and with 2x2 overlapping
blocks, these are also shown in figure 3. This gives a feature
vector of 1764 histogram bins which describes the appear-
ance of a hand.



2.4. Handshape Classifiers

SigML lists 12 basic handshapes which can be aug-
mented using finger bending, thumb position and openeness
characteristics. These handshapes are then combined with
palm and finger orientations to describe the final hand pos-
ture. Currently this work focusses on just the basic hand-
shapes, building multi-modal classifiers to account for the
different orientations. A list of these handshapes is shown
in figure 4.

ceeall (153) cee12 (200) cee12open
(107)

finger2
(4077)

finger23
(686)

finger2345
(2708)

fin-
ger23spread

(749)

fist (2445)

flat (4612) pinch12
(571)

pinch12open
(845)

pinchall
(830)

Figure 4: The base handshapes (Number of occurrences in
the dataset)

Unfortunately, linguists annotating sign, do so only at
the sign level while most subunits occur for only part of
a sign. Also, not only do handshapes change throughout
the sign, they are made more difficult to recognise due to
motion blur. Using the motion of the hands, the sign can be
split into its component parts (as in Liddell et al. [10]), that
are then aligned with the sign annotations. The frames most
likely to contain a static handshape (i.e those with limited
or no motion) are extracted for training.

Note that, as shown in figure 5, a single SigML class
(in this case ‘finger2’) may contain examples which vary
greatly in appearance, making visual classification an ex-
tremely difficult task.

The extracted hand shapes are classified using a multi-
class random forest. Random forests were proposed by
Amit & Geman [1] and Breiman [2]. They have been shown
to yield good performance on a variety of classification and
regression problems, and can be trained efficiently in a par-
allel manner, allowing training on large feature vectors and
datasets. In our system, the forest is trained from automati-
cally extracted samples of all 12 handshapes in the dataset,
shown in figure 4. Since signs may have multiple hand-

Figure 5: A variety of examples for the HamNoSys/SigML
class ‘finger2’.

shapes or several instances of the same handshape, the to-
tal occurrences are greater than the number of signs, how-
ever they are not equally distributed between the handshape
classes. The large disparities in the number of examples
between classes (see figure 4) may bias the learning, there-
fore the training set is rebalanced before learning by select-
ing 1,000 random samples for each class, forming a new
balanced dataset. The forest used consists of N = 100
multiclass decision trees Ti, each of which is trained on a
random subset of the training data. Each tree node splits
the feature space in two by applying a threshold on one
dimension of the feature vector. This dimension (chosen
from a random subset) and the threshold value are chosen
to yield the largest reduction in entropy in the class distri-
bution. This recursive partitioning of the dataset continues
until a node contains a subset of examples that belong to
one single class, or if the tree reaches a maximal depth (set
to 10). Each leaf is then labelled according to the mode of
the contained samples. As a result, the forest yields a prob-
ability distribution over all classes, where the likelihood for
each class is the proportion of trees that voted for this class.
Formally, the confidence that feature vector x describes the
handshape c is given by:

p[c] =
1

N

∑
i<N

δc(Ti(x)), (2)

where N is the number of trees in the forest, Ti(x) is the
leaf of the ith tree Ti into which x falls, and δc(a) is the
Kronecker delta function (δc(a) = 1 iff. c = a, δc(a) = 0
otherwise).

The performance of this hand shape classification on the
test set is recorded on table 1, where each row corresponds
to a shape, and each column corresponds to a predicted class
(empty cells signify zero). Lower performance is achieved
for classes that were more frequent in the dataset. The more
frequently a sign occurs in the dataset the more orientations
it is likely to be used in. This in turn makes the appearance
of the class highly variable; see, e.g., figure 5 for the case
of ‘finger2’—the worst performing case. Also noted is the
high confusion between ‘finger2’ and ‘fist’ most likely due
to the similarity of these classes when the signer is pointing
to themselves.

The handshape classifiers are evaluated for the right hand
only during frames when it is not in motion. We evaluated



handshape predictions
flat 0.35 0.19 0.09 0.03 0.08 0.06 0.03 0.06 0.06 0.01 0.03 0.01
fist 0.03 0.69 0.02 0.04 0.11 0.05 0.02 0.03 0.02
finger2345 0.16 0.19 0.36 0.02 0.03 0.05 0.06 0.02 0.03 0.06 0.01
finger2 0.02 0.33 0.07 0.31 0.11 0.05 0.02 0.03 0.02 0.04
pinchall 0.03 0.09 0.04 0.01 0.65 0.11 0.01 0.01 0.04
pinch12 0.02 0.20 0.01 0.02 0.13 0.56 0.01 0.01 0.01 0.02
finger23 0.05 0.17 0.04 0.02 0.05 0.04 0.54 0.01 0.07 0.01
pinch12open 0.03 0.12 0.07 0.01 0.15 0.04 0.01 0.56 0.01
cee12 0.01 0.05 0.01 0.03 0.04 0.01 0.82 0.01
cee12open 0.01 0.99
finger23spread 0.01 0.15 0.02 0.06 0.01 0.05 0.02 0.65
ceeall 0.01 0.08 0.03 0.08 0.01 0.02 0.01 0.01 0.77

Table 1: Confusion matrix of the handshape recognition, for all 12 classes.

our sign recognition system using two different encodings
for the detected hand shapes. As will be described in sec-
tion 2.5, the next stage classifier requires inputs in the form
of binary feature vectors. Two types of 12 bit binary fea-
ture vector can be produced from the classifier results. The
first method applies a strict Winner Takes All (WTA) on the
multiclass forest’s response: the class with the highest prob-
ability is set to one, and the others to zero. For every non-
motion frame, the vector contains a true value in the highest
scoring class. The second method applies a fixed threshold
(τ = 0.25) on the confidences provided by the classifier for
each of the 12 handshapes classes. Handshapes that have a
confidence above threshold (p[c] > τ ) are set to one, and
the others to zero. This soft approach carries the double ad-
vantage that a) the feature vector may encode the ambiguity
between handshapes, which may itself carry information,
and b) may contain only zeros if confidences in all classes
are small. The two methods are compared in table 2.

2.5. Sign Level classification

The three types of binary feature vectors are combined to
create a single feature vector per frame. The frame vectors
are then fed into a sign level classifier, similar to that used
in Kadir et al.’s work [9]. In order to represent the tem-
poral transitions, which are indicative of a sign, a Markov
chain is constructed for each word in the lexicon. This is
possible as the symbolic nature of HamNoSys allows the
discrete time series of events to be modelled without a hid-
den layer. Another advantage of this binary, abstracted ap-
proach is that it allows for better generalisation requiring
far less training data than approaches which must generalise
over both a continuous input space as well as the variabil-
ity between signs (e.g. HMMs). An ergodic model is used
and a Look Up Table (LUT) employed to maintain as lit-
tle of the chain as is required. Code entries not contained
within the LUT are assigned a nominal probability. This is
done to avoid otherwise correct chains being assigned zero
probabilities if noise corrupts the input signal. The result is
a sparse state transition matrix, Pω(st|st−1), for each word

ω giving a classification bank of Markov chains. Compar-
isons are also drawn between using only the 1st order tran-
sitions and including transitions where the transition matrix
includes Pω(st|st−2). This is similar to adding skip transi-
tions to the left-right hidden layer of a HMM which allows
deletion errors in the incoming signal. A simplified model
for the sign ‘Anger’ is shown in figure 6, it shows the 3
main states of the starting position, the motion and the fi-
nal position. The possible skip transition is shown by the
dotted line, simplified, if the starting position and the end
position are seen then there is some probability that the sign
has occurred even if the motion has not been seen. While
it could be argued that the linguistic features constitute dis-
crete emission probabilities; the lack of a doubly stochastic
process and the fact that the hidden states are determined
directly from the observation sequence, separates this from
traditional HMMs which cannot be used due to their high
training requirements.

During classification, the model bank is applied to in-
coming data in a similar fashion to HMMs. The objective
is to calculate the chain which best describes the incom-
ing data i.e. has the highest probability that it produced
the observation sequence s. Symbols are found in the sym-
bol LUT using an L1 distance on the binary vectors. The
probability of a model matching the observation sequence
is calculated as P (ω|s) = υ

∏l
t=1 Pω(st|st−1), where l is

the length of the word in the test sequence and υ is the prior
probability of a chain starting in any one of its states, as in
a dictionary setting all words are equally likely and there is
no language model υ is set to 1.

3. Results
The data set used for these experiments contains 984

GSL signs with 5 examples of each performed by a single
signer (for a total of 4920 samples). The handshape clas-
sifiers are learnt on data from the first 4 examples of each
sign. The sign level classifier is trained on the same 4 exam-
ples, the remaining sign of each type is reserved for testing.
Since the application of this method is a dictionary, the ac-



Figure 6: A simplified Markov model for the sign for ‘Anger’

curacy results are presented as how often the correct result
appears within the top n returned signs. As with any search
system, the higher up the results the correct sign appears,
the better the ranking system. For this reason, results are
shown for various values of n. Ideally accuracy should be
high for low values of n, and results are shown for n = 1
and n = 10.

Table 2 shows sign level classification results. It is appar-
ent from these results that of the independent vectors the lo-
cation information is the strongest. This is due to the strong
combination of a detailed location feature vector and the
temporal information encoded by the Markov chain. While
neither the motion or handshapes perform well on their own,
by combining either of them with location a gain of 6% at
n = 1 is achieved.

Also of interest is the high results achieved by using just
location and handshape. While the combination of all fea-
tures is better for high ranking results, this combination ap-
pears to outperform the others when n = 10. This is likely
due to the rigidity of the location features and the temporal
nature of the Markov chain. When combined they produce
similar information to that contained within the motion fea-
tures. However, it is less discriminating and only enhances
the results as more results are returned (n→ inf). Since the
level of n is how many results a signer must look at before
finding the sign they require, higher performance at lower
values of n is desirable.

Shown also is the improvement afforded by using the
handshape classifiers with a threshold vs a WTA imple-
mentation. By allowing the classifiers to return multiple
possibilities more of the data about the handshape is cap-
tured. Conversely, when none of the classifiers is confident,
a ‘null’ response is permitted which reduces the amount
of noise. Using the non-mutually exclusive version of the
handshapes in combination with the motion and location the
percentage of signs returned when n = 1 is 68.4% rising
to 85.3% when n = 10. By including the 2nd order transi-
tions whilst building the Markov chain, the return rate when

n = 10 is not significantly improved (85.9%) however there
is a 3% boost to 71.4% when n = 1.

While the work of Wang et al. [16, 17] uses a differ-
ent dataset so direct comparisons cannot be drawn, theirs is
of a comparable lexicon size (921 or 1,113 signs vs 984)
and uses the same dictionary ranking measure. However,
the work of Pitsikalis et al. [11] uses the same dataset so
more meaningful comparisons can be drawn with this work.
While their work also uses linguistic feature sets they learn
theirs from the data. They achieve a rate of 62%2 compared
to the 71.4% achieved by the proposed method.

4. Conclusions and Future Work
This article presented an interactive sign language dictio-

nary based on visual sign language recognition. The dictio-
nary exists as a video based tool, allowing a signer to query
the dictionary without having prior knowledge of linguistic
concepts.

The approach uses computer vision sign language recog-
nition based on hand shapes, motion, position and tempo-
ral sequence. The results show that a combination of these
cues overcomes the high ambiguity and variability in the
dataset to achieve excellent recognition performance: on a
large dataset of 984 signs, the correct sign appears as first
candidate in 73% of searches, and within the ten best in
85.9% of cases. Moreover, and in contrast to existing ap-
proaches, our method is based on non-language specific lin-
guistic sub-units, this opens new perspectives for linguistic
annotation, a task which is currently done almost entirely
by hand.

Future work should consider moving the location fea-
tures to a more signer-centric approach to complement
those used by the linguists and extending this dictionary to
a larger dataset, containing multiple signers. Quantitative
results from a larger dataset would not only aid sign recog-
nition but also the sub-unit classifiers which will be of use

2read from their graph
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1 25.1% 60.5% 3.4% 66.5% 36.0% 66.1% 52.7% 68.4% 71.4% 44.0% 62%
10 48.7% 82.2% 17.3% 82.7% 60.7% 86.9% 59.1% 85.3% 85.9% 78.4% N/A

Table 2: Sign level classification results
The first three columns show the results when using the features independently with the Markov chain (The handshapes used
are non-mutually exclusive). The following three columns show the advantages gain by combining two different feature
vector types together. The next three columns give the results of using all the different feature vectors. Including the
improvement gained by allowing the handshapes to be non-mutually exclusive (thresh) versus the WTA option. The final
suggested method is the combination of the superior handshapes with the location, motion and the Markov chain skips. The
last two columns show the results of Wang et al. [17] who also use the dictionary ranking measure and Pitsikalis et al. [11]
who use the same data set.

for linguistic annotation.
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