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Abstract. The problem of updating ontologies has received increased attention
in recent years. In the approaches proposed so far, either the update language is
restricted to sets of ground atoms or, where the full SPARQL update language is
allowed, the TBox language is restricted so that no inconsistencies can arise. In
this paper we discuss directions to overcome these limitations. Starting from a DL-
Lite fragment covering RDFS and concept disjointness axioms, we define three
semantics for SPARQL instance-level (ABox) update: under cautious semantics,
inconsistencies are resolved by rejecting updates potentially introducing conflicts;
under brave semantics, instead, conflicts are overridden in favor of new information
where possible; finally, the fainthearted semantics is a compromise between the
former two approaches, designed to accommodate as much of the new information
as possible, as long as consistency with the prior knowledge is not violated. We
show how these semantics can be implemented in SPARQL via rewritings of
polynomial size and draw first conclusions from their practical evaluation.

1 Introduction

RDF has become one of the most important data formats for interoperability, knowledge
representation and querying. SPARQL, the W3C standardized language for managing
RDF data [11], has grown to offer great power and flexibility of querying, including
support for efficient reasoning, rooted in more than a decade of intensive research in
description logics. With respect to updates however, SPARQL is currently far less mature.
In particular, the interplay between updates and reasoning remains completely open.

In [1], we discussed semantics of SPARQL updates for RDFS ontologies, for the
cases in which the knowledge base ABox is fully materialized or to the contrary, is
reduced to its minimal core that cannot be derived using TBox axioms. The present
paper continues this study of SPARQL updates focusing on the role of inconsistency in
supporting SPARQL ABox updates over materialized stores. As a minimalistic ontology
language allowing for inconsistencies, we consider RDFS¬, an extension of RDFS [12]
with class disjointness axioms of the form {𝑃 disjointWith 𝑄} from OWL [16].

As a running example, we assume a triple store 𝐺 with an RDFS¬ ontology (TBox)
𝒯 encoding an educational domain, asserting a range restriction plus mutual disjointness
of the concepts like professor and student (we use Turtle syntax [2], in which dw
abbreviates OWL’s disjointWith keyword, and dom and rng respectively stand for
the domain and range keywords of RDFS).

𝒯 = {:studentOf dom :Student. :studentOf rng :Professor.
:Professor dw :Student. }



Table 1. DL-LiteRDFS¬ assertions vs. RDF(S), where 𝐴, 𝐴′ denote concept (or, class) names, 𝑃 , 𝑃 ′

denote role (or, property) names, 𝛤 is the set of IRI constants (excl. the OWL/RDF(S) vocabulary)
and 𝑥, 𝑦 ∈ 𝛤 . For RDF(S), we use abbreviations (rsc, sp, dom, rng, a) as introduced in [17].

TBox RDFS¬

1. 𝐴′ ⊑ 𝐴 𝐴′ sc 𝐴.
2. 𝑃 ′ ⊑ 𝑃 𝑃 ′ sp 𝑃 .

TBox RDFS¬

3. ∃𝑃 ⊑ 𝐴 𝑃 dom 𝐴.
4. ∃𝑃 − ⊑ 𝐴 𝑃 rng 𝐴.

TBox RDFS¬

5. 𝐴′ ⊑ ¬𝐴 𝐴′ dw 𝐴.

ABox RDFS¬

6. 𝐴(𝑥) 𝑥 a 𝐴.
7. 𝑃 (𝑥, 𝑦) 𝑥 P 𝑦.

Consider the following SPARQL update [8] request 𝑢 in the context of the TBox 𝒯 :
INSERT {?X :studentOf ?Y} WHERE {?X :attendsClassOf ?Y}

Consider an ABox with data on student tutors that happen to attend each other’s
classes: 𝒜1 = {:jim :attendsClassOf :ann. :ann :attendsClassOf
:jim}. Here, 𝑢 would create two assertions :jim :studentOf :ann and :ann
:studentOf :jim. Due to the range and domain constraints in 𝒯 , these assertions
result in clashes both for Jim and for Ann. Note that all inconsistencies are in the new
data, and thus we say that 𝑢 is intrinsically inconsistent for the particular ABox 𝒜1. We
discuss how such updates can be fixed using SPARQL rewritings.

Now, let 𝒜2 be the ABox {:jim :attendsClassOf :ann. :jim a
:Professor}. It is clear that after the update 𝑢, the ABox will become inconsistent
with respect to 𝒯 due to the property assertion :jim :studentOf :ann, implying
that Jim is both a professor and a student which contradicts the disjointness axiom. In
contrast to the previous case, the clash here is between the prior knowledge and the new
data. Based on [1] we propose three update semantics for this case, and provide efficient
SPARQL rewriting algorithms for implementing them in the RDFS¬ setting.

The topic of knowledge base updates is extremely broad. Our aim in this paper is to
adapt the basic belief revision operators for efficient implementation of ABox updates
expressed in SPARQL 1.1, in the presence of RDFS¬ TBox axioms. In contrast to our
setting, most of existing works on knowledge base evolution consider updates based on
sets of ground facts to be inserted or deleted. Restricting negation to class disjointness
allowed us to keep the presentation clear. It is not difficult to lift our rewritings to
theories with role disjointness, functionality and inequality (owl:differentFrom).
We discuss related work in more detail in Sec. 6.

In the remainder of the paper, after some short preliminaries (Sec. 2) we discuss
checking for intrinsic inconsistencies in Sec. 3. Then in Sec. 4 we present three semantics
for dealing with general inconsistencies in the context of materialized triple stores. Sec. 5
describes our practical evaluation of the semantics. Finally, Sec. 6 puts our work in the
context of existing research and provides concluding remarks.

2 Preliminaries

We introduce basic notions about RDF graphs, RDFS¬ ontologies, and SPARQL queries.
We will use RDF and DL notation interchangeably, treating RDF graphs without non-
standard RDFS¬ vocabulary use [19] as a sets of TBox and ABox assertions.

Definition 1 (RDFS¬ ABox, TBox, triple store). We call a set 𝒯 of inclusion asser-
tions of the forms 1–5 in Table 1 an (RDFS¬) TBox, a set 𝒜 of assertions of the forms
6–7 in Table 1 an (RDF) ABox, and the union 𝐺 = 𝒯 ∪ 𝒜 an (RDFS¬) triple store.



Definition 2 (Interpretation, satisfaction, model, consistency). An interpretation
⟨𝛥ℐ , ·ℐ⟩ consists of a non-empty set 𝛥ℐ and an interpretation function ·ℐ , which maps

– each atomic concept 𝐴 to a subset 𝐴ℐ of 𝛥ℐ ,
– each negation of atomic concept to (¬𝐴ℐ) = 𝛥ℐ ∖ 𝐴ℐ ,
– each atomic role 𝑃 to a binary relation 𝑃 ℐ over 𝛥ℐ , and
– each element of 𝛤 to an element of 𝛥ℐ .

For expressions ∃𝑃 and ∃𝑃 −, the interpretation function is defined as (∃𝑃 )ℐ = {𝑥 ∈
𝛥ℐ | ∃𝑦.(𝑥, 𝑦) ∈ 𝑃 ℐ} and (∃𝑃 −)ℐ = {𝑦 ∈ 𝛥ℐ | ∃𝑥.(𝑥, 𝑦) ∈ 𝑃 ℐ}, resp. An interpre-
tation ℐ satisfies an inclusion assertion 𝐸1 ⊑ 𝐸2 (of one of the forms 1–5 in Table 1), if
𝐸ℐ

1 ⊆ 𝐸ℐ
2 . Analogously, ℐ satisfies ABox assertions of the form 𝐴(𝑥), if 𝑥ℐ ∈ 𝐴ℐ , and

of the form 𝑃 (𝑥, 𝑦), if (𝑥ℐ , 𝑦ℐ) ∈ 𝑃 ℐ . An interpretation ℐ is called a model of a triple
store 𝐺 (resp., a TBox 𝒯 , an ABox 𝒜), denoted ℐ |= 𝐺 (resp., ℐ |= 𝒯 , ℐ |= 𝒜), if ℐ
satisfies all assertions in 𝐺 (resp., 𝒯 , 𝒜). Finally, 𝐺 is called consistent, if it does not
entail both 𝐶(𝑥) and ¬𝐶(𝑥) for any concept 𝐶 and constant 𝑥 ∈ 𝛤 , where entailment
is defined as usual.

As in [1], we treat only ABox updates with WHERE clauses restricted to unions of
conjunctive queries (without projection) over DL ontologies:

Definition 3 (BGP, CQ, UCQ, query answer). A conjunctive query (CQ) 𝑞, or basic
graph pattern (BGP), is a set of atoms of the form 6–7 from Table 1, where now 𝑥, 𝑦 ∈
𝛤 ∪ 𝒱 , 𝒱 a countably infinite set of variables (written as ’?’-prefixed alphanumeric
strings). A union of conjunctive queries (UCQ) 𝑄, or UNION pattern, is a set of CQs.
We denote with 𝒱(𝑞) (or 𝒱(𝑄)) the set of variables from 𝒱 occurring in 𝑞 (resp., 𝑄). An
answer (under RDFS¬ Entailment) to a CQ 𝑞 over a triple store 𝐺 is a substitution 𝜃 of
the variables in 𝒱(𝑞) with constants in 𝛤 such that every model of 𝐺 satisfies all facts in
𝑞𝜃. We denote the set of all such answers with ansrdfs(𝑞, 𝐺) (or simply ans(𝑞, 𝐺)). The
set of answers to a UCQ 𝑄 is

⋃︀
𝑞∈𝑄 ans(𝑞, 𝐺).

Query answering in the presence of ontologies is done either by rule-based pre-
materialization of the ABox or by query rewriting. In the RDFS¬ case, materialization
in polynomial time is feasible. Let mat(𝐺) be the triple store obtained from exhaustive
application of the inference rules in Fig. 1 on a consistent triple store 𝐺. We also define
a special notation chase(𝑞, 𝒯 ) to denote the “materialization” (also known as chase) of
an ABox resp. a BGP 𝑞 w.r.t. the TBox 𝒯 . We call all triples occurring in chase(𝑞, 𝒯 )
but not in 𝑞 the effects of 𝑞 w.r.t. 𝒯 .

We now adapt the semantics for SPARQL update operations from [1].

Definition 4 (SPARQL update operation, simple update of a triple store). Let 𝑃𝑑

and 𝑃𝑖 be BGPs, and 𝑃𝑤 a BGP or UNION pattern. Then an update operation

?𝐶 sc ?𝐷. ?𝑆 a ?𝐶.
?𝑆 a ?𝐷.

?𝑃 sp ?𝑄. ?𝑆 ?𝑃 ?𝑂.
?𝑆 ?𝑄 ?𝑂.

?𝑃 dom ?𝐶. ?𝑆 ?𝑃 ?𝑂.
?𝑆 a ?𝐶.

?𝑃 rng ?𝐶. ?𝑆 ?𝑃 ?𝑂.
?𝑂 a ?𝐶.

?𝑆 a ?𝐶,?𝐷. ?𝐶 dW ?𝐷.
⊥

Fig. 1. Minimal RDFS rules from [17] plus class disjointness “clash” rule from OWL2 RL [16].



𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤) has the form

DELETE 𝑃𝑑 INSERT 𝑃𝑖 WHERE 𝑃𝑤

Let 𝐺 = 𝒯 ∪ 𝒜 be a triple store then the simple update of 𝐺 w.r.t. 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤)
is defined as 𝐺𝑢(𝑃𝑑,𝑃𝑖,𝑃𝑤) = (𝐺 ∖ 𝒜𝑑) ∪ 𝒜𝑖, where 𝒜𝑑 =

⋃︀
𝜃∈ans(𝑃𝑤,𝐺) gr(𝑃𝑑𝜃),

𝒜𝑖 =
⋃︀

𝜃∈ans(𝑃𝑤,𝐺) gr(𝑃𝑖𝜃), and gr(𝑃 ) denotes the set of ground triples in pattern 𝑃 .

We call a triple store 𝐺 (resp. the ABox of 𝐺) materialized if the equality 𝐺 ∖ 𝒯 =
mat(𝐺) ∖ 𝒯 holds. In this paper, we will always consider 𝐺 to be materialized and focus
on “materialization preserving” semantics for SPARQL update operations, which we
dubbed Semmat

2 in [1] and which preserves a materialized triple store. We recall the
intuition behind Semmat

2 , given an update 𝑢 = (𝑃𝑑, 𝑃𝑖, 𝑃𝑤): (i) delete the instantiations
of 𝑃𝑑 along with all their causes; (ii) insert the instantiations of 𝑃𝑖 plus all their effects.

The notion of “causes” is made precise as follows. Given an ABox assertion 𝐴,
𝐴caus = {𝐵 | 𝐴 ∈ chase({𝐵}, 𝒯 )}. In the definition of 𝐴caus, if 𝐴 is a class member-
ship (x a C)where 𝑥 ∈ 𝛤 ∪𝒱 , then 𝐵 is one of (x a C’), (x P ?Y), (?Y P x)
for some fresh variable ?𝑌 , class C’ and role P. If 𝐴 is a role participation assertion
(x R z), 𝐵 is of the form (x P z), for some role P. For a SPARQL triple (possibly
with variables) 𝐶 we use 𝐶caus to denote a BGP computed in the same way as for the
ABox assertion 𝐴 above.

Definition 5 (Semmat
2 [1]). Let 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤) be an update operation. Then

𝐺
Semmat

2
𝑢(𝑃𝑑,𝑃𝑖,𝑃𝑤) = 𝐺𝑢(𝑃 caus

𝑑
, 𝑃 eff

𝑖
, {𝑃𝑤}{𝑃 fvars

𝑑
})

Here, 𝑃 caus
𝑑 =

⋃︀
𝐴∈𝑎𝑡𝑜𝑚𝑠(𝑃𝑑) 𝐴caus; 𝑃 eff = chase(𝑃, 𝒯 ) and 𝑃 fvars

𝑑 is a pattern that
binds variables occurring in 𝑃 caus

𝑑 but not in 𝑃𝑑 to the constants from 𝛤 occurring in 𝐺.

We refer to [1] for further details, but stress that as such, Semmat
2 is not able to detect

or deal with inconsistencies arising from extending 𝐺 with instantiations of 𝑃𝑖. In what
follows, we will discuss how this can be remedied.

Remark 1. Note that although the DELETE clause 𝑃𝑑 is syntactically a BGP, its seman-
tics is different. Namely, triples occurring in 𝑃𝑑 are mutually independent (cf. Def. 4), so
that for every 𝜃 ∈ ans(𝑃𝑤, 𝐺), each atom in 𝑃𝑑𝜃 ∩ 𝐺 is deleted from 𝐺 no matter which
other atoms of 𝑃𝑑𝜃 occur in 𝐺. Therefore, 𝑃 caus

𝑑 is computed atom-wise, unlike CQ
rewriting [4]. Note that |𝐴caus| = 𝑂(||𝒯 ||) where ||𝒯 || denotes the vocabulary size of
𝒯 : in each RDFS¬ derivation, a class membership assertion can occur at most once for
each class in 𝒯 , and a role membership assertion can occur at most twice for every role
in 𝒯 . Thus, |𝑃 caus

𝑑 | ≤ 2|𝑃𝑑| · ||𝒯 || and |𝑃 eff
𝑖 | ≤ |𝑃𝑖| · ||𝒯 ||, so both can be computed in

poly-time. This underpins the polynomial complexity of our rewritings.

3 Checking Consistency of a SPARQL Update

In the literature on the evolution of DL-Lite knowledge bases [5, 7], updates represented
by pairs of ABoxes 𝒜𝑑, 𝒜𝑖 have been studied. However, whereas such update might
be viewed to fit straightforwardly to the corresponding 𝒜𝑑, 𝒜𝑖 in Def. 4, it is typically
assumed that 𝒜𝑖 is consistent with the TBox, and thus one only needs to consider how



Algorithm 1: constructing a SPARQL ASK query to check intrinsic inconsistency
(for the definition of 𝑃 eff

𝑖 , cf. Def. 5)
Input: RDFS¬ TBox 𝒯 , SPARQL update 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤)
Output: A SPARQL ASK query returning 𝑇 𝑟𝑢𝑒 if 𝑢 is intrinsically inconsistent

1 if ⊥ ∈ 𝑃 eff
𝑖 then

2 return ASK {} //𝑢 contains clashes in itself, i.e., is inconsistent for any triple store
3 else
4 𝑊 := { FILTER(False)}; //neutral element w.r.t. union
5 foreach pair of triple patterns (?𝑋 a 𝑃 ), (?𝑌 a 𝑅) in 𝑃 eff

𝑖 do
6 if 𝑃 ⊑ ¬𝑅 ∈ 𝒯 then
7 𝑊 := 𝑊 UNION {{𝑃𝑤𝜃1[?𝑋 ↦→?𝑍]} . {𝑃𝑤𝜃2[?𝑌 ↦→?𝑍]}} for a fresh ?𝑍

8 return ASK WHERE {𝑊 }

to deal with inconsistencies between the update and the old state of the knowledge
base. However, this a priori assumption may be insufficient for SPARQL updates, where
concrete values for inserted triples are obtained from variable bindings in the WHERE
clause, and depending on the bindings, the update can be either consistent or not. This is
demonstrated by the update 𝑢 from Sec. 1 which, when applied to the ABox 𝒜1, results
in an inconsistent set 𝒜𝑖 of insertions . We call this intrinsic inconsistency of an update
relative to a triple store 𝐺 = 𝒯 ∪ 𝒜.

Definition 6. Let 𝐺 be a triple store. The update 𝑢 is said to be intrinsically consistent
w.r.t. 𝐺 if the set of new assertions 𝒜𝑖 from Def. 4 generated by applying 𝑢 to 𝐺, taken in
isolation from the ABox of 𝐺, does not contradict the TBox of 𝐺. Otherwise, the update
is said to be intrinsically inconsistent w.r.t. 𝐺.

Intrinsic inconsistency of the update differs crucially from the inconsistency w.r.t. the
old state of the knowledge base, illustrated by the ABox 𝒜2 from Sec. 1. This latter case
can be addressed by adopting an update policy that prefers newer assertions in case of
conflicts, as studied in the context of DL-Lite KB evolutions [5], which we will discuss
in Sec. 4 below. Intrinsic inconsistencies however are harder to deal with, since there
is no cue which assertion should be discarded in order to avoid the inconsistency. Our
proposal here is thus to discard all mutually inconsistent pairs of insertions.

We first present an algorithm for checking intrinsic inconsistency by means of
SPARQL ASK queries and then a safe rewriting algorithm. This rewriting is based on an
observation that clashing triples can be introduced by a combination of two bindings of
variables in the WHERE clause, as the example in the Sec. 1 (the ABox 𝒜1) illustrates.
To handle such cases, two copies of the WHERE clause 𝑃𝑤 are created by the rewriting
in Algorithms 1 and 2, for each pair of disjoint concepts according to the TBox of the
triple store. These algorithms use notation described in Rem. 2 below.

Remark 2. Our rewriting algorithms rely on producing fresh copies of the WHERE
clause. Assume 𝜃, 𝜃1, 𝜃2, . . . to be substitutions replacing each variable in a given
formula with a distinct fresh one. For a substitution 𝜎, we also define 𝜃[𝜎] resp. 𝜃𝑖[𝜎] to
be an extension of 𝜎, renaming each variable at positions not affected by 𝜎 with a distinct
fresh one. For instance, let 𝐹 be a triple (?𝑍 :studentOf ?𝑌 ). Now, 𝐹𝜃 makes a
variable disjoint copy of 𝐹 : ?𝑍1 :studentOf ?𝑌1 for fresh ?𝑍1, ?𝑌1. 𝐹 [?𝑍 ↦→?𝑋] is



Algorithm 2: Safe rewriting safe(𝑢)
Input: RDFS¬ TBox 𝒯 , SPARQL update 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤)
Output: SPARQL update safe(𝑢)

1 if ⊥ ∈ 𝑃 eff
𝑖 then

2 return 𝑢(𝑃𝑑, 𝑃𝑖, FILTER(False))
3 𝑊 := { FILTER(False)}; //neutral element w.r.t. union
4 foreach pair of triple patterns (?𝑋 a 𝑃 ), (?𝑌 a 𝑅) in 𝑃 eff

𝑖 do
5 if 𝑃 ⊑ ¬𝑅 ∈ 𝒯 then
6 //cf. Rem. 2 for notation 𝜃[. . .]
7 𝑊 := 𝑊 UNION {𝑃𝑤𝜃1[?𝑋 ↦→?𝑌 ]} UNION {𝑃𝑤𝜃2[?𝑌 ↦→?𝑋]}}
8 return 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤 MINUS {𝑊 })

just a substitution of ?𝑍 by ?𝑋 in 𝐹 . Finally, 𝐹𝜃[?𝑍 ↦→?𝑋] results in ?𝑋 :studentOf
?𝑌2 for fresh ?𝑌2. We assume that all occurrences of 𝐹𝜃[𝜎] stand for syntactically the
same query, but that 𝐹𝜃[𝜎1] and 𝐹𝜃[𝜎2], for distinct 𝜎1 and 𝜎2, can only have variables
in 𝑟𝑎𝑛𝑔𝑒(𝜎1) ∩ 𝑟𝑎𝑛𝑔𝑒(𝜎2) in common. That is, the choice of fresh variables is defined
by the parameterizing substitution 𝜎.

Using this notation, the possibility of unifying two variables ?𝑋 and ?𝑌 in 𝑃𝑤 on a
given triple store can be tested with the query {𝑃𝑤𝜃1[?𝑋 ↦→?𝑍]}{𝑃𝑤𝜃2[?𝑌 ↦→?𝑍]}
where 𝜃1 and 𝜃2 are variable renamings as in Rem. 2 and ?𝑍 is a fresh variable.

In order to check the intrinsic consistency of an update, this condition should be
evaluated for every pair of variables of 𝑃𝑤, the unification of which leads to a clash. A
SPARQL ASK query based on this idea is produced by Alg. 1. Note that it suffices to
check only triples of the form {?𝑋 a ?𝐶} at line 5 of Alg. 1, since disjointness conditions
can only be formulated for concepts, according to the syntax in Table 1. Furthermore,
since we are taking the facts in 𝑃 eff

𝑖 extended by all facts implied by 𝒯 , at line 6 of
Alg. 1 it suffices to check the disjointness conditions explicitly mentioned in 𝒯 and not
all those which are implied by 𝒯 . Note also that the DELETE clause 𝑃𝑑 plays no role in
this case, since we only consider clashes within inserted facts.

Example 1. Consider the update 𝑢 from Sec. 1, in which the INSERT clause 𝑃𝑖 can
create clashing triples. To identify potential clashes, Alg. 1 first applies the infer-
ence rule for the range constraint, and computes 𝑃 eff

𝑖 = {?𝑋 a :Student . ?𝑌
a :Professor}. Now both variables ?𝑋, ?𝑌 occur in the triples of type (6) from
Table 1 with clashing concept names. The following ASK query is produced by Alg. 1.

ASK WHERE { ?X :attendsClassOf ?Y . ?Y :attendsClassOf ?X1 }
(In this and subsequent examples we omit the trivial FILTER(False) union branch used
in rewritings to initialize variables with disjunctive conditions, such as 𝑊 in Alg. 1)

Suppose that an insert is not intrinsically consistent for a given triple store. One solution
would be to discard it completely, should the above ASK query return True. Another
option which we consider here is to only discard those variable bindings from the
WHERE clause, which make the INSERT clause 𝑃𝑖 inconsistent. This is the task of
the safe rewriting safe(·) in Alg. 2, removing all variable bindings that participate in a
clash between different triples of 𝑃𝑖. Let 𝑃𝑤 be a WHERE clause, in which the variables
?𝑋 and ?𝑌 should not be unified to avoid clashes. With 𝜃1, 𝜃2 being “fresh” variable



renamings as in Rem. 2, Alg. 2 uses the union of 𝑃𝑤𝜃1[?𝑋 ↦→?𝑌 ] and 𝑃𝑤𝜃2[?𝑌 ↦→?𝑋]
to eliminate unsafe bindings that send ?𝑋 and ?𝑌 to the same value.

Example 2. Alg. 2 extends the WHERE clause of the update 𝑢 from Sec. 1 as follows:
INSERT{?X :studentOf ?Y} WHERE{?X :attendsClassOf ?Y
MINUS{{?X1 :attendsClassOf ?X} UNION {?Y :attendsClassOf ?Y2}}}

Note that the safe rewriting can make the update void. For instance, safe(𝑢) has
no effect on the ABox 𝒜1 from Sec. 1, since there is no cue, which of :jim
:attendsClassOf :ann, :ann :attendsClassOf :jim needs to be dis-
missed to avoid the clash. However, if we extend this ABox with assertions both satisfy-
ing the WHERE clause of 𝑢 and not causing undesirable variable unifications, safe(𝑢)
would make insertions based on such bindings. For instance, adding the fact :bob
:attendsClassOf :alice to 𝒜1 would assert :bob :studentOf :alice
as a result of safe(𝑢).

A rationale for using MINUS rather than FILTER NOT EXISTS in Alg. 2 (and also
in a rewriting in forthcoming Sec. 4) can be illustrated by an update in which variables
in the INSERT and DELETE clauses are bound in different branches of a UNION:
DELETE {?V a :Professor} INSERT {?X :studentOf ?Y}
WHERE {{?X :attendsClassOf ?Y} UNION {?V :attendsClassOf ?W}}

A safe rewriting of this update (abbreviating :attendsClassOf as :aCo) is
DELETE {?V a :Professor} INSERT {?X :studentOf ?Y}
WHERE { {{?X :aCo ?Y} UNION {?V :aCo ?W}}

MINUS{ {{?X1 :aCo ?X} UNION {?V1 :aCo ?W1}}
UNION {{?Y :aCo ?Y2} UNION {?V2 :aCo ?W2}} } }

It can be verified that with FILTER NOT EXISTS in place of MINUS this update makes
no insertions on all triple stores: the branches {?V1 :aCo ?W1} and {?V2 :aCo
?W2} are satisfied whenever {?X :aCo ?Y} is, making FILTER NOT EXISTS eval-
uate to False whenever {?X :aCo ?Y} holds.

We conclude this section by formalizing the intuition of update safety. For a triple
store 𝐺 and an update 𝑢 = (𝑃𝑑, 𝑃𝑖, 𝑃𝑤), let J𝑃𝑤K𝑢

𝐺 denote the set of variable bind-
ings computed by the query “ SELECT?𝑋1, . . . , ?𝑋𝑘 WHERE 𝑃𝑤” over 𝐺, where
?𝑋1, . . . , ?𝑋𝑘 are the variables occurring in 𝑃𝑖 or in 𝑃𝑑.

Theorem 1. Let 𝒯 be a TBox, let 𝑢 be a SPARQL update (𝑃𝑖, 𝑃𝑑, 𝑃𝑤), and let query 𝑞𝑢

and update safe(𝑢) = (𝑃𝑑, 𝑃𝑖, 𝑃 ′
𝑤) result from applying Alg. 1 resp. Alg. 2 to 𝑢 and 𝒯 .

Then, the following properties hold for an arbitrary RDFS¬ triple store 𝐺 = 𝒯 ∪ 𝒜:
(1) 𝑞𝑢(𝐺) = True iff ∃𝜇, 𝜇′ ∈ J𝑃𝑤K𝑢

𝐺 s.t. 𝜇(𝑃𝑖) ∧ 𝜇′(𝑃𝑖) ∧ 𝒯 |= ⊥;

(2) J𝑃𝑤K𝑢
𝐺 ∖ J𝑃 ′

𝑤K𝑢
𝐺 = {𝜇 ∈ J𝑃𝑤K𝑢

𝐺 | ∃𝜇′ ∈ J𝑃𝑤K𝑢
𝐺 s.t. 𝜇(𝑃𝑖) ∧ 𝜇′(𝑃𝑖) ∧ 𝒯 |= ⊥}.

4 Materialization Preserving Update Semantics

In this section we discuss resolution of inconsistencies between triples already in the
triple store and newly inserted triples. Our baseline requirement for each update seman-
tics is formulated as the following property.



Definition 7 (Consistency-preserving). Let 𝐺 be a triple store and 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤) an
update. A materialization preserving update semantics Sem is called consistency pre-
serving in RDFS¬ if the evaluation of update 𝑢, i.e., 𝐺Sem

𝑢(𝑃𝑑,𝑃𝑖,𝑃𝑤), results in a consistent
triple store.

Our consistency preserving semantics are respectively called brave, cautious and
fainthearted. The brave semantics always gives priority to newly inserted triples by
discarding all pre-existing information that contradicts the update. The cautious seman-
tics is exactly the opposite, discarding inserts that are inconsistent with facts already
present in the triple store; i.e., the cautious semantics never deletes facts unless explicitly
required by the DELETE clause of the SPARQL update. Finally, the fainthearted seman-
tics executes the update partially, only performing insertions for those variable bindings
which do not contradict existing knowledge (again, taking into account deletions).

All semantics rely upon incremental update semantics Semmat
2 , introduced in Sec. 2,

which we aim to extend to take into account class disjointness. Note that for the present
section we assume updates to be intrinsically consistent, which can be checked or
enforced beforehand in a preprocessing step by the safe rewriting discussed in Sec. 3. In
this section, we lift our definition of update operation to include also updates (𝑃𝑑, 𝑃𝑖, 𝑃𝑤)
with 𝑃𝑤 produced by the safe rewriting Alg. 2 from some update satisfying Def. 4. What
remains to be defined is the handling of clashes between newly inserted triples and triples
already present in the triple store.

The intuitions of our semantics for a SPARQL update 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤) in the context
of an RDFS¬ TBox are as follows:

– brave semantics Semmat
brave: (i) delete all instantiations of 𝑃𝑑 and their causes, plus

all the non-deleted triples in 𝐺 clashing with instantiations of triples in 𝑃𝑖 to be
inserted, again also including the causes of these triples; (ii) insert the instantiations
of 𝑃𝑖 plus all their effects.

– cautious semantics Semmat
caut : (i) delete all instantiations of 𝑃𝑑 and their causes;

(ii) insert all instantiations of 𝑃𝑖 plus all their effects, unless they clash with some
non-deleted triples in 𝐺: in this latter case, do not perform the update.

– fainthearted semantics Semmat
faint : (i) delete all instantiations of 𝑃𝑑 and their causes;

(ii) insert those instantiations of 𝑃𝑖 (plus all their effects) which do not clash with
non-deleted triples in 𝐺.

Remark 3. Note that Semmat
2 is not able to cope with so called “dangling” effects – that

is, triples inserted at some point for the sake of materialization, whose causes have been
subsequently deleted. As pointed out in [1], one way to deal with this issue is to combine
Semmat

2 with marking of explicitly inserted triples. This approach was implemented
as a semantics Semmat

1𝑏 in [1], splitting the ABox 𝒜 into the explicit part 𝒜𝑒𝑥 and the
implicit part 𝒜𝑖𝑚 = 𝒜 ∖ 𝒜𝑒𝑥. 𝒜𝑒𝑥 can be maintained, e.g., in a separate RDF graph
using a straightforward update rewriting. Now, deleting 𝑃𝑑 would not only retract 𝑃 caus

𝑑

from 𝒜, but also the triples in chase(𝑃 caus
𝑑 , 𝒯 ) ∖ chase(𝒜𝑒𝑥 ∖ 𝑃 caus

𝑑 , 𝒯 ). That is, the
effects of 𝑃 caus

𝑑 are removed unless they can be derived from facts remaining in 𝒜 after
enforcing the deletion 𝑃𝑑. Such an aggressive removal of dangling triples can lead to
counterintuitive behavior (cf. Example 9 in [1]), and requires maintaining the explicit
ABox 𝒜𝑒𝑥, which is why we opted to preserve dangling effects in our rewritings.

We will now describe implementations of the three semantics above via SPARQL rewrit-
ings, which can be shown to be materialization preserving and consistency preserving.



Algorithm 3: Brave semantics Semmat
brave

Input: Materialized triple store 𝐺 = 𝒯 ∪ 𝒜, SPARQL update 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤)
Output: 𝐺

Semmat
brave

𝑢(𝑃𝑑,𝑃𝑖,𝑃𝑤)
1 𝑃 ′

𝑑 := 𝑃 caus
𝑑 ;

2 foreach triple pattern (?𝑋 a 𝐶) in 𝑃 eff
𝑖 do

3 foreach 𝐶′ s.t. 𝐶 ⊑ ¬𝐶′ ∈ 𝒯 or 𝐶′ ⊑ ¬𝐶 ∈ 𝒯 do
4 if (?𝑋 a 𝐶′) /∈ 𝑃 ′

𝑑 then
5 𝑃 ′

𝑑 := 𝑃 ′
𝑑 . {?𝑋 a 𝐶′}caus

6 return 𝐺
𝑢(𝑃 ′

𝑑
,𝑃 eff

𝑖
,{𝑃𝑤}𝑃

fvars
𝑑

)

4.1 Brave Semantics

The rewriting in Alg. 3 implements the brave update semantics Semmat
brave; it can be viewed

as combining the idea of FastEvol [5] with Semmat
2 to handle inconsistencies by giving

priority to triples that ought to be inserted, and deleting all those triples from the store
that clash with the new ones.

Example 3. Ex. 2 in Sec. 3 provided a safe rewriting safe(𝑢) of the update 𝑢 from Sec. 1.
According to Alg. 3, this safe update is rewritten to:
DELETE {?X a :Professor . ?X1 :studentOf ?X .

?Y a :Student . ?Y :studentOf ?Y1}
INSERT {?X :studentOf ?Y . ?X a :Student . ?Y a :Professor}
WHERE {{?X :attendsClassOf ?Y
MINUS{{?X2 :attendsClassOf ?X} UNION {?Y :attendsClassOf ?Y2}}}
OPTIONAL {?X1 :studentOf ?X} OPTIONAL {?Y :studentOf ?Y1} }

The DELETE clause removes potential clashes for the inserted triples. Note that also
property assertions implying clashes need to be deleted, which introduces fresh variables
?𝑋1 and ?𝑌 1. These variables have to be bound in the WHERE clause, and therefore
𝑃 fvars

𝑑 adds two optional clauses to the WHERE clause, which is a computationally
reasonable implementation of the concept 𝑃 fvars from Def. 5.

The DELETE clause 𝑃 ′
𝑑 of the rewritten update is initialized in Alg. 3 with the set

𝑃𝑑 of triples from the input update. Rewriting ensures that also all “causes” of deleted
facts are removed from the store, since otherwise the materialization will re-insert
deleted triples. To this end, line 1 of Alg. 3 adds to 𝑃 ′

𝑑 all facts from which 𝑃𝑑 can be
derived. Then, for each triple implied by 𝑃𝑖 (that is, for each triple in 𝑃 eff

𝑖 ) the algorithm
computes the patterns of clashing triples and adds them to the DELETE clause 𝑃 ′

𝑑, along
with their causes. Note that it suffices to only consider disjointness assertions that are
syntactically contained in 𝒯 (and not those implied by 𝒯 ), since we assume that the store
𝐺 is materialized. Finally, the WHERE clause of the rewritten update is extended to
satisfy the syntactic restriction that all variables in 𝑃 ′

𝑑 must be bound: bindings of “fresh”
variables introduced to 𝑃 ′

𝑑 due to the domain or range constraints in 𝒯 are provided by
the part 𝑃 fvars

𝑑 , cf. Def. 5 and Ex. 3. The rewritten update is evaluated over the triple
store, computing its new materialized and consistent state.

In the RDFS¬ ontology language and under the restriction that only ABox updates
are allowed, the brave semantics is a belief revision operator [10, 20], performing a



Algorithm 4: Cautious semantics Semmat
caut

Input: Materialized triple store 𝐺 = 𝒯 ∪ 𝒜, SPARQL update 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤)
Output: 𝐺

Semmat
caut

𝑢(𝑃𝑑,𝑃𝑖,𝑃𝑤)
1 𝑊 := { FILTER(False)} // neutral element w.r.t. union
2 foreach (?𝑋 a 𝐶) ∈ 𝑃 eff

𝑖 do
3 foreach 𝐶′ s.t. 𝐶 ⊑ ¬𝐶′ ∈ 𝒯 or 𝐶′ ⊑ ¬𝐶 ∈ 𝒯 do
4 𝛩−

𝐶′ := { FILTER(False)}
5 foreach (?𝑌 a 𝐶′) ∈ 𝑃 caus

𝑑 do
6 𝛩−

𝐶′ := 𝛩−
𝐶′ UNION {𝑃𝑤𝜃[?𝑌 ↦→?𝑋]}

7 𝑊 := 𝑊 UNION {{?𝑋 a 𝐶′} MINUS {𝛩−
𝐶′ }}

8 𝑄 := ASK WHERE {{𝑃𝑤}.{𝑊 }};
9 if 𝑄(𝐺) then

10 return 𝐺
11 else
12 return 𝐺

Semmat
brave

𝑢(𝑃𝑑,𝑃𝑖,𝑃𝑤)

minimal change of the RDF graph (which due to materialization can be seen both as a
deductive closure of the formula representing the ABox as well as the minimal model
of this formula). There is a unique way of resolving inconsistencies since the only
deduction rule with more than one ABox assertion in the premise, is the clash due to
class disjointness (Fig. 1): assuming intrinsic consistency, the choice of which class
membership assertion to remove in order to avoid clash is univocal (new knowledge is
always preferred).

Theorem 2. Alg. 3, given a SPARQL update 𝑢 and a consistent materialized triple store
𝐺 = 𝒯 ∪ 𝒜, computes a new consistent and materialized state w.r.t. brave semantics.
The rewriting in lines 1–6 takes time polynomial in the size of 𝑢 and 𝒯 .

4.2 Cautious Semantics

Unlike Semmat
brave, its cautious version Semmat

caut always gives priority to triples that are
already present in the triple store, and dismisses any inserts that are inconsistent with it.
We implement this semantics as follows: (i) the DELETE command does not generate
inconsistencies and thus is assumed to be always possible; (ii) the update is actually
executed only if the triples introduced by the INSERT clause do not clash with state of
the triple graph after all deletions have been applied.

Cautious semantics thus treats insertions and deletions asymmetrically: the former
depend on the latter but not the other way round. The rationale is that deletions never
cause inconsistencies and can remove clashes between the old and the new data.

As in the case of brave semantics, cautious semantics is implemented using rewriting,
presented in Alg. 4. First, the algorithm issues an ASK query to check that no clashes
will be generated by the INSERT clause, provided that the DELETE part of the update
is executed. If no clashes are expected, in which case the ASK query returns False, the
brave update from the previous section is applied.

For a safe update 𝑢 = (𝑃𝑑, 𝑃𝑖, 𝑃𝑤), the ASK query is generated as follows. For
each triple pattern {?𝑋 a 𝐶} among the effects of 𝑃𝑖, at line 3 Alg. 4 enumerates all



concepts 𝐶 ′ that are explicitly mentioned as disjoint with 𝐶 in 𝒯 . As in the case of
brave semantics, this syntactic check is sufficient due to the assumption that the update
is applied to a materialized store; by the same reason also no property assertions need to
be taken into account.

For each concept 𝐶 ′ disjoint with 𝐶, we need to check that a triple matching the
pattern {?𝑋 a 𝐶 ′} is in the store 𝐺 and will not be deleted by 𝑢. Deletion happens if
there is a pattern {?𝑌 a 𝐶 ′} ∈ 𝑃 caus

𝑑 such that the variable ?𝑌 can be bound to the same
value as ?𝑋 in the WHERE clause 𝑃𝑤. Line 6 of Alg. 4 produces such a check, using
a copy of 𝑃𝑤, in which the variable ?𝑌 is replaced by ?𝑋 and all other variables are
replaced with distinct fresh ones. Since there can be several such triple patterns in 𝑃 caus

𝑑 ,
testing for clash elimination via the DELETE clause requires a disjunctive graph pattern
𝛩−

𝐶′ constructed at line 6 and combined with {?𝑋 a 𝐶 ′} using MINUS at line 7.
Finally, the resulting pattern is appended to the list 𝑊 of clash checks using UNION .

As a result, {𝑃𝑤}.{𝑊} queries for triples that are not deleted by 𝑢 and clash with an
instantiation of some class membership assertion {?𝑋 a 𝐶} ∈ 𝑃 eff

𝑖 .

Theorem 3. Alg. 4, given a SPARQL update 𝑢 and a consistent materialized triple store
𝐺 = 𝒯 ∪ 𝒜, computes a new consistent and materialized state w.r.t. cautious semantics.
The rewriting in lines 1–8 takes time polynomial in the size of 𝑢 and 𝒯 .

Example 4. Alg. 4 rewrites the safe update safe(𝑢) from Ex. 2 as follows:
ASK WHERE{{?X :attendsClassOf ?Y
MINUS{{?X1 :attendsClassOf ?X} UNION {?Y :attendsClassOf ?Y2}}}
.{{?Y a :Student} UNION {?X a :Professor}}}

Now, consider an update 𝑢′ having both INSERT and DELETE clauses:
DELETE {?Y a :Professor} INSERT{?X a :Student}
WHERE {?X :attendsClassOf ?Y}

The update 𝑢′ inserts a single class membership fact and thus is always intrinsically
consistent. The ASK query in Alg. 4 takes the DELETE clause of 𝑢′ into account:
ASK WHERE {{?X :attendsClassOf ?Y}
.{{?X a :Professor} MINUS {?Z :attendsClassOf ?X }}}

4.3 Fainthearted Semantics

Our third, fainthearted semantics is meant to take an intermediate position between the
cautious semantics and the brave one. A shortcoming of the cautious semantics is that
massive update can be retracted because of only a few clashing triples. Not to discard
an update completely in such a case, the user can decide either to override the existing
knowledge — that is, opt for the brave semantics — or to apply insertions only for
those variable bindings which are not clashing with the existing state, which is what the
fainthearted semantics does.

Our realization of the idea of accommodating non-clashing inserts is based on
decoupling the insert and the delete part of an update: whereas the delete is executed
for all variable bindings satisfying the WHERE clause, one dismisses the inserts for
variable bindings that yield clashes with the state of the store after the delete. That is, we
deviate from the notion of update as an atomic operation in a different way than in the



Algorithm 5: Fainthearted semantics Semmat
faint

Input: Materialized triple store 𝐺 = 𝒯 ∪ 𝒜, SPARQL update 𝑢(𝑃𝑑, 𝑃𝑖, 𝑃𝑤)

Output: 𝐺
Semmat

faint
𝑢(𝑃𝑑,𝑃𝑖,𝑃𝑤)

1 𝑊 := 𝑃𝑤

2 foreach triple pattern (𝑥 a 𝐶) in 𝑃 eff
𝑖 do

3 foreach 𝐶′ s.t. 𝐶 ⊑ ¬𝐶′ ∈ 𝒯 or 𝐶′ ⊑ ¬𝐶 ∈ 𝒯 do
4 𝛩−

𝐶′ := { FILTER(𝐹 𝑎𝑙𝑠𝑒)};
5 foreach (𝑧 a 𝐶′) ∈ 𝑃 caus

𝑑 do
6 𝛩−

𝐶′ := 𝛩−
𝐶′ UNION {𝑃𝑤𝜃[𝑧 ↦→ 𝑥]};

7 𝑊 := {𝑊 } MINUS {𝑥 a 𝐶′ MINUS {𝛩−
𝐶′ }};

8 𝑊 := {𝑊 } UNION {𝑃𝑤𝜃1 . 𝑃 fvars
𝑑 𝜃1} ;

9 return 𝐺𝑢(𝑃 caus
𝑑

𝜃1, 𝑃 eff
𝑖

, 𝑊 )

safe rewriting where both deletions and insertions are dismissed for variable bindings
leading to clashes. Our motivation for such a design decision is explained next.

Assume that for each variable binding 𝜇 returned by the WHERE pattern, we want
to either insert gr(𝑃𝑖𝜇) along with deleting gr(𝑃𝑑𝜇), or dismiss 𝜇 altogether. As an ex-
ample, consider the update 𝑢′ from Ex. 4 and the ABox {:jim :attendsClassOf
:ann. :jim a :Professor. :bob :attendsClassOf :jim}. With the
variable binding 𝜇1 = [?𝑋 ↦→ :jim, ?𝑌 ↦→ :ann] we insert :jim a :Student
knowing that the clashing fact :jim a :Professor will be deleted by the binding
𝜇2 = [?𝑋 ↦→ :bob, ?𝑌 ↦→ :jim]. However, if the update is atomic, this anticipated
deletion will only happen if gr(𝑃𝑖𝜇2) does not introduce clashes. Assume this is the case
(i.e. also {:bob a :Professor} is in the ABox): we have to look one more step
ahead and check if this triple will be deleted by some variable binding 𝜇3, and so on.
This behaviour could be realized with SPARQL path expressions, which would however
stipulate severe syntactic restrictions on the WHERE clause 𝑃𝑤 of the original update.

As mentioned above, our interpretation of fainthearted semantics assumes indepen-
dence between the INSERT and DELETE parts of the update. To implement this, we rely
on SPARQL’s flexible handling of variable bindings. Namely, we rename the variables
in the DELETE clause apart from the rest of the update, and put this renamed apart copy
of the WHERE clause in a new UNION branch. The original WHERE clause is then
rewritten (using MINUS operator, similarly to the case of cautious semantics) to ensure
that insertions are only done for variable bindings where clashes are removed by the
DELETE clause with some variable binding. The implementation can be found in Alg. 5.

Example 5. The update 𝑢′ from Example 4 is rewritten as follows by Alg. 5:

DELETE {?Y1 a :Professor } INSERT {?X a :Student}
WHERE {{?X2 :attendsClassOf ?Y1} UNION {?X :attendsClassOf ?Y.

{MINUS {?X a :Professor MINUS {?X3 :attendsClassOf ?X}}}}}

The first union branch binds the variables in the DELETE clause (both using fresh
variables). The second branch binds the variable ?X in the INSERT clause, using MINUS
to remove variable bindings for which a non-deleted clash exists. The test that a clash
will not be deleted is expressed using the inner MINUS operator.



We conclude with a claim of correctness and polynomial complexity of the rewriting,
similar to those made for the brave and cautious semantics.

Theorem 4. Alg. 5, given a SPARQL update 𝑢 and a materialized triple store 𝐺 = 𝒯 ∪𝒜
w.r.t. fainthearted semantics, computes a new consistent and materialized state. The
rewriting in lines 1–9 takes time polynomial in the size of 𝑢 and 𝒯 .

5 Experimental Evaluation

For each of the three semantics discussed in the previous section, we provided a pre-
liminary implementation using the Jena API (http://jena.apache.org) and
evaluated them against Jena TDB triple store which implements the latest SPARQL
1.1 specification. As before, for computing the initial materialization of a triple store
𝑚𝑎𝑡(𝐺) we rely on on-board, forward-chaining materialization in Jena TDB using the
minimal RDFS rules as in Fig. 1.

For our experiments, we used the data generated by the EUGen generator [15] of for
the size range of 5 to 50 Universities. We opted for using this generator as it extends the
LUBM ontology [9] with chains of subclasses, making the rewritings more challenging.
In our case we have used the default of 𝑖 = 20 subclasses for each LUBM concept (e.g.,
Subj𝑖Students) and made such subclasses pairwise disjoint. Moreover, we have
added more disjointness axioms where appropriate, e.g., :AssociateProfessor
dw :FullProfessor. All these TBox axioms are merged with our previous reduced
RDFS version of LUBM used in our previous work [1]. To compare the experimental
results with the previous work, for our experiments we adapted the seven updates
from [1]. Our prototype, as well as files containing the data, ontology, and the updates
used for experiments, are made available on a dedicated Web page 4.

The results summarized in Table 2 show that the LUBM 50 dataset (507MB uncom-
pressed, 8.7M triples after materialization) can be handled in seconds on a quad-core
Intel i7 3.20 GHz machine with 16 GB RAM. For each of the three semantics, we have
compared the time elapsed for rewriting and for the evaluation of the resulting update.
The last line in Table 2 is the evaluation time for the original, non-rewritten update.
One can notice that brave semantics Semmat

brave is often the most expensive one, since it
performs most modifications. When the number of inconsistent inserts is low though,
the situation is different, and the brave semantics slightly outperforms the fainthearted
semantics Semmat

faint (Update #6 and #7), due to the more complex checks in the WHERE
clause produced by Alg. 5. For the cautious semantics Semmat

caut , the numbers in the
table are construction and evaluation time of the ASK query checking for the feasibility
of update (cf. Alg. 4). In case this ASK query returns 𝐹𝑎𝑙𝑠𝑒, the runtime of brave
semantics should be added in order to obtain the total runtime of the update. Update
#4 demonstrates that Semmat

caut can perform significantly worse than Semmat
faint when the

number of instantiations in the original WHERE clause is high. This is because the ASK
query in Semmat

caut looks for instantiations of the WHERE clause which can lead to clashes
with the existing tuples (using a conjunctive condition), whereas Semmat

faint reduces the
set of solutions of the original WHERE clause using MINUS, which is apparently more
efficient in the Apache TDB.

4
http://dbai.tuwien.ac.at/user/ahmeti/sparqlupdate-inconsistency-resolver/

jena.apache.org
http://dbai.tuwien.ac.at/user/ahmeti/sparqlupdate-inconsistency-resolver


Table 2. Evaluation results in seconds for LUBM 50

Update # 1 2 3 4 5 6 7
Semmat

brave 12,4 14,8 0,1 22,1 46,0 15,3 13,6
Semmat

caut 0,3 0,2 0,2 44,0 0,2 3,9 2,3
Semmat

faint 2,2 2,8 0,01 17,4 3,3 16,7 15,3
Original 0,2 0,2 0,2 10,2 0,2 6,6 5,4

6 Related Work and Conclusions

In this paper we have taken a step further from our previous work, in combining SPARQL
Update and RDFS entailment by adding concept disjoints as a first step towards deal-
ing with inconsistencies in the context of SPARQL Updates. We distinguish the case
of intrinsic inconsistency, localized within instantiations of the INSERT clause of a
SPARQL update, and the usual case when the new information is inconsistent with
the old knowledge. In the former case, our solution was to discard all solutions of the
WHERE query that participate in an inconsistency. For the latter case, we discussed
several reconciliation strategies, well suited for efficient implementation in SPARQL.
Our preliminary implementation shows the feasibility of all proposed approaches on top
of an off-the-shelf triple store supporting SPARQL and SPARQL update (Apache TDB).

The problem of knowledge based update and belief revision has been extensively
studied in the literature, although not in the context of SPARQL updates where facts
to be deleted or inserted come from a query. As argued in Sec. 4.1, brave semantics
implements the most established approach of adapting the new information fully via a
minimal change, which is feasible in the setting of fixed RDFS¬ TBoxes. Also semantics
deliberating between accepting and discarding change are known (see [10] for a survey).
In [18] an approach involving user interaction to decide whether to accept or reject an
individual axiom is considered, with some part of the update being computed automati-
cally in order to ensure its consistency. We do not consider interactive procedures here
(although they clearly make sense in the case of more complex TBoxes or for TBox
updates). Instead, we rely on the resolution strategies which are simple for the user
to understand and can be efficiently encoded in SPARQL. In a practical KB editing
system, one should probably combine the two approaches, e.g. for resolving the intrinsic
inconsistency. Likewise, the approaches [3], [7] and [13] consider grounded updates
only, whereas our focus is on implementation of updates in SPARQL. The approach
in [7] captures RDFS and several additional types of constraints and is close in spirit to
our brave semantics.

Intrinsic consistency of an update is a common assumption in knowledge base update
(e.g. [5–7, 14]), which can be easily violated in the case of SPARQL updates. It is worth
noting that our resolution strategy for intrinsic inconsistency called safe rewriting can be
combined with all three update semantics using just the basic SPARQL operators.

Much interesting work remains to be done in order to optimize rewritten updates.
Moreover, we plan to further extend our work towards increasing coverage of more
expressive logics and OWL profiles, namely additional axioms from OWL2 RL or OWL
2 QL [16].
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