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Abstract

Several institutions collect statistical data about cities, regions, and countries for various purposes. Yet, while access to high quality
and recent such data is both crucial for decision makers and a means for achieving transparency to the public, all too often such
collections of data remain isolated and not re-usable, let alone comparable or properly integrated. In this paper we present the Open
City Data Pipeline, a focused attempt to collect, integrate, and enrich statistical data collected at city level worldwide, and re-publish
the resulting dataset in a re-usable manner as Linked Data. The main features of the Open City Data Pipeline are: (i) we integrate
and cleanse data from several sources in a modular and extensible, always up-to-date fashion; (ii) we use both Machine Learning
techniques and reasoning over equational background knowledge to enrich the data by imputing missing values, (iii) we assess the
estimated accuracy of such imputations per indicator. Additionally, (iv) we make the integrated and enriched data, including links
to external data sources, such as DBpedia, available both in a web browser interface and as machine-readable Linked Data, using
standard vocabularies such as QB and PROV.

Apart from providing a contribution to the growing collection of data available as Linked Data, our enrichment process for
missing values also contributes a novel methodology for combining rule-based inference about equational knowledge with inferences
obtained from statistical Machine Learning approaches. While most existing works about inference in Linked Data have focused on
ontological reasoning in RDFS and OWL, we believe that these complementary methods and particularly their combination could be
fruitfully applied also in many other domains for integrating Statistical Linked Data, independent from our concrete use case of
integrating city data.
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under liberal licences.

Such open data can benefit public administrations, citizens
and enterprises. The public administration can use the data to
support decision-making and back policy decisions in a transpar-
ent manner. Citizens can be better informed about government
decisions, as publicly available data can help to raise awareness
and underpin public discussions. Finally, companies could de-
velop new business models and offer tailored solutions to their
customers based on such open data. As an example for making
use of such data, consider Siemens’ Green City Index (GCI) [1],
which assesses and compares the environmental performance of
cities. In order to compute the KPIs used to rank cities’ sustain-
ability, the GCI used qualitative and also quantitative indicators
about city performance, such as for instance CO, emissions
or energy consumption per capita. Although many of these
quantitative indicators had been openly available, the respective
datasets had to be collected, integrated, and checked for integrity

1. Introduction

The public sector collects large amounts of statistical data.
For example, the United Nations Statistics Division! provides
regularly updated statistics about the economy, demographics
and social indicators, environment and energy, and gender on a
global level. The statistical office of the European Commission,
Eurostat?, provides statistical data mainly about EU member
countries. Some of the data in Eurostat has been aggregated
from the statistical offices of the member countries of the EU.
Even several larger cities provide data in on their own open data
portals, e.g., Amsterdam, Berlin, London, or Vienna?®. Increas-
ingly, such data can be downloaded free of charge and used
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violations mostly manually because of the following reasons: (i)
heterogeneity: ambiguous data published by different Open Data
sources in different formats, (ii) missing data, that needed to be
added manually through additional research in text documents
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or estimated by experts, and, last but not least, (iii) outdated data:
soon after the GCI had been published in 2012, its results were
likely already obsolete.

Inspired by this concrete use case of the GCI, the goal of the
present work is on collecting, integrating, and enriching quantit-
ative indicator data about cities including basic statistical data
about demographics, socio-economic factors, or environmental
data, in a more automated and integrated fashion to alleviate
these problems.

Even though there are many relevant data sources which
publish such quantitative indicators as open data, it is still cum-
bersome to use data from multiple sources in combination and
to keep this data up-to-date. The system we present in this paper,
the Open City Data Pipeline, thus contributes by addressing all
of the three above challenges (i)—(iii) in a holistic manner:

(i) Heterogeneity: All this data is published in different formats
such as CSV, JSON, XML, proprietary formats such as
XLS, just as plain HTML tables, or even worse within
PDF files — and so far to a much lesser degree only as RDF
or even as Linked Data [2]. Also, the specifications of the
individual data fields — (a) how indicators are defined and
(b) how they have been collected — are often implicit in tex-
tual descriptions only and have to be processed manually
for understanding whether seemingly identical indicators
published by different sources are indeed comparable.

Our contribution: we present a systematic approach to
integrate statistical data about cities from different sources
as Statistical Linked Data [3] as a standardised format to
publish both the data and the metadata. We build a small
ontology of core city indicators, around which we can
grow a statistical Linked Data cube: we use standard
Linked Data vocabularies such as the RDF Data Cube
(QB) [4] vocabulary to represent data of statistical data
cubes, as well as the PROV [5] vocabulary to track the
original sources of the data, and we create an extensible
pipeline of crawlers and Linked Data wrappers collect this
data from the sources.

(ii) Missing values: Data sources like Eurostat Urban Audit
cover many cities and indicators. However, for reasons
such as cities providing values on a voluntary basis, the
published datasets show a large ratio of missing values.
The impact of missing values is aggravated when com-
bining different data sets, due to either covering different
cities or using different, non-overlapping sets of indicat-
ors.

Our contribution: our assumption — inspired also by
works that suspect the existence of quantitative models
behind the working, growth, and scaling of cities [6] — is
that most indicators in such a scoped domain as cities have
their own structure and dependencies, from which we can
build statistical prediction models and ontological back-
ground knowledge in the form of equations.* We have

4 We sometimes refer to “predicting” instead of “imputing” values when we

developed and combined integrated methods to compute
missing values on the one hand using statistical inference,
such as different standard regression methods, and on
the other hand rule-based inference based on background
knowledge in the form of equations that express know-
ledge about how certain numerical indicators can be com-
puted from others.> While this new method is inspired by
our own prior work on using statistical regression meth-
ods [7] and equational knowledge in isolation [8]), as
we can demonstrate in our evaluation, the combination
of both methods outperforms either method used alone.
We re-publish the imputed/estimated values, adding re-
spective PROV records, and including error estimates, as
Linked Data.

(iii) Updates and changes: Studies like the GCI are typically
outdated soon after publication since reusing or analysing
the evolution of their underlying data is difficult. To im-
prove this situation, we need regularly updated, integrated
data stores which provide a consolidated, up-to-date view
on data from relevant sources.

Our contribution: the extensible single data source wrap-
pers (based on the work around rule-based linked data
wrappers by Stadtmiiller et al. [9]) in our pipeline architec-
ture, are crawling each integrated source regularly (once a
day) for new data, thus keeping the information as up-to-
date as possible, while at the same time re-triggering the
missing value enrichment methods and thereby continu-
ously improving the quality of our estimations for missing
data: indeed we can show in our evaluations that the more
data we collect in our pipeline over time, the better our
prediction models for missing values get.

In summary, our work’s contribution is twofold, both in
terms of building a practically deployed, concrete system to
integrate and enrich statistical data about cities in a uniform,
coherent and re-usable manner, and contributing novel methods
to enrich and assess the quality of Statistical Linked Data:

1. as for the former, we present the Open City Data Pipeline
which is based on a generic, extensible architecture and
how we integrate data from multiple data sources that
publish numerical data about cities in a modular and ex-
tensible way, which we re-publish as Statistical linked
data.

2. as for the latter, we describe the combination of statistical
regression methods with equational background know-
ledge, which we call OB equations, in order to impute and
estimate missing values.

mean finding suitable approximation models to estimate indicator values for
cities and temporal contexts where they are not (yet) available. These predictions
may (not) be confirmed, if additional data becomes available.

3Such equational knowledge could be also understood as “mapping” between
indicators, which together with manually crafted equality mappings between
indicators published by different data sources can be exploited for enrichment,
e.g. if one source publishes the population and area of a city, but not the
population density, then this missing value, available for other cities directly
from other sources, could be computed by an equation.



We also evaluate our approach in terms of measuring the errors
(by evaluating the estimated root mean square error rate (RMSE)
per indicator) of such estimates, demonstrating that firstly, the
combination of statistical inference with equations indeed pays
off, and secondly, the regular update and collection of additional
data through our pipeline contributes to improve our estimations
for missing values in terms of accuracy. Note that the method of
enrichment by QB equations can not only be used for imputing
missing values, but also be used to assess the quality of am-
biguous values from different data sources: by “rating” different
observed values for the same indicator and city from different
sources against their distance to our estimation, we have means
to return confidence in different sources in such an integrated
system.

The remainder of the paper is organised as follows. Sec-
tion 2 introduces the necessary preliminaries in terms of Stat-
istical Linked Data and other technical background, such as an
overview of the used machine learning methods for missing
value imputation. Section 3 gives an overview of the City Data
Pipeline architecture, including a description of data sources and
a description of how the resulting data set is made available in a
re-usable and sustainable manner via a web interface, a Linked
Data interface and a public SPARQL endpoint. Section 4 de-
scribes the data gathering as well as the main challenges in this
context. Section 5 explains the missing data prediction process
in more detail. Section 6 refines this process by introducing
and applying QB equations. Both the basic value imputation
mechanism and the refinement by QB equations are evaluated in
Section 7. Section 8 puts our approach in the context of related
work. Section 9 gives conclusions, provides lessons learnt and
summaries directions for future research.

2. Preliminaries

In the following, we briefly introduce some core terms and
notations used throughout the paper. We start with how Stat-
istical Linked Data allows for modelling, wrapping, crawling,
and querying of numerical data. We continue with provenance
annotations to allow linking and integration as well as tracking
the origin of numerical data. Then, we explain how equational
background knowledge allows inferencing of numeric inform-
ation. Also, we explain the basics of missing value prediction
using machine learning methods.

Statistical Linked Data. Our focus is on data integration us-
ing web technologies. As such, we use technologies such as
RDF [10], RDFS, OWL, and SPARQL 1.1 (both query lan-
guage [11] and update language [12]) to represent, query, and
integrate statistical data. We assume the reader is familiar with
these standards. Statistical Linked Data refers to statistics pub-
lished according to the Linked Data principles [13] reusing the
RDF Data Cube Vocabulary (QB) [4] as a basis for representing
both the individual data points and the metadata. QB is a widely-
used vocabulary to describe statistical datasets as so-called data
cubes using a multidimensional data model [14].

In the following, we illustrate how the metadata of a popula-
tion dataset can be modelled using QB. If not stated otherwise,

we use (abbreviated) Turtle notation for RDFC. The following is
an excerpt from Turtle documents containing data from Eurostat:
</id/urb_cpopl#ds> a gb:DataSet ;

rdfs:label "Population on 1 January by age groups and

sex - cities and greater cities” ;
gb:structure </dsd/urb_cpopl#dsd> .

</dsd/urb_cpopl#dsd> a gb:DataStructureDefinition;
gb:component [ gb:dimension dcterms:date 1 ;
gb:component [ gb:dimension estatwrap:cities 1 ;
gb:component [ gb:dimension estatwrap:indic_ur 1 ;
gb:component [ gb:measure sdmx-measure:obsValue ]

In the example, a data structure definition (DSD) defines
the independent, categorical properties of the dataset, so-called
dimensions: date, city, and indicator. Also, the DSD defines
one dependent numeric property, so-called measure. The data
structure definition could also include all valid dimension values,
such as all city URIs for dimension estatwrap:cities.

Now, we give an example of how one data point can be
modelled using QB:

_:obs1 a gb:0Observation ;

gb:dataSet </id/urb_cpopl#ds> ;
estatwrap:cities </dic/cities#AT001C1> ;

estatwrap:indic_ur </dic/indic_ur#DE1001V>
dcterms:date "2013" ;
sdmx -measure:obsValue "1741246"

The example describes an observation of 1,741,246 inhab-
itants of Vienna in 2013 in the population dataset of Eurostat.
Since any individual data point within a dataset is uniquely de-
scribed by its dimension-value combinations, observations are
usually modelled using blank nodes.

In the remainder of the paper we use the terms (statistical)
dataset, QB dataset and (data) cube synonymously. The QB
specification defines the notion of “well-formed cubes™” based
on constraints that need to hold on a dataset. When generating
and publishing QB datasets, we ensure that these constraints are
fulfilled. For instance, when we later generate new observations
via predictions and computations we also generate new datasets
containing these values.

For publishing statistics in arbitrary formats as Statistical
Linked Data, wrappers can access data from the original source,
either in real-time or in batch mode, from the original format,
e.g., CSV, and provide the data as Statistical Linked Data to
the consumer. To collect data from different sources in one
place, Linked Data crawlers can start with a seed list of dataset
URIs and follow links to access the connected RDF documents.
Observations from a dataset can be queried (e.g., filtered and
aggregated) using SPARQL [3, 15].

Linking and Provenance Annotations. In our scenario, integra-
tion means building a unified view that allows querying obser-
vations from several datasets as if they would reside in a single
dataset (we will refer later to this unified view as the global
cube). To allow for querying the unified view the query pro-
cessor requires mappings and the means to use these mappings
during query evaluation.

6Use http://prefix.cc/ to look up prefix declarations.
7https://www.w3.org/TR/vocab—data—cube/#wf
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Consider a query to return all values of the indicator “pop-
ulation” of the area “Vienna”, in the year “2010” simultan-
eously over two datasets. The two datasets may use different
identifiers for the same dimensions, e.g., estatwrap:geo vs.
sdmx-dimension:refArea and dimension values, e.g., http://-
estatwrap.ontologycentral.com/dic/cities#AT@01C1 vs. db-
pedia:Vienna. Hence, the query would need to take these differ-
ent URIs into account, or the query processor requires additional
data to be able to resolve the differences.

The following RDF snippet contains example links between
a dimensions and a dimension value:

estatwrap:cities rdfs:subPropertyOf sdmx-dimension:refArea .
<http://estatwrap.ontologycentral.com/dic/cities#AT@0Q1C1> owl:
sameAs dbpedia:Vienna .

When considering the semantics of such links when querying
the observations of two or more datasets with identical dimen-
sions, observations can be queried simultaneously as if they
would reside in a single dataset [16].

To make observations more traceable and allow to judge the
trustworthiness of data, we go beyond the lightweight approach
of using Dublin Core properties such as dc:publisher to refer
from a dataset to its publisher. We use the PROV ontology [5]
to add provenance annotations, such as the agents and activities
that were involved in generating observations from other ob-
servations (e.g., predicting, inferencing). The following RDF
fragment shows a PROV example of two observations, where a
QB observation ex:obs123 was derived from another observa-
tion ex:obs789 via an activity ex:activity456 on the 15th of
January 2017 at 12:37. This derivation was executed according
to the rule ex: rule937 with an agent ex: fred being responsible.

ex:0bs123 prov:generatedAtTime "2017-01-15T12:37:00" ;
prov:wasDerivedFrom ex:obs789 ;
prov:wasGeneratedBy ex:activity456 .

ex:activity456 prov:qualifiedAssociation [
prov:wasAssociatedWith ex:fred ] ;
prov:hadPlan ex:rule937 .

Equational Background Knowledge. In the Semantic Web, in-
formation sometimes can be inferred deductively by applying on-
tological reasoning over suitably formalised background know-
ledge that often can be evaluated based on rules (e.g. reasoning
about subproperties and subclasses, or entity consolidation using
owl:sameAs inferences) [17]. Less common is equational know-
ledge defining functional dependencies among certain attributes
of a resource.

For example, if we know that the city Bolzano has 54,031
female residents and a value of 109.0 for the Eurostat indicator
“Women per 100 men”, then we can compute a value of 49,570
male residents from the following equation:

population female - 100

women per 100 men = :
population male

Two of our previous works [8, 16] have shown that it is pos-
sible to define rules to execute such equations, also considering
1) that equations are undirected, 2) that numeric datasets may
be modelled with an arbitrary number of dimensions, and 3)
that both forward-chaining inference and query rewriting are

(1) Linked Data
Wrapping

(2) Linked Data
Crawling

(1) Linked Data
Wrapping

Enrichment

(5) Statistical Missing-
il Values-Prediction

[ |

(3) Data Integration

(7) Data Publication (4) Data Storage

(6) QB Equations

Figure 1: Open City Data Pipeline workflow

suitable approaches. In case no computation up to a fixpoint
is needed, the executions were realised with simple SPARQL
CONSTRUCT or INSERT queries (or, in off-the-shelf SPARQL
engines by iteratively applying such queries).

Missing Value Prediction. In our attempt to impute (predict)
missing values for certain indicators and cities, our assumption
is that every such indicator has its own distribution (e.g., nor-
mal, Poisson) and relationship to other indicators. Hence, we
aim to evaluate different regression methods and choose the
best fitting model to predict the missing values. In the field of
Data Mining [18, 19] various regression methods for prediction
were developed. We focus on well-established methods such as
K-Nearest-Neighbour Regression, Multiple Linear Regression
and Random Forest Decision Trees, since these methods are
straightforward to apply and show a robust behaviour. In case
the data is very sparse, these methods are not applicable since
they require complete (subsets) of data. To this end, a common
and robust method is the regularised iterative PCA algorithm:
to first perform a Principal Component Analysis (PCA) to re-
duce the number of dimensions of the data set and use the new
compressed dimensions, called principal components (PCs) as
predictors [19, 20]. For measuring the quality of predictions
(possibly used in equations), we use the root mean squared
error (RMSE) and normalised root mean squared error in %

(RMSE%) [18].

3. Overview and System Architecture

The workflow of the Open City Data Pipeline (OCDP) is
illustrated in Figure 1 and consists of several steps:

1. Data is provided as Statistical Linked Data via wrappers
which have to be created once per source in the Wrapping
step.

2. A crawler collects data regularly (currently, weekly) from
different sources in the Crawling step through the wrap-
pers.

3. In the Data Integration step the data is integrated into the
global cube, where data is enriched by links and hetero-
geneities resolved.
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4. Inthe Data Storage step, the data is loaded into a SPARQL
endpoint.

5. One further enrichment step exploits equational back-
ground knowledge in the form of QB equations.

6. Another further enrichment step applies statistical meth-
ods for missing values prediction.

7. Finally, in the Data publication step, the resulting enriched
Linked data is made accessible.

In order to realise these steps, the architecture of the OCDP
system implements several components. Figure 2 gives a high
level overview of the architecture with a triple store being the
central part. The data quality improvement workflow uses vari-
ous methods to improve data quality and enrich the data.

We start with surveying data sources that serve as input to the
pipeline in Section 3.1. We introduce the different components,
their inputs, outputs, and interfaces in Section 3.2 and explain
how we make the resulting data available in Section 3.3.

3.1. Data Sources

Many interesting statistical data sources are nowadays avail-
able. Many indicators in these data sources are provided on a
country level and only a subset of indicators are available on the
city level. We have identified the following potential providers
of statistical data concerning cities:

. DBpediaS;

o Wikidata®;

¢ Eurostat with Urban Audit;

¢ United Nations Statistics Division (UNSD) statistics;
¢ U.S. Census Bureau statistics;

¢ Carbon Disclosure Projectlo;

* individual city data portals.

8http: //dbpedia.org/
9http: //wikidata.org/
10https ://www.cdp.net

In particular, we use statistical data from the United Nations
and from Eurostat, which are integrated and enriched by the
OCDP. The data sources contain data ranging from the years
1990 to 2016, but most of the data concerns the years after 2000.
Further, not every indicator is covered over all years, where
the highest coverage of indicators is between 2004 and 2015
(see Tables 1 and 2). Most European cities are contained in the
Eurostat datasets. The UNSD contains the capital cities and
cities with a population over 100 000, all listed in the United
Nations Demographic Yearbook!!.

The previous OCDP of ISWC 2015 [7] contains data from
1990 to 2013 with 638,934 values from the Eurostat data source
and 69,772 values from the U.N. data source. Due to some
reorganisation in the Eurostat and U.N. datasets, Eurostat con-
tains now 506,854 values and the U.N. provides 40,532 values.
Regarding indicators, we now have 209 instead of 215 Eurostat
and 64 instead of 154 U.N. indicators. The reason for the drop in
indicators is due to the fact that the U.N publishes fewer datasets.
The same effect can be seen for the cities, where we have 966
instead of 943 Eurostat and 3,381 instead of 4,319 U.N cities.
Due to the smaller size of the datasets (see Tables 1 and 2), we
now have an improved missing values ratio of 81.7% (before
86.3%) for Eurostat, resp. 94.4% (before 99.5%) for the U.N.
dataset.

We now describe each of the data sources in detail.

Eurostat. Eurostat!? offers various datasets concerning E.U.
statistics. The data collection is conducted by the national stat-
istical institutes and Eurostat itself. Of particular interest is the
Urban Audit (UA) collection, which started as an initiative to
assess the quality of life in European cities. UA aims to provide
an extensive look at the cities under investigation, since it is a
policy tool to the European Commission: “The projects’ ultimate
goal is to contribute towards the improvement of the quality of
urban life” [21]. Currently, data collection takes place every
three years (last survey in 2015) and is published via Eurostat
Urban Audit. All data is provided on a voluntary basis which
leads to varying data availability and missing values in the col-
lected datasets. At the city level, Urban Audit contains over
200 indicators divided into the categories Demography, Social
Aspects, Economic Aspects, and Civic Involvement. Currently,
we extract the datasets that include the following topics:

 Population by structure, age groups, sex, citizenship, and
country of birth

* Fertility and mortality

* Living conditions and education
 Culture and tourism

* Labour market, economy, and finance

 Transport, environment, and crime.

Whttp://unstats.un. org/unsd/demographic/products/dyb/dyb2012.
htm
]zhttp ://ec.europa.eu/eurostat
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Table 1: Values of the Eurostat Dataset

Year(s) Cities Indicators Available Missing Missing Ratio (%)
1990 131 88 1799 9 641 84.27
2000 433 163 6420 63 996 90.88
2005 598 168 20 460 79 836 79.60
2010 869 193 56 528 110 996 66.26
2015 310 69 2030 19291 90.48
2004-2016 879 207 437 565 1331250 75.26
All (1990-2016) 966 209 506854 2257171 81.66
Table 2: Values of the United Nations Dataset
Year(s) Cities Indicators Available Missing Missing Ratio (%)
1990 5 3 8 7 46.67
2000 1078 61 3861 61 836 94.12
2005 777 61 2110 45 226 95.54
2010 1525 64 5866 91 670 93.99
2015 216 3 568 77 11.94
2004-2016 2095 64 28849 511759 94.66
All (1990-2016) 3381 64 40532 685548 94.42

United Nations Statistics Division (UNSD). The UNSD offers
data on a wide range of topics such as education, environment,
health, technology and tourism. The focus of the UNSD is
usually on the country level, but there are some datasets on
cities available as well. Our main source is the UNSD Demo-
graphic and Social Statistics, which is based on the data collected
annually (since 1948) by questionnaires to national statistical
offices'®. Currently we use the datasets on the city level that
include the following topics:

* Population by age distribution, sex, and housing
» Households by different criteria (e.g., type of housing)

* Occupants of housing units / dwellings by broad types
(e.g., size, lighting, etc.)

* Occupied housing units by different criteria (e.g., walls,
waste, etc.)

The full UNSD Demographic and Social Statistics data has
over 650 indicators, wherein we kept a set of 64 course-grained
indicators and dropped the most fine-grained indicator level. For
example, we keep housing units total but drop housing units 1
room. We prefer more coarse-grained indicators to avoid large
groups of similar indicators which are highly correlated.

3.2. Pipeline Components

We now give an overview of each of the components of the
OCDP system.

Statistical Linked Data Wrappers. Currently, none of the men-
tioned data sources publishes statistical data as Statistical Linked
Data upfront. Thus, we use a set of wrappers which publish the
data from these sources according to the principles listed in
Section 2. Section 4.1 below explains these wrappers in more
detail.

Bhttp: //unstats.un.org/unsd/demographic/

Linked Data Crawler. A Linked Data crawler starts with a seed
list of URIs and crawls relevant connected Linked Data. The res-
ulting RDF data is collected in one big RDF file and eventually
loaded into the triple store. Section 4.4 explains the linked data
crawler in more detail.

Triple Store. We use a standard Virtuoso 7 triple store as a cent-
ral component to store data at different processing stages. For
data loading we use the Virtuoso SQL console which allows
faster data loading. For all other data access we rely on Virtu-
0s0’s SPARQL 1.1 interface which allows not only to query for
data but with SPARQL Update also to insert new triples.

Enrichment Component: Data quality improvement workflow.
In an iterative approach we improve data quality of the crawled
raw data. This component covers steps (4)-(6) in the workflow
shown in Figure 1: in this configurable workflow we use the
several different sub-components corresponding to these steps
consecutively. Each workflow component first reads input data
(=observations) from the triple store via SPARQL queries, pro-
cesses the data accordingly and inserts new triples into the triple
store either via SPARQL Insert queries or the Virtuoso bulk
loader facility (the first option is more flexible — it allows the
execution of the workflow on a different machine — the second
usually allows faster data loading).

The workflow currently uses three different subcomponents
corresponding to steps (4), (5) and (6), respectively:

* The Data Integration sub-component, corresponding to
step (3), performs some linking and data integration steps
and materialises the global cube in a separate named graph.
This linking and materialisation effectively resolves dif-
ferent types of heterogeneity found in the raw data: (i)
different URIs for members, (ii) different URIs for di-
mensions, (iii) different DSDs (although the DSDs must
be compatible to some extent for the integration to make
sense). Eventually the global cube provides a unified view
over many datasets from several sources. This compon-
ent is implemented with SPARQL Update queries and
supplied background knowledge for the integration. The
exact process of linking statistical data and the material-
isation will be described in more detail in Section 4.3 and
Section 4.2 below.

* The Statistical Missing Values Prediction sub-component
for missing value prediction, corresponding to step (5),
extracts the whole global cube generated by the materi-
alisation as one big data matrix, which is then used for
applying different standard statistical regression methods
to train models for missing value prediction. This compon-
ent is implemented as a set of R scripts which extract the
data with SPARQL queries. We then train and evaluate the
models for each of the indicators. If the selected model
delivers predictions in a satisfactory quality we apply the
model and get estimates for the indicators. Finally the
component exports the statistical data together with error
estimates to one RDF file which is then loaded into the
triple store with the Virtuoso bulk load feature and added
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to the global cube. Section 5 below explains the details of
this components in more detail.

* The OB Equations sub-component, corresponding to step
(6), uses equations from different sources to infer even
more data. To this end, we introduce QB equations. These
QB equations provide an RDF representation format for
equational knowledge and a semantics as well as a for-
ward chaining implementation to infer new values. QB
equations are implemented in a naive rule engine which
directly executes SPARQL INSERT queries on the triple
store. Section 6 introduces the concept of QB equations
with syntax, semantics and implementation.

Lastly, in Section 6.3, we also explain the interplay between
the Data Enrichment sub-components in more detail, that is
— roughly — after cleansing and linking in component (4) we
first run the QB equations component (6) once, to compute any
values by equations that can be derived from the raw factual
data alone, then approximate the remaining missing values by
the statistical missing values prediction component (5), after
which finally we run the QB equations component (6) again
to improve predictions from (5) iteratively. As we will see in
a detailed evaluation in Section 7, this iterative combination
indeed performs better than using either (5) or (6) alone.

3.3. Data Publication

Eventually after the data is crawled and loaded into the triple
store, improved and enriched by our workflow, the resulting
global cube is available for consumption.

We provide a SPARQL endpoint!* based on Virtuoso, where
the global cube is stored in a named graph!>. The prefix names
used in the examples above are already set in Virtuoso, thus no
prefix declarations are necessary for SPARQL queries.

We also provide a simple user interface'® to query values
for a selected indicator and city in the global cube. Queries
are directly executed on the triple store during loading of the
website using a JavaScript library called Spark; thus one can
have a look at the SPARQL queries in the source code. We show
all predicted values for transparency reasons. We simply order
by the error value, i.e., the most trustworthy value per year is
always shown first.

4. Data Conversion, Linking, and Integration

We now explain our approach for data conversion, linking,
and integration. The approach is modular and extensible in the
sense that every new data source can be prepared for considera-
tion separately and independently from other sources. The data
integration pipeline can be re-run at any time and thus allow for
up-to-date data.

The approach consists of the following components:

14http://citydata.wu.ac.at/ocdp/sparql
15http://citydata.wu.ac.at/qb—rnaterialised—global—cube
16http://kalmarSZ.in.de/indicator—city—query‘php

* Linked Data wrappers that publish numerical data from
various data sources as Statistical Linked Data (Section 4.1);

* the definition of a unified view over all relevant Statistical
Linked Data (Section 4.2);

* semi-automatically generated links between Statistical
Linked Data from different sources (Section 4.3);

¢ arule-based Linked Data crawler to collect the relevant
data and creates the unified view (Section 4.4).

4.1. Wrappers

We use Linked Data as interface to access and represent rel-
evant data sources (e.g., Eurostat or UNSD), which are originally
published in tabular form. The uniform Linked Data interface
hides the specialities and structure of the original data source.
When the wrapper receives an HTTP request for a particular
dataset, it retrieves the data on-the-fly from the original source,
transforms the tabular representation to RDF, using the RDF
Data Cube vocabulary, and returns the RDF representation of
the original tabular data.

The wrappers provide a table of contents with links to all
available datasets (as a collection of gb:DataSet triples), in-
cluding the data structure definition of the datasets (as qb:Data-
StructureDefinition). The individual data points are modelled
as observations (as gb:Observation). The data structure defin-
ition includes the available dimensions (as gb:dimension) and
concept schemes (as skos:ConceptScheme). We require a list of
dataset and data structure definitions to be able to crawl the data.

Each wrapper coins URIs for identifying the relevant re-
sources, for example, indicators or locations. We use URIs as
unique identifiers for datasets, dimensions, and dimension values
from different data sources.

The data sources identify indicators differently. For example,
UNSD provides population numbers in dataset “240”, while
Eurostat provides population numbers in dataset urb_cpopl”.
We use the City Data Ontology to unify the various indicator
identifiers. Similarly, locations have varying identifiers and
sometimes varying names in the different data sources. For a
relatively clear-cut example consider the city of Vienna: UNSD
uses city code “001170” and label “WIEN”, whereas Eurostat
uses code “AT001C1” and label “Wien”. The wrappers generate
a Uniform Resource Identifier (URI) for every city out of the
unique identifiers in the original tabular data.

We use the following wrappers that provide access to the
underlying data source via a Linked Data interface:

Eurostat Wrapper. The Eurostat wrapper'’ makes the Eurostat
datasets, originally available in tabular form at the Eurostat
website, available as Linked Data. Eurostat provides several
dictionary files in SDMX format; these files are used to construct
a list of dimension values in the data structure definition and
to generate URIs for relevant entities (such as cities). All files
are accessed from the original Eurostat server once the wrapper

17http://estatwrap.ontologycentral.com/
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receives a HTTP request on the particular URI, ensuring that
the provided RDF data is up-to-date. Population data in the
Eurostat wrapper'® uses http://estatwrap.ontologycentral .
com/dic/indic_ur#DE1001V to identify “Population on the 1st
of January, total”. The indicator URI is mapped to indicator
URIs from the City Data Ontology in a subsequent step.

UNSD Wrapper. The UNSD wrapper!® makes the UNSD data-
sets, originally available in tabular form at the UNSD website,
available as Linked Data. The UNSD wrapper provides a simple
data structure definition describing the available dimensions and
measure. In total, we cover 14 datasets ranging from popula-
tion to housing data. Most indicators, e.g., population of the
“240” dataset,” are directly mapped to an indicator URI from
the City Data Ontology, namely http://citydata.wu.ac.at/
ns#population.

4.2. Unified View over Statistical Linked Data

As the different data sources use different identifiers (and
the wrappers use different URIs), we need to link the varying
URISs before we can do an integrated querying of the data. As the
foundation for efficiently querying Statistical Linked Data — and
in turn enriching the data as described in Section 5 and Section 6
— we define a unified view of all crawled datasets about cities in
a simplified version of the global cube [16]. In the following,
we describe the structure of the global cube.

We define the unified view as the basis for querying as
follows. The gb:0Observations (consisting of dimensions and
measures) have the following structure, starting with the dimen-
sions:

¢ For the time dimension we use dcterms:date.

* For the time dimension values we use single years repres-
ented as String values such as "2015".

* For the geospatial dimension we use sdmx-dimension:ref-
Area, which is recommended by the QB standard.

* For the geospatial dimension values we use instances of
dbpedia:City, such as dbpedia:Vienna.

¢ For the indicator dimension we use cd:hasIndicator.

¢ For the indicator dimension values we use instances of
cd:Indicator, such as cd:population_female. For the
indicator dimension values, we defined the CDP ontology
as the main hub of indicator URISs to link to since there
was no list with common indicator values.

Most data source follow the practice of using an unspecific
measure sdmx-measure:obsValue and a dimension indicating
the measured variable, e.g., estatwrap:indic_na. For the uni-
fied view, we thus also assume data cubes to have only one gen-
eral measure, sdmx-measure:obsValue. Please note that there

18http://estatwrap.ontologycentral.com/id/urb,cpom
19http://citydata.wu.ac‘at/Linked—UNData/
20http://citydata.wu.ac.at/Linked—UNData/data/240

are different equivalent alternative representations of the same
information. Specifically for measure properties, in QB there
is a choice for the structuring of the observations. Either use
a single observation value property and a dedicated indicator
dimension, or encode the indicator in the measure property. To
sum up: in-line with established usage, we use a single meas-
ure property, but that structure contains all the information that
would also be present in the alternative representation.

If we want to pose queries over the two datasets, we have
two options. Either specifically write the query to consider
possibly different identifiers (i.e., need to know all identifiers)
or 2) assume existing links and reasoning. Then, if we query for
values for the canonical identifiers (as for any other identifier in
the equivalence class), we also get the values for the respective
other identifiers. In the paper, we assume reasoning to allow for
flexible addition of new sources without the need to change the
queries for each new data source.

Take as an example we want a query all values of the indic-
ator “population” of the area “Vienna”, in the year “2010” over
data from both datasets. The indicator would be expressed as a
dimension, with a URI representing “population” as dimension
value. The area would be expressed with a dimension, with a
URI representing “Vienna” as dimension value. The query looks
like the following:

SELECT ?city ?year ?value

WHERE {

?0bs cd:hasIndicator cd:population ;
sdmx-dimension:refArea dbpedia:Vienna ;
dcterms:date ?year ;
sdmx-measure:obsValue ?value .

Our unified view uses the basic modelling features of the
QB vocabulary. In particular, we model indicators in a way that
include what otherwise might be encoded as separate dimensions.
In the more complex modelling, we would need to use the union
of all dimensions of the source datasets, which would lead to
introducing an“ALL” dimension value for those dimensions
that are not distinguished by the particular dataset (see [16] for
details on this more normalised representation). However, all
the newly introduced dimensions per dataset would need to be
considered in querying which complicates the queries. Rather
than adding a dimension “sex” to encode gender, we create
separate indicator URIs, for example for population, population
male and population female. A benefit of the relatively simple
structure is that queries and rules operating on the unified view
are also simple.

We have published the data structure definition of the global
cube using the QB vocabulary. Besides the general measure
(sdmx-measure:obsValue), the gb:DataStructureDefinition
of the global cube uses the mentioned dimensions dcterms:date,
sdmx-dimension:refArea, and cd:hasIndicator. Also, we
have defined instances of gb:AttributeProperty for cd:esti-
matedRMSE (for describing the error), cd: preferredObservation
(for linking to more reliable values), prov:wasGeneratedBy (for
describing provenance information) and prov:generatedAtTime
(for the time of generation) that help to interpret and evaluate
the trustworthiness of values.

Please note that data sources use different identifiers for
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dimensions and dimension URIs. In the global cube, we use ca-
nonical URIs to represent resources from different data sources.

4.3. Linking and Mapping Data

We start by explaining the required mappings for dimension
URISs, followed by explaining the required mappings for dimen-
sion value URIs. In general, the data from the UNSD wrapper,
due the simpler representation in the original data source, re-
quires less mappings than the data from the Eurostat wrapper.

The two data sources exhibit the three dimensions for dc-
terms:date (year), sdmx-dimension: refArea (city) and cd:-
hasIndicator (indicator). We map the following dimension
URIs of the global cube using rdfs: subPropertyOf:

 For the time dimension our wrappers directly use dc-
terms:date. The time dimension hence does not require
any further mapping.

* For the geospatial dimension the UNSD wrapper uses
sdmx-dimension:refArea. The Eurostat wrapper uses dif-
ferent representations for the geospatial dimension, such
as eurostat:geo, eurostat:cities and eurostat:metro-
reg, which we link to sdmx-dimension:refArea.

* For the indicator dimension we use cd:hasIndicator.
Again, the UNSD wrapper directly uses that URI, while
the data from the Eurostat wrapper requires links from
eurostat:indic_na and eurostat:indic_ur to cd:has-
Indicator.

The Eurostat site provides a quite elaborate modelling of
dimensions, code lists and so on in SDMX files. The datasets
from the Eurostat wrapper use various units such as :THS de-
noting "Thousand" and :COUNT denoting that the number was
computed from a count operation. However, all other dimensions
of datasets from Eurostat we consider in the pipeline besides
the three canonical dimensions of the global cube exhibit only
one single possible dimension value (e.g., : THS). Hence, we can
assume that all other dimensions and their values are part of the
indicator.

The UNSD site has a simpler structure than Eurostat. The
modelling of different dimensions and code lists is less elaborate.
Thus, for the UNSD wrapper, we have ensured on the level of
the published RDF that each dataset only provides the canonical
dimensions.

The two wrappers use different URIs for the same dimen-
sions, e.g., eurostat:geo and sdmx-dimension:refArea. The
wrappers also use different URIs for the same dimension values,

e.g.,

* For the time dimension values we use single years repres-
ented as String values such as "2015".

* For the geospatial dimension values we link to DBpedia

URISs from other representations such as http: //estatwrap. -
ontologycentral.com/dic/cities#AT0@1C1 and http://-

citydata.wu.ac.at/resource/40/001170#000001.

* For the indicator dimension values we link to instances
of cd:Indicator, such as cd:population and cd:popula-
tion_male. The UNSD wrapper directly uses these values.
For the URIs used in the data from the Eurostat wrapper,
we link to instances of cd:Indicator.

We now describe how we generated these links to map data
from different sources to the canonical representation, starting
with the dimension and dimension value URIs. We manually cre-
ated the rdf's: subPropertyOf triples connecting the Eurostat di-
mension URIs with our canonical URIs, and semi-automatically
generated the indicator URIs from an Excel sheet provided by
Eurostat. We then created an RDF document with links from the
newly generated URISs to the URIs of the Eurostat wrapper. We
manually adapted the UNSD wrapper to use the newly generate
URIs as indicator URIs.

We choose to have a one-to-one (functional) mapping of
every city from our namespace to the English DBpedia URI,
which in our re-published data is encoded by owl: sameAs rela-
tions. We identify the matching DBpedia URIs for multilingual
city names and apply basic entity recognition, similar to Paul-
heim et al. [22], with three steps using the city names from
UNSD data:

* Accessing the DBpedia resource directly and following
possible redirects.

+ Using the Geonames API ?! to identify the resource.

* For the remaining cities, we manually looked up the URI
on DBpedia.

The mappings of geospatial URIs from the Eurostat wrapper
were done in a similar fashion. All the mappings are published
online as RDF documents that are accessed during the crawling
step.

4.4. Data Crawling and Integration

The overall RDF graph can be published and partitioned in
different documents. Thus, to access the relevant RDF docu-
ments, the system has to resolve the URIs of entities related to
the dataset. Related entities are all instances of QB-defined con-
cepts that can be reached from the dataset URI via QB-defined
properties. For example, from the URI of a gb:DataSet instance,
the instance of gb:DataStructureDefinition can be reached
via gb:structure. Similarly, instances of gb:ComponentPro-
perty (dimensions/measures) and skos: Concept (members) can
be reached via links.

Once all numeric data is available as Linked Data, we need
to make sure to collect all relevant data and metadata starting
from a list of initial URISs. First, the input to the crawling is a
seed list of URISs of instances of gb:DataSets. One example of
a “registry” or “seed list” of dataset URIs is provided by the
PlanetData wiki’>. A seed list of such datasets is published as

2 http://api.geonames.org/
22http ://wiki.planet-data.eu/web/Datasets
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RDF and considered as input to the crawling. We use two such
seed lists: one with links to the relevant instances of gb:DataSet
from the UNSD wrapper, and another one with links to the
relevant instances of gb:DataSet from the Eurostat wrapper.

Then, Linked Data crawlers deploy crawling strategies for
RDF data where they resolve the URIs in the seed list to collect
further RDF and in turn resolve a specific (sub-)set of contained
URIs. An example Linked Data crawler is LDSpider [23], which
uses a depth-first or breadth-first crawling strategy for RDF data.
Linked Data crawlers typically follow links without considering
the type.

A more directed approach would apply a crawling strategy
that starts with resolving and loading the URIs of gb:DataSets
relevant for the task, and then in turn resolves and loads instances
of QB concepts that can be reached from the dataset URIs.

To specify how to collect Linked Data, we use the Linked
Data-Fu language [9] in which rule-based link traversal can be
specified. For instance, to retrieve data from all gb:DataSets,
we define the following rule:

{
?ds rdf:type gb:DataSet.
} =
{
[] http:mthd httpm:GET .
http:requestURI ?ds .

The head of a rule corresponds to an update function of
an internal graph representation in that it describes an HTTP
method that is to be applied to a resource. In our example, the
head of a rule applies a HTTP GET method to the resource ?ds.
The body of a rule corresponds to the condition in terms of triple
patterns that have to hold in the internal graph representation. In
our example, ?ds is defined as an instance of gb:DataSet.

Similarly, we retrieve instances of gb:DataStructureDef-
inition, gb:ComponentSpecification, gb:DimensionProper-

ty, gb:AttributeProperty, gb:MeasureProperty, gb:Slice, qb:-

SliceKey, and gb:ObservationGroup. Also, we access the list
of possible dimension values (based on gb:codelList in data
structure definitions) as well as each single dimension value.
The only instances we do not resolve are observations since
these are usually either modelled as blank nodes or provided
together with other relevant information with the RDF document
containing gb:DataSet or gb:Slice.

Crawling may include further information, e.g., rdfs: see-
Also links from relevant entities or owl:sameAs links to equi-
valent URIs. Assuming that the number of related instances of
QB concepts starting from a QB dataset is limited and that links
such as rdfs:seeAlso for further information are not crawled
without restriction (e.g., only from instances of QB concepts),
the directed crawling strategy terminates after a finite amount of
steps.

Besides all the relevant data and metadata of gb:DataSets,
we collect the following further information:

* The City Data Ontology>} (CDP ontology) that contains
lists of common statistical indicators about cities.

23http: //citydata.wu.ac.at/ns
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* The QB Equations Ontology”* that contains the vocabu-
lary to describe QB equations and is further detailed in
Section 6.

* The Eurostat QB equations> that contains a set of QB
equations generated from formulas published by Eurostat
as further detailed in Section 6.

+ Background information?® that links indicators of Estat-
wrap to the CDP ontology as further described in Sec-
tion 4.3.

* Background information providing additional owl:equi-
valentProperty links?’ between common dimensions not
already provided by the wrappers such as between the
different indicator dimension URIs estatwrap:indic_ur,
cd:hasIndicator and eurostat:indic_na.

Besides explicit information available in the RDF sources,
we also materialise implicit information to 1) make querying
over the triple store easier and 2) automatically evaluate relevant
QB and OWL semantics. We execute the QB normalisation
algorithm?® in case the datasets are abbreviated. Also, we ex-
ecute entailment rules?® for OWL and RDFS. However, we only
enable those normalisation and entailment rules that we expect
to be evaluated quickly and to provide sufficient benefit for
querying.

For instance, we evaluate rules about the semantics of equal-
ity, e.g., symmetry and transitivity of owl:sameAs. We again
describe the semantics of such axioms using Linked Data-Fu.
However, because we do not need the full materialisation of the
equality, but only the canonical URIs, we define custom rules
that only generate the triples involving the canonical URIs. Thus,
the resulting dataset contains all triples required to integrate and
query the canonical representation, but not more.

The crawling and integration is specified in several Linked
Data-Fu programs. The programs are executed periodically us-
ing the Linked Data-Fu interpreter’’ in version 0.9.12. The
interpreter issues HTTP requests to access the seed list, follows
references to linked URISs, and applies the derivation rules to ma-
terialise the inferences. The crawled and integrated data is then
made available for loading into a triple store. Before loading
the observations into the triple store we ensure for each obser-
vation that the correct dimension URIs and member URIs are
used, filter out non-numeric observation values and mint a new
observation URI if a blank node is used. Finally, the filtered and
skolemised observations are loaded into an OpenLink Virtuoso
triple store (v07) using the standard RDF bulk loading feature?!.

Thus, the global cube can be queried in subsequent imputa-
tion and calculation steps.

24http://citydata.wu.ac.at/ocdp/qb—equations
25h‘ctp://citydata.wu.ac.at/ocdp/eurostat—equations
26http://kalmar32.1’”zi.de/triples/indicator—eurostat—links.nt
27http: //kalmar32.fzi.de/triples/dimension-property-1links.nt
28https://www.w3.org/TR/vocab—data—cube/#normalize—algorithm
2http://semanticweb.org/OWLLD/
Onttps://linked-data-fu.github.io/
31See http: //citydata.wu.ac.at/ocdp/import for a collection of informa-
tion about the loading process.
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5. Imputation: Predicting Missing Values

As discussed in Section 1 and Section 3.1, the filling in of
missing values by reasonable predictions is a central requirement
for the OCDP, since we discovered a large number of missing
values in our datasets (see Table 1 and 2).

The prediction workflow is given in Figure 3. The initial
step regards the loading, transposing, and cleansing of the ob-
servations taken from the global cube. Then, for each indicator,
we impute all the missing values with neutral values for the
principal components analysis (PCA), and perform the PCA on
the new matrix, which creates the principal components (PC)
that are used as predictors. Next, the predictors are used for
the model building step using a basket of statistical Machine
learning methods such as multiple linear regression. Finally, we
use the best model from the basket to fill in all missing value in
the original matrix and publish them using the Missing Values
wrapper.

In our earlier work [7], we have evaluated two approaches to
choose the predictors, one based on applying the base methods
to complete subsets in the data and the other based on PCA. In
the present paper, we only use the PCA-based approach, since,
although it delivers slightly lower prediction accuracy, it allows
us to cope more robustly with the partially very sparse data, such
that we can also predict values for indicators that do not provide
sufficiently large subsets of complete, reliable predictors.

Base Methods. Our assumption is that every indicator has its
own statistical distribution (e.g., normal, exponential, or Pois-
son distribution), sparsity, and relationship to other indicators.
Hence, we aim to evaluate different regression methods and
choose the best fitting method/model to predict the missing val-
ues per indicator. In order to find this best fitting method, we
measure the prediction accuracy by comparing the normalised
root mean squared error in % (RMSE%) [18] of every tested
regression method. While in the field of Data Mining [18, 19]
(DM) numerous regression methods for missing value predic-
tion were developed, we chose the following three “standard”
methods for our evaluation due to their robustness and general
performance:

K-Nearest-Neighbour Regression (KNN), models denoted as
Mkxknn, is a wide-spread DM technique based on using a distance
function to a vector of predictors to determine the target values
from the training instance space. As stated in [19], the algorithm
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is simple, easily understandable and reasonably scalable. KNN
can be used in variants for clustering as well as regression.

Multiple Linear Regression (MLR), models denoted as My g,
has the goal to find a linear relationship between a target and sev-
eral predictor variables. The linear relationship can be expressed
as a regression line through the data points. The most common
approach is ordinary least squares to measure and minimise the
cumulated distances [19].

Random Forest Decision Trees (RFD), models denoted as
Mpgrp, involve the top-down segmentation of the data into mul-
tiple smaller regions represented by a tree with decision and leaf
nodes. Each segmentation is based on splitting rules, which are
tested on a predictor. Decision nodes have branches for each
value of the tested attribute and leaf nodes represent decision on
the numerical target. A random forest is generated by a large
number of trees, which are built according to a random selection
of attributes at each node. We use the algorithm introduced by
Breiman [24].

Principal Component Analysis. All three of the above-described
base methods need a complete data matrix as a basis for calculat-
ing predictions for the respective target indicator column. Hence,
we need for each target indicator (to be predicted) a complete
training data subset of predictor indicators. However, as dis-
cussed in [7], when dealing with very sparse data, such complete
subsets are very small and would allow us to predict missing
values only for a few indicators and cities. Instead, we omit the
direct use of indicators as predictors. Instead, we first perform a
PCA to reduce the number of dimensions of the data set and use
the new compressed dimensions, called principal components
(PCs) as predictors for the above described three base methods:
as stated in [19], the PCA is a common technique for finding
patterns in data of high dimensions (in our case, many different
indicators for many different cities and years). We use PCA
to compress the large number of indicators to a smaller set of
principal components which can later be used as predictors. The
second main advantage of PCA is in terms of dealing with sparse
data: as described in [20], all the missing values in the raw data
matrix can be replaced by neutral values for the PCA created
according to the so-called regularised iterative PCA algorithm.
This step allows to perform PCA on the entire data matrix, even
if only a few complete subsets exist.

5.1. Preprocessing

Before we can apply the PCA and subsequently the base
regression methods we need to pre-process and prepare the
data from the global cube to bring it into the form of a two-
dimensional data matrix. This preprocessing starts with the
extraction of the observations from the global cube. Since the
described standard DM methods can not deal with the hierarch-
ical, multi-dimensional data of the global cube, we need to
“temporary flatten” the data back to tuples. For this, we pose the
following SPARQL query, with an increasing year range that is
currently 2004-2017.

SELECT DISTINCT ?city ?indicator ?year ?value

FROM <http://citydata.wu.ac.at/gb-materialised-global-cube>
WHERE {



?0bs
?0bs

dcterms:date ?year.

sdmx-dimension:refArea ?city.

?0obs cd:hasIndicator ?indicator.

?0bs sdmx-measure:obsValue ?value.

{ ?0bs a cd:CrawledObservation } UNION { ?obs a cd:
factualQBeObservation }.

FILTER(xsd:integer (?year) >= 2004)

} ORDER BY ?indicator ?city ?year

The SPARQL query flattens the multidimensional data to an
input data table with tuples of the form:

(City, Indicator, Year, Value).

Based on the initial table, we perform a simple preprocessing as
follows:

* Removing nominal columns and encode boolean values;

* Merging the dimensions year and city to one, resulting in:
(City Year, Indicator, Value);
that is, we further flatten the consideration of city per year
to city/year “pairs”

* Finally, we transpose the initial table to a two-dimensional
data matrix with one row per city/year-pair one column
per indicator, resulting in tuples of the form:

(City Year, Indicator)Valuey, ..., Indicator,Value,);

* From this large matrix, we delete columns and rows which
have a missing values ratio larger than 99%, that is, we
remove city/year pairs or indicators that have too many
missing values to make reasonable predictions, even when
using PCA.

Our initial data set from merging Eurostat and UNSD contains
1961 cities with 875 indicators. By merging city and year and
transposing the matrix we create 12 008 city/year rows. After
deleting the cities/year-pairs and indicators with a missing values
ratio larger than 99%, we have the final matrix of 6 298 rows
(city/year) with 212 columns (indicators).

Note that the flattening approach and deletion of too sparse
rows/columns are generic and could obviously still be applied if
we added more data sources, but our experiments herein focus
on the Eurostat and UNSD data.

5.2. Prediction using PCA and the Base Regression Methods

Next, we are ready to perform PCA on the data matrix cre-
ated in the previous subsection. That is, we impute all the
missing values with neutral values for the PCA, according to the
above-mentioned regularised iterative PCA algorithm described
in [20]. In more detail, the following steps are evaluated having
an initial data set A| as a matrix and a predefined number of
predictors n (we test this approach also on different 7’s):

1. Select the target indicator I;

2. Impute the missing values in A using the regularised
iterative PCA algorithm resulting in matrix A, and remove
the column with Ir;
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Figure 4: Prediction results using PCA

3. Perform the PCA on the A, resulting in a matrix A3 of a
maximum of 80 PCs;
. Append the column of I to Az creating A4 and calculate
the correlation matrix Ac of A4 between I and the PCs;
5. Create the submatrix As of A4 on the selection of the PCs
with the highest absolute correlation coefficients and limit
them by n;

. Create submatrix Ag of As for validation by deleting rows
with miss. values for I7;

. Apply stratified tenfold cross-validation on Ag. which
results in the best performing model Mp,g;

8. Use the method for Mp, to build a new model on A5 (not

Ag) for predicting the missing values of Ir.

5.3. Evaluation and Publishing

Figure 4 shows the results for the median RMSE% with an
increasing number of predictors (selected from the 80 PCs) and
compares the performance of KNN, RFD, MLR, and the selec-
tion of best method. Clearly, for 80 predictors MLR performs
best with a median RMSE% of 0.56%, where KNN (resp. RFD)
has a median RMSE% of 4.36% (resp. 5.27%). MLR is the
only method that improves steady up to 80 predictors. KNN
provides good results for a lower number of predictors, but starts
flattening with 20 predictors. Contrary to MLR, the parameter
of KNN and MLR have to be adjusted according to number of
predictors, hence optimising the number of clusters for KNN
could improve the result. The red line in Figure 4 shows the
median RMSE% with the best regression method chosen. Up
to 60 predictors, the overall results improves by selecting the
best performing method (for each indicator). The best median
RMSE% of 0.55% is reached with 80 predictors, where MLR is
predominant and only 5 out of 232 indicators are predicted by
KNN. We emphasise that, compared to the result of our earlier
experiments in [7], the median RMSE% improved from 1.36%
to 0.55%, which is mainly related to the lower sparsity of the
datasets.

Finally, we note again why we added PCA, as opposed
to attempting predictions based on complete subsets: in our
preliminary evaluations, based on the comparison of the two
approaches in [7], by picking the best performing regression



method per indicator with ten predictors from the raw data based
on complete subsets the median RMSE% was 0.25%. However,
due to the low occurrence of complete subsets of reasonable size
for ten predictors, only one third of the missing values could
be imputed compared to using PCA. We acknowledge that this
comes at a cost, as the a median RMSE% when using PCA goes
up to 0.55% with 80 predictors (see above). However, due to the
sparsity in the data we decided to trade better completeness for
accuracy of the prediction.

We publish the predicted values created by the combina-
tion PCA and selecting the best regression method per indicator
where we apply a threshold of RMSE% of 20% as a cut off. This
leads with the current evaluation to no removal of any indicator.
Following our strategy of using statistical linked data wrappers,
we publish the predicted values using the Missing Values wrap-
per,>? which provides a table of content, a structure definition,
and datasets that are created for each prediction execution.

5.4. Workflow and Provenance

The full prediction workflow of our statistical prediction
for missing values is shown in Figure 3 and is based on all
observations but the old predicted values in the global cube. The
data preprocessing and transposing for the input data matrix
is written in Python, but all other steps such as PCA, model
building, and model evaluation are developed in R [25] using
its readily available “standard” packages (another advantage of
relying on standard regression methods). All the scripts and
their description are available on the website of the Missing
Values wrapper. We conducted an evaluation of the execution
time on our Ubuntu Linux server with 2 cores, 2.6 GHz, and 16
GB of RAM. A single prediction run requires approx. 10min
for each indicator (approx. 3 min for each method) resulting in
a total time of about 35 hours for all indicators, which still is
reasonably doable for re-running wrappers, recomputing models
and predictions in a weekly batch job.

Looking back to Figure 3, one can see that the workflow
branches after four steps, where we distinguish two cases. In the
case of no previous executions, we perform the full prediction
steps as described in the previous section. In the case of previous
executions, we already have provenance information available
in our triple store, which describes the last execution and the
related model provenance information (for each indicator). The
model provenance includes for each indicator the number of
PCs, the number of predictors used from these PCs, the chosen
prediction base method, method parameters (i.e., the number of
clusters in the KNN), and the RMSE%.

To sum up, we keep provenance for our predictions on three
levels:

* For each execution, we publish the median RMSE% over
all indicators, number of predictors, creation date, and the
creation agent;

* For each indicator, we publish the above mentioned model
provenance data;

32http://citydata.ai.wu.ac.at/MV-Predictions/
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* For each predicted value published as a gb:Observation,
we provide the overall absolute estimated RMSE (us-
ing the predicate cd:estimatedRMSE) and the estimated

RMSE% (using the predicate cd: estimatedNormalizedRMSE).

Further, we point to better observations (published with
an lower RMSE%) using the predicate cd:preferredOb-
servation which might occur if another approach such
as a different base method or QB Equations (discussed in
Section 6 below) improve the predicted values.

For describing the model provenance, we use the MEX vocab-
ulary, which is compared to other vocabularies (i.e., DMOP
[26]) lightweight and designed for exchanging machine learning
metadata [27]. We use the MEX Algorithm layer to describe
our prediction method and its parameter and the MEX Perform-
ance layer to describe the RMSE%. Further, we describe each
execution using attributes of MEX Execution.

Example 5.1. The following example gives an intuition into
reading the data about missing value predictions.

@prefix
@prefix
@prefix
@prefix
@prefix

prov:
cdmy :
mexp :
mexc:
mexa:

<http:
<http:
<http:
<http:
<http:

//www.w3.org/ns/prov#> .
//citydata.wu.ac.at/MV-Predictions/> .
//mex.aksw.org/mex-perf/> .
//mex.aksw.org/mex-core#> .
//mex.aksw.org/mex-algo#> .

cvmy :
cvmy :
cvmy :

predDS1
predDS1
predDS1

rdf:type gb:DataSet .
prov:wasGeneratedBy cvmv:runP1
dc:title "A3_2004-2016_ncp80@_seed_100_pred_80" .

runP1
runP1
runP1
runP1

cvmyv :
cvmy :
cvmy :
cvmy :

rdf:type mexc:Execution
cdmv:predictionPCs 80 .
mexp:rootMeanSquaredError 1.0705 .

mexc:endsAt "2017-07-31T10:52:02Z"**xsd:dateTime .

; prov:Activity .

runP1 cvmv:hasPredicted cvmv:runP1_1
:runP1_1 mexc:datasetColumn cd:no_bed-
places_in_tourist__accommodation_establishments .

cvmyv :
cvmv

cvmv:runP1_1 mexc:hasAlgorithmConfig mexa:Regression .
cvmv:runP1_1 cd:estimatedAbsoluteRMSE 3228.8726 .
cvmv:runP1_1 cd:estimatedNormalizedRMSE 1.78259 .
cvmv:runP1_1 cdmv:size 2737 .

cdmy :
cdmv :

obs1 rdf:type cd:PredictedObservation.

obs1 cd:hasIndicator no_bed-
places_in_tourist__accommodation_establishments .
obs1 sdmx-dimension:refArea dbpedia:Bolzano .
obs1 dcterms:date "2010" .

obs1 sdmx-measure:obsValue 1490.4485 .

obs1 cd:estimatedAbsoluteRMSE 3228.8726 .

obs1 cd:estimatedNormalizedRMSE 1.78259 .

obs1 cd:preferredObservation cdmv:obs1

obs1 gb:dataSet cvmv:predDS1

cdmv :
cdmy :
cdmy :
cdmv :
cdmv :
cdmv :
cdmy :

The example shows a gb:DataSet of predicted values gener-
ated by a run on the 2017-07-31 using our PCA-based approach.
We show one predicted value and its RMESs for the indicator
no_bed-places_in_tourist__accommodation_establishments
of the city of Bolzano in the year 2010. The best method
for this indicator was MLR which is indicated by the triple:
cvmv:runP1_1 mexc:hasAlgorithmConfig mexa:Regression.

The triple cdmv:obs1 cd:preferredObservation cdmv:obs1
states that currently there is no better prediction available, i.e.,
that this observation is itself the most preferred (i.e., best) for
the respective indicator for this city/year.

In summary, while through the availability of more and new
raw data we could improve the prediction quality compared to
[7], this is — essentially, apart from the more structured workflow


http://citydata.ai.wu.ac.at/MV-Predictions/

and publication using provenance information for all predictions
— where we stopped missing value prediction in our earlier work
in [7]. What we will show next in Section 6 is that prediction
quality can be further improved by combining the statistical re-
gression methods from this section with ontological background
knowledge in the form of equations.

6. Calculation: QB Equations

OWL 2 gives only little support for reasoning with literal
values. Although knowledge about the relations of different
numeric literals (equational knowledge) exists even in ontolo-
gies, for example the QUDT ontology [28], it can not be used
to infer new literal values by an OWL reasoner since OWL 2 in
general can not compute new (numeric) literals. For statistical
data, especially statistical linked data, equational knowledge
can be interesting to compute derived indicators or fill in the
gaps of missing values. Examples for useful equational know-
ledge include unit conversion, indicator definitions, or linear
regression models. With QB equations (QBe) we introduce a
framework to exploit equational knowledge to infer numerical
data using Semantic Web technologies, with fine-grained proven-
ance tracking and error propagation for inaccurate values. After
applying the ML prediction methods in the OCDP workflow, the
QBes generate observations from the whole combined dataset.
The resulting observations are used for evaluation, consistency
checking, and are published if they are new or better than any
existing observation with the same dimension members.

Example 6.1. The Eurostat indicator “Women per 100 men” is
defined as an equation as follows:

population_female- 100

women_per_100_men = -
population_male
The approach of QBes presented in the following is a com-
bination and extension of two earlier approaches “RDF attribute
equations” and “complex correspondences”. RDF attribute equa-
tions [8] use equational knowledge and give an RDF syntax and
a Description Logic semantics to derive numerical OWL data
properties from other such properties. The approach was imple-
mented in a backward-chaining manner for SPARQL queries.
QBes however, operate on QB observations instead of OWL
data properties, are implemented in a forward-chaining man-
ner and provide error propagation and fine-grained provenance
tracking. Complex correspondences [16] define rules, with nu-
merical functions, to compute QB observations from other QB
observations. They transfer the concept of correspondences over
relational data to the Semantic Web data model using the QB
vocabulary. In contrast to complex correspondences, QBes are
given in an RDF syntax and is more generic since it uses (more
general) equations instead of functions resulting in more com-
puted values without the need to (manually) create one rule for
each variable in the equation.

6.1. OB Equation Syntax

We express QBes in an RDF syntax. Since — to the best of
our knowledge — no vocabulary exists for this purpose so far we
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gbe:hasEquation gbe:hasFunction
C gbe:Equation ) ( gbe:Rule )

gbe:input
gbe:output

C gbe:ObsSpecification )

qgbe-filter gbe:variableName

C gbe:DimSpecification >

gbe:dimension gbe:value

C gb:DimensionProperty >< rdfs:Resource >

Figure 5: QB equations ontology

gbe:variable

| gbe:variableType

have to introduce a new vocabulary expressing QBes and QB
rules.

Each QBe is identified by a URI and consists of two parts:
(i) a representation of a mathematical equation using (arithmetic)
functions and variables, and (ii) a mapping of observations to
variables using observation specifications.

Figure 5 gives an overview of the QB equations ontology
showing all the introduced classes, properties, and datatypes as
well as reuse of the QB ontology. When encoded in RDF we
call these relationships OB equations or OB rules. QBes specify
relationships between observations which can be reformulated
into different “directions” while QB rules are valid only in one
direction.

Representation of the Equation or Function. One possibility to
represent equations in RDF would be building an operator tree in
RDF like the MathML, an XML representation of mathematical
concepts, including equations. The SWRL RDF syntax also uses
such a verbose syntax for example for predefined mathematical
functions.

To keep the representation simple and still human-readable
without a custom UI we define the core of the QBes, which is
the equation itself, as a literal that directly reuses SPARQL’s
arithmetic expression syntax,33 i.e., we use a datatype literal
with the datatype gbe:equationType, the lexical space of which
is defined by the following grammar rule (in the syntax and
referring to non-terminal symbols of the SPARQL grammar):

equationType ::= Var ’=" NumericExpression

This choice enables standard SPARQL parsers or other stand-
ard libraries for mathematical expressions for processing these
equations, and — as we will see — straightforward implementa-
tion of the application of equations by SPARQL engines. As an
example we give again the equation for the Eurostat indicator
definition of “Women per 100 men”:

"?women_per_100_men = ?population_female x 100 / ?
population_male”**qgbe:equationType

The property gbe:hasEquation relates an instance of the
class gbe:Equation to such an equation literal.

3Bt http://www.w3.org/TR/sparql11-query/#rNumerivExpression
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The lexical space of datatype gbe:variableType is — analog-
ous to gbe:equationType — defined by the SPARQL grammar
non-terminal *Var’.

Observation Specification. The second part maps observations
to the variables used in the equation. Usually observations
are specified by giving values for all of the dimensions. This
approach would be too constraining and might lead to multiple
representations of essentially the same equation. Instead an
observation specification only needs values for some of the
dimensions. In an example of unit conversions, one would only
specify the value of the unit dimension because the equation
should be applicable to any kind of observation given in that
unit, regardless of the values of the other dimensions. Intuitively
the values of all other unspecified dimensions must be the same
among all specified observations.

Example 6.2. The following example shows the complete defin-
ition of the equation for the Eurostat indicator “Women per 100
men”. The QBe defines a variable ?women_per_100_men which
binds to all observations for which the member of the dimension
estatwrap:unit is set to cd:women_per_100_men. The other
two variables ?mile are defined analogously. Eventually the QBe
gives the equation relating the variables as a gbe: equationType-
typed literal.

ex:women-per-100-men a gbe:Equation ;
gbe:variable [ a gbe:ObsSpecification ;
gbe:filter [ a gbe:DimSpecification ;
gb:dimension cd:hasIndicator ;
gbe:value cd:women_per_100_men ] ;
gbe:variablename "?women_per_100_men"**qgbe:variableType 1] ;
gbe:variable [ a gbe:ObsSpecification ;
qbe:filter [ a gbe:DimSpecification ;
gb:dimension cd:hasIndicator ;
gbe:value cd:population_male ] ;
gbe:variablename "?population_male”**gbe:variableType ] ;
gbe:variable [ a gbe:ObsSpecification ;
gbe:filter [ a gbe:DimSpecification ;
gb:dimension cd:hasIndicator ;
gbe:value cd:population_female ] ;
gbe:variablename "?population_female”**qgbe:variableType 1] ;
gbe:hasEquation "?women_per_100_men = ?population_female =*
100 / ?population_male”**gbe:equationType.

The type declarations are only given for completeness and
are not necessary in practise.

QBes can be evaluated in multiple directions, effectively cre-
ating a function to compute a value for each of the variables from
all the other variables. In the example above we can infer obser-
vations for each of the three indicators cd:women_per_100_men,

cd:population_female, and cd: population_male from the other

two. Obviously this works only for invertible functions including
the usual arithmetic operators: addition, subtraction, multiplic-
ation, and division®*. In fact, we can reuse the definition of
simple equations from [8], which guarantee this property:

Definition 1 (from [8]). Let {x1,...,x,} be a set of variables.
A simple equation E is an algebraic equation of the form x| =
f(x2,...,x,) such that f(xz,...,x,) is an arithmetic expression
over numerical constants and variables x3, ..., x, where f uses
the elementary algebraic operators ’+’, ’=’, ’x’’/* and contains
each x; exactly once.

34while we have to take care of division by zero, for details cf. [8]
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Equations of this form can be easily transformed into an equi-
valent form x; = f”(xy,...,Xi—1,Xi+1, .- -,%,) for each appearing
variable x;, 2 < i < n. For instance, in our example the equation
can likewise be used to compute cd:population_female:

"?women_per_100_men * ?population_male / 100 = ?
population_female”**gbe:equationType

These equivalent transformations can be easily computed
by standard mathematical libraries (which we will use in our
implementation, cf. Section 6.3 below). A central piece of
this transformation is a function solve with two parameters: the
equation as string and the name of the target variable to solve
for. The solve function algebraically solves an equation for a
variable and returns a function. For example solve("a=b/c",c)
would return the function "b/a” whereas solve("a=b/c",b)
would return "axc"”. The function solve is implemented in every
computer algebra system — for example in Maxima with roots
going back to the 1960s. That is, we could write

FI (Xt X1, Xia 1, -+, Xn) = s0lve(x) = f(x2,. .., %), X;)

Analogously to gbe:equationType we define a datatype
gbe: functionType describing an arithmetic function or expres-
sion whose lexical space is again defined via a SPARQL gram-
mar non-terminal rule:

functionType ::= NumericExpression

Following the example for equationType a function for com-
puting “Women per 100 men” is the following:

"population_female * 100 / ?population_male”**qgbe:functionType

OB rules (or functions) are similar to equations but can be
evaluated only in one direction. Thus QB rules specify not
(generic) variables but one or more input variables and exactly
one output variable. These variables are specified in the same
way as the variables in QBes, while the output variable does not
need a gbe:variableName.

Example 6.3. A QB rule to convert the values for “Women per
100 men” to integer, using the function round to demonstrate a
non-invertible function.
ex:gbrulel a gbe:Rule ;
gbe:input [
gbe:filter [
gbe:dimension cd:hasIndicator ;
gbe:value cd:women_per_100_men ] ;
gbe:variablename "?women_per_100_men"**gbe:variableType 1 ;
gbe:output [
gbe:filter [
gbe:dimension cd:hasIndicator ;
gbe:value cd:women_per_100_men_approx 1 1 ;
gbe: function "round(?women_per_100_men)"**qgbe:functionType.

6.2. OB Equation Semantics

We define the semantics of QBes by rewriting to a rule
language. In fact SPARQL INSERT queries can be seen as
rules over RDF triple stores where the pattern of the INSERT
clause is the rule head and the graph pattern in the WHERE
clause is the rule body. We note that this “idea” is not new and
straightforwardly implementing the same concept as interpret-
ing CONSTRUCT statements as rules, introduced e.g. in [29],
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Figure 6: QB equation workflow with the example of a Eurostat indicator
definition/equation

where we defined a formal semantics for such rules based on
the Answer Set Semantics for non-monotonic Datalog programs
(ASP) with external (built-in) predicates and aggregates [30];
builtin-predicates are introduced in SPARQL1.1 through expres-
sions and assignment (BIND ... AS), and non-monotonicity in
SPARQL is introduced by features such as OPTIONAL and
NOT EXISTS.

We explain the semantics of QBes in three steps: (i) nor-
malisation of QBes to QB rules (N QB rules generated from a
QBe in N variables), (ii) conversion of QB rules (generated from
QBes or as input) to SPARQL INSERT queries, (iii) a proced-
ure to evaluate a program (a set of SPARQL INSERT queries)
until a fixpoint is reached. See Figure 6 for an overview of the
semantics with the example of the Eurostat indicator “Women
per 100 men” in three variables used below. Note here, that in
the general case rules with the expressive power of ASP with
external predicates do not have a unique, finite fixpoint, but we
will define/discuss how we can guarantee termination in our
case.

6.2.1. Normalisation

A QBe in n variables can be viewed as a meta rule repres-
enting n rules: as discussed before, for each variable x; a rule
to compute x; from all the other variables in the equation e can
be generated by resolving the equation to x; = solve(e,x;) . To
simplify the semantics specification we thus first normalise each
QBe to n QB rules and then in the next step give the semantics
for QB rules.

That is, the QB rules generated in the normalisation, have
x; as the output variable, and the other (n — 1) variables as input
variables with f(x1,...,%_1,%i+1,.-.,%;) being the function to
compute the output.

Listing 1 shows the main algorithm of the conversion. The
function r in Listing 2 takes three parameters: the original QBe
URI, the name of the output variable, and the function. The
function sk(...), with a variable number of parameters is a
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Listing 1: Algorithm to convert QB equations to QB rules
Ro:= {3}

for each (?e, ?eq) where { ?e rdf:type gbe:Equation.
?e gbe:hasEquation ?eq }:
?vname) where { ?e gbe:variable ?v
?v gbe:variableName ?vname }
?vname)

?2f) to R

for each (?v,

?2f := solve(?eq,
add r(?e, ?vname,
return R

Listing 2: Algorithm to create a QB rule

def r(?e, ?outvar, ?f):
rule := empty graph
?rulename := sk(?e,
rule := { ?rulename
?rulename
?rulename
?rulename

for each (?v,

?vname)
a gbe:Rule .
gbe:hasFunction ?f .
prov:wasDerivedFrom ?e .
gbe:output ?outvar . }
?vname) where { ?e gbe:variable ?v .
?v gbe:variableName ?vname }
if ?vname != ?outvar:
add { ?rulename gbe:input ?v } to rule
return rule

Skolem function deterministically returning a unique URI for
each unique parameter combination.

Eventually, after applying Listing 1 we could replace all
QBes in an RDF graph with the QB rules in R, i.e. we see these
representations equivalent. The remainder of our semantics only
deals with rules.

Example 6.4. After normalisation the QBe of Example 6.2 res-
ults in three QB rules, one for each of the two variables. The QB
rule to compute the Eurostat “Women per 100 men” indicator.
Instead of variables we now have input and output and the
equation was replaced by a function in the input variables.

ex:women-per-100-men-w a gbe:Rule ;
prov:wasDerivedFrom ex:women-per-100-men ;
gbe:input [
gbe:filter [
gb:dimension cd:hasIndicator ;
gbe:value cd:population_male ] ;
gbe:variablename "?population_male”"**qgbe:variableType ] ;
gbe:input [
gbe:filter [
gb:dimension cd:hasIndicator ;
gbe:value cd:population_female 1 ;
gbe:variablename "?population_female"**gbe:variableType 1 ;
gbe:output [
gbe:filter [
gb:dimension cd:hasIndicator ;
gbe:value cd:women_per_100_men 1 1 ;
gbe:hasFunction "?population_female x 100 / ?population_male
"rrgbe: functionType.

For each of the other two indicators cd: population_female
and cd:population_male one QB rule is created analogously.

6.2.2. Rule Conversion

In this step QB rules are converted to SPARQL INSERT
queries. The query has to implement several tasks: retrieve
the input observations, compute the output observations, gen-
erate several URIs, perform error propagation and provenance
tracking and ensure termination when evaluated repeatedly.

Compared to other rule languages SPARQL queries provide
very complex features, but, as shown earlier [31, 32], can be
compiled to —essentially— non-recursive Datalog with negation,



wherefore INSERT queries, read as rules, have the same ex-
pressivity.

Without loss of generality, we make the following assump-
tions (which could be easily checked in a pre-processing step,
e.g., with a SPARQL ASK query assuring that there is a single
measure value per observation):

* there is always only a single measure per observation

* the measure predicate that holds the measure value is fixed
to sdmx-measure:obsValue

On a high level, the INSERT queries corresponding to QB
rules have the following structure:

INSERT {
output observation template
- with PROV annotations to describe the generation by QBe
rules
- error estimation }
WHERE {
one pattern for each input observation
- with all dimensions as specified in the DSD and error
estimate

BIND patterns for IRI creation for
- ID for the newly generated observation
- prov:Activity

further BIND patterns to
- assign current time to variable for PROV annotation
- compute measure value of target observation
- estimate error of target observation

Termination condition }

Output Observation. The output observation is set in the head
with the fixed dimensions from the DSD and fixed dimension
values if specified in the observation specification of the QB rule.
The other dimension values are taken from the input variables.
The rule head for Example 6.4 would look like the following
query fragment, incorporating the PROV annotations:

?0bs gb:dataSet globalcube:global-cube-ds ;
cd:hasIndicator cd:women_per_100_men ;
dcterms:date ?year ;
sdmx-dimension:refArea ?city ;
sdmx -measure:obsValue ?value ;
prov:wasDerivedFrom ?population_male_obs, ?

population_female_obs ;
prov:wasGeneratedBy ?activity ;
prov:generatedAtTime ?now ;
cd:estimatedRMSE ?error

It is important to note that the SPARQL INSERT application
is idempotent, i.e., repeated applications of a generated SPARQL
INSERT query will not add any more triples after the first ap-
plication. Idempotence would be lost if blank nodes are used in
the head, because they would create a fresh blank node for every
application of a SPARQL query, even if the SPARQL query
returns only a single result. Furthermore, we have to ensure that

all values generated by the query are completely determined by
the variable bindings of the WHERE clause.

Provenance Propagation. For every new derived observation
we record the provenance, i.e., each derived observation has a
link to each input observation ?obsin1, . . ., ?obsinN and to
the rule or equation used for the computation ?equation. Firstly
this provenance information provides transparency: We know
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precisely how a derived observation was computed. Secondly we
use the provenance information during the derivation process to
ensure termination. Furthermore, we record the time of the rule
application and the agent, which could be the script or person
responsible for the query creation.

?activity a prov:activity ;
prov:qualifiedAssociation [
a prov:Association ;
prov:agent cd:import.sh ;
prov:hadPlan <http://citydata.wu.ac.at/ocdp/eurostat-rules#
€4c56a2955372924bde20c2944b2b28f3> ]
The preliminaries in Section 2 give an example of a part of

the derivation tree generated by this rule head fragment.

Input Observations. For each input observation one set of triple
patterns which asks for one observation is generated for the
SPARQL WHERE clause. For each gbe:DimSpecification a
dimension value is fixed. For all the other dimensions a fixed
variable is used in all input observations. In the example below,
again generated from Example 6.4 the query contains for all
dimension values variables, except for cd:hasIndicator which
is fixed to cd:population_male and cd:population_female as
specified by the QB rule input dimension specification. Further-
more the observation value and the error estimated are retrieved.

?population_male_obs qgb:dataSet globalcube:global-cube-ds;
cd:hasIndicator cd:population_male ;
dcterms:date ?year;
sdmx-dimension:refArea ?city ;
sdmx -measure:obsValue ?population_male ;
cd:estimatedRMSE ?population_male_error .

?population_female_obs gb:dataSet globalcube:global-cube-ds;
cd:hasIndicator cd:population_female ;
dcterms:date ?year;
sdmx-dimension:refArea ?city ;
sdmx -measure:obsValue ?population_female ;
cd:estimatedRMSE ?population_female_error

Value Creation with BIND. Several SPARQL variables used for
the output observation need to be computed using variables from
the input observations. Most importantly the output measure
value has to be created using the function of the QB rule.

BIND(100.0x?population_female/?population_male AS ?value)

Several URIs have to be generated for the rule head. We
use a Skolem function to generate these URIs. The inputs of
this Skolem function are the URI of the QB rule rule, the input
variables var1, ...varN and a string "_static_" to differentiate
the different variables in the head. We implement this Skolem
function with string concatenation and a hash function.

BIND (IRI (CONCAT(STR(rule) , MDA(CONCAT(STR(?varl), ...,
varN))))) AS ?targetvar)

STR(?

We have to generate two URIs: observation, and PROV
activity.
BIND (CONCAT ("http://citydata.wu.ac.at/ocdp/eurostat-rules#”
MD5 (CONCAT ("http://citydata.wu.ac.at/ocdp/eurostat-rules
#28f3",STR(?population_male_obs), STR(?
population_female_obs))))) AS ?skolem)
BIND (IRI (CONCAT (?skolem, "_obs")) AS ?obs)
BIND (IRI (CONCAT (?skolem, "_activity”)) AS ?activity)
Furthermore we bind the current time to a variable to use in
the provenance part of the head.

BIND(NOW() as ?now)



Table 3: Computing the propagated estimated RMSE (per) for a given expression
(expr)

expr per(expr)

const 0

a —Qi b per(a) —iiper(b)

a—>b per(a)+ per(b)

a/b  (la|+ per(a))/(|b| — per(b)) —a/b
axb (|| + per(a)) = (|b|+ per(b)) —axb

Error Propagation. Values computed based on values with an
associated error also need an error estimate. The procedure
to estimate an error of the new value is called error propaga-
tione [33, 34].

In our use case we do not promise precise statistical error
quantifications, but just want to propagate an upper bound of the
error estimations of the inputs to the computed output value. We
chose a error propagation function which is simple to implement
in standard SPARQL. To this end, we incorporate a relatively
naive error propagation function which however can be adapted
to more accurate estimations if necessary in the future [33, 34].

We proceed herein as follows. The error values we have from
our predictions are given as RMSE, i.e., the root-mean-square-
error, which intuitively characterises how far off in absolute
numbers the actual value is on average from our prediction. To
compute a conservative estimate of how these errors “add up”
when used in computations, we proceed as follows. Depend-
ing on the function f used for computing the computed output
value, the n variables xp,...x, and their associated indicators
indy,...ind,, we denote by ry,...r, the estimated RMSEs for
these indicators, i.e. r; = RMSE (ind;).

In Table 3 we define the propagated estimated RMSE (per)
of a computed observation recursively over the operator tree of
the function term expr = f(xy,...x,). Intuitively, we assume
here the following: if the real values x} for indicators ind; lie
exactly r; away —i.e., exactly the estimated RMSE above (x; =
X; 4+ r;) or below (x§ = x; — r;) — from the predicted value x;,
we intend to estimate how much off would a value computed
from these predicted values maximally be; here, const denotes
a constant value, and a, b are sub-expressions. Furthermore we
assume that the RMSE r; is always less than the observed value
Xi.

If now, for an equation xs = f(x1,...x,), the propagated
estimated RMSE per(f(x,...x,)) is smaller than the so far
estimated RMSE r, for indicator indy then we assume it po-
tentially pays off to replace the predicted value so far with the
newly computed value by the rule corresponding to the equation.

To cater for rounding errors during the computation we add
a small € of 0.0001 to the error estimate. In some sense this €
punishes each rule application and thus enables quicker termin-
ation later. Eventually the following BIND expression will be
generated to compute the propagated error as defined by per and
assign it to the corresponding variable used in the head of the
rule.

BIND ((ABS (100.0)+0.0) x(ABS (?population_female)+?
population_female_error)*1.0/ (ABS(?population_male)-?
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population_male_error)-100.0*?population_female*1.0/?
population_male + ©.0001 as ?error)

Termination. So far we introduced triple patterns and BIND ex-
pressions into the rule body. As remarked above the BIND expres-
sions implement Skolem functions and thus avoid duplicating
the same output observations over and over again (our SPARQL
INSERT queries are idempotent). We now give two different
termination conditions which can be used separately or together
to ensure termination of the QB rules program.

To ensure termination of the whole SPARQL INSERT rule
program we use a similar termination condition as in earlier
work [8], we block the repeated application of the same rule to
derive a particular observation. With the PROV annotations in
fact we create an equation dependency graph. Given an observa-
tion 0, a SPARQL path expression o prov:wasDerivedFrom+ o’
returns all the observations o’ transitively used in the com-
putation of o. Furthermore the SPARQL path expression o

prov:wasDerivedFrom*/prov:wasGeneratedBy/prov:qualified-

Association/prov:hadPlan r gives all the rules r transitively
used during the computation of 0. So, in order to ensure termina-
tion, we define that a QB rule r is only applicable to materialise
an observation o if r does not occur in the result of that path
expression.

In the SPARQL INSERT query can we implement this con-
dition by adding one of the following patterns for each input
observation ?i where r is the URI of the rule (or equation) itself.

FILTER NOT EXISTS {
?i prov:wasDerivedFromx/prov:wasGeneratedBy/prov:
qualifiedAssociation/prov:hadPlan/prov:wasDerivedFrom? r }

Thus as a worst case the evaluation will be terminated by
this condition after applying each rule n times, where 7 is the
number of QB rules in the system, because after applying each
rule once for the derivation of a single observation no rule can be
applicable anymore. An example of such a worst case would be
a chain of QB rules where r; = r;;+1 and 0 < i < n and a single
given observation for ry.

Another termination condition is based on the error propaga-
tion described above. Intuitively the condition ensures that an
observation o from a computation is only materialised if no ob-
servation o’ exists that (i) shares the same dimension values and
(ii) has a lower or comparably low 3> error estimate.

?0bsa gb:dataSet globalcube:global-cube-ds ;
dcterms:date ?year;
sdmx-dimension:refArea ?city ;
cd:hasIndicator cd:women_per_100_men ;
sdmx-dimension:sex ?sex ;
estatwrap:unit ?unit ;
sdmx-dimension:age ?age ;
cd:estimatedRMSE ?errora .

FILTER(?errora <= ?error x CT) }
Here, the constant factor CT is a value greater than or equal to

1, that determines a confidence threshold of how much improve-
ment with respect to the estimated error is required to confidently

35That is, we add a confidence threshold that can be adapted, based on the con-
fidence in the respective error propagation function, in order to only materialise
new computed observations if we expect a significant improvement



“fire” the computation of a new observation. Thus, we material-
ise only observations that we expect to be significantly (i.e.,by a
factor of CT) better with respect to error estimates. Since for any
reasonable error propagation function the error estimates tend to
increase with each rule application, consequently, together the
two termination conditions can lead to faster termination.

For our naive error propagation function, CT = 30.0 turned
out to be a reasonable choice, cf. the evaluation results in Sec-
tion 7. Choosing CT = 1 would require an error propagation
function with very high confidence, i.e., that never estimates a
too low error, which we cannot guarantee for our naive estima-
tion function.?®

We note here that we really need both termination conditions,
since relying on error estimates alone would need to ensure that
the error propagation “converges” in the sense that application
of rules does not decrease error rates. Our simple method for
error propagation — in connection with cyclic rule application —
does not guarantee this as demonstrated by the following, simple
example:

Example 6.5. For two indicators i and j let two equations be
i = j/2 and j = i/2. Essentially, this boils down to the (cyclic)
equation i = i/4 where — in each application — we would derive
smaller error estimate.

While this example is quite obviously incoherent (in the
sense of rules being cyclic in terms of the rule dependency graph
defined in [8][Definition 12]), we still see that with cyclic applic-
ation of rules the convergence of error rates cannot be ensured
in general. In practice such incoherent systems of equations are
hardly useful, however the first termination condition would still
serve its purpose.

Example 6.6. Taking the observations in lines 1 and 2 of Table 4
we can compute the “No. of bed-places in tourist accommoda-
tion establishments” for Bolzano 2010 as 2434.5 with an RMSE
(computed with the propagated error function per) of 56.6 (line
3). The QBe observation of line 3 is classified as “better” than the
best predicted observation (line 4) because of the RMSE compar-
ison with respect to the confidence threshold: 56.6-30 < 3228.8.

Similarly, the observations from line 5 and 6 are used by the
QB equation of the running example to compute the observation
in line 7. Since there exists already an observation from the crawl
with a better RMSE (line 8), the computed QBe observation will
be ignored in this case.

6.3. Implementation of the Combination of Statistical Predic-
tions and QB Equations

Herein, we describe in more detail how we have combined
statistical inferences from Section 5 with the application of QB
equations in our implementation, following the general workflow
outlined above in Section 3. We first explain in a bit more detail
how we implement the application of QB equation in our system,
whereafter we explain the overall workflow.

36Note that this has also been the reason why we introduced the factor CT, as
the earlier simpler condition FILTER((?errora <= ?error) produced too many
over-optimistic — and in fact worse — observations.
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Table 4: Example data for Bolzano in the year 2010

Source Indicator Value Error
Crawl (UN)  Population 103582.0 0.0
Prediction No. of available beds per 100 residents 23.5 0.55
QBe No. of bed-places in tourist accomm. est. 2434.5 56.6
Prediction No. of bed-places in tourist accomm. est. 1490.5 3228.8
Crawl (UN) Population male 49570.0 0.0
Prediction Population female 54836.2 7044.0
QBe Women per 100 men 110.6 14.3
Crawl Women per 100 men 109.0 0.0

6.3.1. Implementation of OB Equations

As described in Section 6.2 we compile QBes into a se-
mantically equivalent set of rules. Usually there are two strategies
for query answering in rule based knowledge bases: forward
or backward chaining. For the OCDP we decided to imple-
ment a forward chaining approach to enrich the global data
cube with the newly inferred observations. Forward chaining
approaches materialise as much as possible thus allowing faster
query evaluation times. On the other hand forward chaining
approaches require more memory or disk space and updates lead
to re-materialisation. In our case the space requirements are
manageable and updates are not frequent.

Our forward chaining implementation approach relies on
the iterative application of SPARQL INSERT queries (which
implement the rules). Overall, QBes infer and persist new obser-
vations in three steps: (Normalisation) convert all QBes to QB
rules, (Rule conversion) for each QB rule we create a SPARQL
query, and (Query evaluation) iteratively evaluate the construc-
ted SPARQL INSERT queries until a fixpoint is reached (that is,
no better observations can be derived).

Normalisation. As described in the semantics above in this
first step we convert QBes to QB rules. The algorithm in List-
ing 1 already outlines our implementation. We implemented
the algorithm using Python 2.7 and the libraries rdf1lib for RD-
F/SPARQL processing and sympy providing the solve function
to algebraically solve an equation for a variable. The Python
script reads the QBes from an RDF file containing the QBes,>’
converts them to QB rules and publishes them again as Linked
Data®® and in the triple store.

Creating SPARQL Queries. We create a SPARQL INSERT
query for each QB rule. The listing in AppendixA gives as
a complete example of the SPARQL INSERT query resulting
from converting one of the QB rules. Due to a serious per-
formance problem of SPARQL INSERT queries applied on
the Virtuoso triple store in a preliminary evaluation, we used
SPARQL CONSTRUCT queries instead, and load the resulting
triples into the triple store afterwards. The conversion from QB
rules to SPARQL CONSTRUCT queries is analogous to the
algorithm described in Section 6.2.2 above to convert a QB rule
to a SPARQL INSERT query.

37http ://citydata.wu.ac.at/ocdp/eurostat-equations.rdf
38http ://citydata.wu.ac.at/ocdp/eurostat-rules.rdf
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Evaluating Queries in Rule Engines. In principle the rule engine
naively evaluates SPARQL INSERT queries, or respectively,
CONSTRUCT queries + re-loads, over and over again until a
fixpoint is reached.

Apart from the termination conditions described in Sec-
tion 6.2.2 we ensure that the repeated application of a rule on
the same observations does not create any new triples by using
Skolem constants instead of blank nodes (see also discussion on
idempotency above). Thus, in order to check whether a fixpoint
has been reached, it is enough to check in each iteration simply
if the overall number of triples has changed or not. So, for a
naive implementation we could simply use a SPARQL query to
count the number of triples in the named graph.

However, unfortunately, in our experiments, such a simple
implementation solely based on “onboard” means of the SPARQL
engines turned out to be infeasible due to performance reasons.
Thus, for the time being, we resorted to just evaluating one iter-
ation of all generated rules, in order to evaluate our conjecture
that rules improve our prediction results.

Eventually, we may need to resort to (offline) using a native
rule engine. Indeed, in practical applications such rule/datalog
engines have shown to perform better than recursive views im-
plemented directly on top of databases in the past for instance
for computing RDFS closure, cf. [35]. For the moment, we leave
this to future work and resort, as mentioned, to a fixed number
of iterations of rule applications.

6.3.2. Implementation of the Combined Enrichment Workflow

There are various possible combinations of QB equations
and statistical inferences conceivable. Based on our experiments
(and we will further argue these choices the details evaluation of
the performance of our approach in Section 7 below, we have
decided for the following implementation. Here, we follow the
workflow described in Figure 1 and Section 3.2 above. That is,
we proceed in three steps as follows:

1. Materialisation of observations by application of QB
equations on the raw data: in a first step we load the
integrated and linked observations from the data integra-
tion step (4). Note here that each observation, in order to
be considered in our rules needs an cd:estimatedRMSE,
which per default is set to O for factual observations. How-
ever, note that due to the linking of different data sources,
we could potentially have several ambiguous observa-
tions for the same city, year and indicator in this raw
data already, e.g. two or more different population values
from different data wrappers materialised in the global
cube. Let us say, we have for city C1 in the year 2017
three different population values in three different fac-
tual observations from UNdata, Eurostat and dbpedia, i.e.
obsyn: 1,000,000, 0bsg,rostar: 989,000, and ObSD;,pediaZ
1,020,000. In principle, we take no preference among
sources, so we proceed as follows in a preprocessing step:
for such case we set the cd:estimatedRMSE to the differ-
ence from the average of all available ambiguous values
(for the same indicator and city/year pair). That is, we set:

:obsUN estimatedRMSE 0.
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:obsEurostat estimatedRMSE 20000.
:obsDbpedia estimatedRMSE 20000.

Aftrer this preprocessing, we apply a first application of
QB equations, in which case — obviously — the value
from obsyy would be preferred for any equation having
population as input indicator.

. Materialisation of observations by statistical missing-
value prediction: as a second step, we apply enrichment
by statistical regression methods and computation of es-
timated RMSE:s per indicator as described in Section 5;
these statistical regression methods can potentially benefit
already from derived additional factual knowledge from
the prior step.

. Materialisation of further observations by re-application
of QB equations: finally, using these predictions, we
iteratively re-apply OB equations wherever we expect
(through error propagation) an improvement over the cur-
rent RMSE by using computed values rather than statist-
ical predictions only.

We remark that one could imagine alternatively to re-iterate
steps 3. and 2. as well, i.e., by re-computing statistical models
from step 2. based on the application of equations in step 3.
again, and so on. However, for instance due to impreciseness
of error estimations alone, this would be extremely prone to
overfitting and — as expected — rather showed a quality decrease
than improvement in some preliminary experiments we ran.

7. Evaluation

In this section, we summarise experiments we conducted
to evaluate both the performance of our crawls as well as the
quality of enrichment of our pipeline.

The OCDP runs distributed over several components. The
UNData wrapper is a server component that runs at WU Vienna
and the Eurostat wrapper is also a server component that runs
in a cloud environment. The crawler and rule engine is a cli-
ent component that dereferences the seed URIs, follows links,
and performs the reasoning that lead to the unified global cube.
The resulting files are then inserted into the SPARQL endpoint.
From that point on, all further enrichment is carried out over the
combined global cube via the SPARQL endpoint.

In Section 7.1 we first describe in more detail the process that
leads to the global cube accessible via the SPARQL endpoint.
We then cover in Section 7.2 the enrichment process, consisting
of statistical missing value prediction and of calculating the
values based on QB equations. The missing value prediction is
performed asynchronously regularly on a workstation, following
the regular crawls of the crawler.

7.1. Crawling and Global Cube Materialisation

The machine that runs the crawling and rule engine Linked
Data-Fu is equipped with two eight-core Intel(R) Xeon(R) E5-
2670 CPUs @ 2.60GHz and 256 GB of main memory. Crawling
and integration runs separately for Eurostat and UNData. The
result is one N-Quads file containing the Eurostat portion of



the global cube and one N-Quads file containing the UNData
portion of the global cube. We separately run the “rapper” RDF
parser over the files to ensure that subsequent SPARQL loading
steps do not fail with syntax errors.

The crawling and rule application requires around 6 minutes
for Eurostat and around 24 minutes for UNData. For the 1,666,379

equations, i.e. to both improve the quality of predictions and
enable to predict more missing values overall.

So, we will next focus on evaluation presenting some num-
bers on the considered QB equations themselves and their eval-
uation performance, and then report on the correctness of and
improvements by the combination of QB equations with statist-

observations of Eurostat, 473 RDF documents containing 10,751,759 ical regression methods.

triples are dereferenced (567 MB). The rule application derives
1,666,619 triples. For the 128,693 observations of UNData,
4,505 RDF documents containing 1,690,231 triples are derefer-
enced (152 MB). The rule application derives 1,002,135 triples.
While accessing UNData yields less triples than accessing Euro-
stat, the UNData data is distributed over many more files and
requires more HTTP requests>®. Thus, the UNData access takes
much longer than the Eurostat access.

Loading the global cube into the Virtuoso SPARQL endpoint
requires around 190 seconds. Filtering and skolemisation takes
20 minutes.

7.2. Combining Statistical Missing-Values-Prediction and QB
Equations

In Section 5 we have reported on evaluation of the missing
values prediction in detail. Recall that we perform PCA to reduce
the number of dimensions, which allows us to impute all the
missing values with neutral values for the PCA and then evaluate
the quality of the predictions using different ( the respectively
best one per indicator) base statistical regression methods.

As for runtime performance, our current statistical prediction
runs need on a Ubuntu Linux server with 2 cores and 2.6 GHz
approximately 35 hours for all indicators and testing all base
methods. The run time might slightly grow with the number
of indicators, hence we aim to optimise the predictions runs by
using our model provenance information, and evaluate only the
best base method, which should reduce the runtime by factor
three.

As mentioned in Section 5, we have identified two main
goals for filling in missing value:

1. It is important to build models which are able to predict
many (preferably all) missing values.

2. Second, the prediction accuracy of the models is essential,
so that the Open City Data Pipeline can fulfil its purpose
of publishing high-quality, accurate data and predictions.

Prediction accuracy in our approach is a median 0.55%RMSE
over all indicators for the years 2004-2017, which allows us
to predict new 608,848 values on top of the existing 693 684.
Recall that despite the use of PCA, this difference occurs, since
we drop too sparse rows/columns in the data matrix before PCA,
in order to accept at an acceptably low overall median %RMSE,
so we cannot predict anything for very sparse areas of the data
matrix. Still, while we already discussed in Section 5 that the
accuracy has improved considerably since our prior work in
[7], however, as mentioned beforehand, our main goal was to
improve these predictions further by the combination with QB

3We wait 500 ms between requests to not overload the server providing data.

21

Section 6.3 described the implementation of QB equations
in the OCDP. In this section we give some results about the
behaviour of the QB equations part of the OCDP system*’ and
some evaluation of the QB evaluation themselves and how they
improve the results of the whole OCDP.

Normalisation. The normalisation to generate QB rules from
QB equations took 25 seconds to normalise 61 QB equations
from Eurostat into 267 QB rules*!.

AppendixA contains a complete example QB equation from
Eurostat and one of the normalised QB rules.

Creating SPARQL Queries. First we filter out 76 QB rules for
which at least one input variable matches no existing observation.
Such rules can never deliver any results and evaluating them
is thus needless. Virtuoso could generally not evaluate 44 QB
rules which contain seven or more input variables. Eventually
we created 147 SPARQL CONSTRUCT queries in five seconds.
AppendixA shows a complete example of a SPARQL CON-
STRUCT query together with the corresponding QB rule.

Evaluating Queries in Rule Engines. This one iteration of eval-
uating all generated 147 SPARQL CONSTRUCT queries took
28 minutes (time-outs for 12 queries) and inserted 1.8M obser-
vations (46M triples) into the global cube.

7.3. Combining OB Equations with Statistical Methods

From the different data sources the OCDP crawler collects
991k observations. The statistical missing-values prediction
return 522k observations better than any QB equation observa-
tion (if existing). The QB equations return 230k observations
better than any other prediction or QB equation observation (if
existing); additionally, 232k new observations computed by QB
equations were actually not predictable at all (due to bad quality)
with the statistical regression methods. Eventually the whole
OCDP dataset contains 1975k observations.

Apart from these overall numbers, we provide in the fol-
lowing subsections more details on particular aspects on the
correctness of and improvements by the combination of statist-
ical regression methods and QB equations for predicting missing
values.

40for more details see http: //citydata.wu.ac.at/ocdp/import
“4lthe Eurostat indicator definition for the population change over 1 year is the
only indicator not expressible in QB equations
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7.4. Correctness of Generated QB Observations

Firstly, to show the correctness of the QB equation approach
on raw data (first step of the workflow described in Section 6.3.2,
we compared the observations derivable by QB equations only
from crawled observations with the corresponding crawled ob-
servations. We made the following observations: in the sources
we currently consider, equations had already been applied in
the raw data before import, and thus applying them beforehand
in Step 1 of the workflow in Section 6.3.2 did not have a not-
able effect. This can mainly be explained by the fact that our
considered equations stem from Eurostat’s indicator definitions,
and therefore from within one dataset, where they are already
pre-computed. That is, in the cases of consistent input obser-
vations (no more than one observation per city-year-indicator
combination) the QBes computed consistent results with respect
to the crawl.

Notably, however, for the cases of inconsistent/ambiguous
input observations in the raw data, the QB equations also pos-
sibly compute ambiguous resulting observations. In fact, we
discovered 48643 such cases of inconsistent/ambiguous obser-
vations, that is, multiple observations per city-year-indicator
combination. While again, as described in Section 6.3.2, Step
1, we do not resolve these inconsistencies in the raw data, we
“punish” them in the computation by assigning inconsistent input
observations with an estimated RMSE corresponding to the de-
viation from the average above all the inconsistent observations
for a single city-year-indicator combination.

We note that using QB equations could also be used to aid
consistency checking, for instance our experiments unveiled also
a missing factor in one of the Eurostat indicator definitions*>
as well as wrongly mapped cities and indicators during the
development process.

In general, it makes sense to evaluate the QB equations
based on the crawled data and thus enrich the crawled dataset to
achieve better results in the following application of statistical
regression methods. However, in our experiments which focused
in the UN and Eurostat datasets, the prior application had only
marginal effects: in our case almost half of the new observations
(10178 of 26452) that could be generated in this way were for
the indicator “Women per 100 men”, because this is the only
Eurostat indicator for which the UN dataset contained both ne-
cessary base indicators (population male and population female);
the other cases could again be traced back to inconsistencies in
the source data.

7.5. Quality Increase

To test the quality increase of the combined method we
tested which ones were the best observations, comparing stat-
istically predicted observations, with QB-equation-generated
observation depending on the estimated RMSE associated with
each observation, with real factual observations. As described
in Section 6 a QB equation observation is only computed if the
estimated RMSE multiplied by the confidence threshold (CT)

“the indicator “Women per 100 men — aged 75 years and over” is missing a
factor 100
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is smaller than the estimated RMSE of any other corresponding
observation. Through experimentation during the development
of the OCDP we found a confidence threshold of 30 being a
good compromise between data quality without sacrificing too
many good observations. We got the same or a better RMSEs
for 80 of the 82 tested indicators: these 82 indicators are those
for which overlapping indicators from the statistical predictions
and QB equations were available together with actual observed
values from the crawl.

We have summarised the results of this analysis in Table 5
for detailed RMSE:s for the predicted and the QB equation ob-
servations of all 82 tested indicators. For each indicator, the
tables lists in the first three columns the numbers of crawled, pre-
dicted and QBe computed predictions. The next three columns
list the accuracy in terms of actual RMSE (i.e. not estimated,
but comparing real existing observations with values generated
through predictions or through QBequations): we see here that,
in combination the two methods performed better or equal than
statistical predictions alone in most cases (indicated in bold face
values in the “Combined” column), i.e., we got as mentioned
above the same or better RMSE for 80 out of the tested 82
indicators.

Finally, an important property of the combined method is
how precise/accurate the propagated error computation is, since
this propagated estimated error (RMSE in our case) is used to
decide which observation is classified as the best observation
for a given city-year-indicator combination. We thus model this
as a binary classification task: for a fixed city-year-indicator
combination, given the corresponding prediction observation
and the best observation generated by a QB equation, both with
error estimates, is the QB equation observation value nearer
to the actual value than the predication observation value? In
this case we are more interested in a minimal number of false
positives (QB equation observation wrongly selected as better)
even at the cost of a higher number of false negatives (better
QB equation observation wrongly not selected as better). Of
the usual measures to quantify the quality of classification tasks
we thus are mainly interested in precision. We get an average
precision of 90.8% for a confidence threshold of 30, while we
miss quite some true positives (significantly lower accuracy).
See Table 5 for detailed results (“precision” and “accuracy”) of
all 82 indicators.

As we can demonstrate in even such an incomplete material-
isation of equations allows us to predict a significant amount of
new or improved observations, that could not be predicted with
equal accuracy solely with the methods described in Section 5.

8. Related Work

In the following, we explain how our work distinguishes
itself from the related work in the areas of modelling, integrat-
ing and querying of numerical data using web technologies, of
predicting/imputing of missing values, and of using declarative
knowledge for inferencing of numeric information.

The work of [36] describes a methodology to describe city
data for automatic visualisation of indicators in a dashboard.



Table 5: Evaluation results 82 indicators (for which crawled, predicted, and QBe observations existed). The “Observation source” lists how many chosen best
observations which of the three sources contributed. The “RMSE” columns give the RMSEs of Predictions and QBes as well as the combined system. The quality
measures, especially the precision, give an indication how well the error propagation classified better observations. In the cases marked with a * no improvements
were observed by the QBes, i.e., the statistical predictions were better than any possible QBe.

Observation source RMSE Quality measures
Indicator Crawled Prediction QBe Prediction QBe Combined Precision Accuracy
average size of households 3463 3194 0 0.04 0.08 0.04 * 0.63
crude birth rate per 1000 inhabitants 6739 1079 194 10.19 0.38 10.19 * 0.36
crude death rate per 1000 inhabitants 6417 1273 59 9.30 0.28 9.3 * 0.31
economically active population female 4517 3025 104 3083.12 9636.50 3083.12 * 0.72
economically active population male 4520 3025 104 2887.80 12171.77 2887.8 * 0.78
economically active population total 4750 2765 108 4581.38 6596.52 4581.38 * 0.49
employment jobs in agriculture fishery nace rev 2 a 3244 3003 729 231.26 1044.50 228.71 1.00 0.45
employment jobs in construction nace rev 2 f 3447 2294 1317 775.68 1378.20 775.62 1.00 0.24
employment jobs in mining manufacturing energy nace rev 2 b-e 3442 2511 1105 2042.92 6692.59 2042.89 1.00 0.40
eu foreigners 4268 774 2341 2777.38 597.50 2746.81 0.91 0.29
eu foreigners as a proportion of population 4209 2840 306 0.65 0.42 0.65 * 0.25
foreign-born 2149 246 3961 18408.69 3095.48 18305.7 0.98 0.19
foreign-born as a proportion of population 2136 4074 134 2.94 1.52 2.94 * 0.43
foreigners 3290 389 2748 13187.75 1394.98 13176.48 0.98 0.22
foreigners as a proportion of population 3261 2914 238 1.65 0.89 1.65 * 0.38
households owning their own dwelling 2624 1449 3036 3998.24 50431.29 3998.24 * 0.26
households with children aged O to under 18 4023 967 2341 1952.82 6703.39 1952.77 1.00 0.14
infant mortality per year 5214 1383 1062 1.61 7.98 1.61 * 0.28
infant mortality rate per 1000 live births 5083 2046 418 0.58 1.01 0.58 * 0.42
lone parent households per 100 househ. with children aged 0-17 3037 4042 107 0.73 333 0.73 * 0.78
lone parent private households with children aged O to under 18 3180 282 3774 674.46 341.52 674.46 1.00 0.13
lone pensioner above retirement age households 3609 2849 766 88.58 4590.84 88.58 * 0.26
nationals 5569 1122 1056 73639.26 12052.11 73355.72 1.00 0.22
nationals as a proportion of population 5531 1733 457 116.24 292 116.24 0.94 0.33
native-born 2159 350 3845 99075.25 8725.38 99075.25 * 0.18
native-born as a proportion of population 2146 3999 197 23.54 2.84 23.54 * 0.58
no available beds per 1000 residents 3836 3437 30 57.56 397.42 57.56 * 0.63
no bed-places in tourist accomm. establishments 4226 3 3443 166966.67 3349.37 166948.07 0.98 0.67
no children 0-4 in day care or school 4051 3113 503 579.63 522.03 579.62 0.91 0.47
no children 0-4 in day care publ and priv per 1000 children 0-4 3323 3556 93 20.92 610.03 20.91 1.00 0.74
no cinema seats per 1000 residents 2283 3027 1336 33.37 1.82 33.37 1.00 0.15
no cinema seats total capacity 2660 2035 2278 822.75 633.30 798.6 0.99 0.18
no deaths in road accidents 5574 668 1044 242 1.86 242 * 0.20
no households living in apartments 2115 1261 3369 6103.92 32588.96 6103.92 * 0.27
no households living in houses 2153 2027 2542 10502.07 24758.61 10498.78 0.88 0.26
no live births per year 6974 231 987 476.76 156.75 489.98 0.08 0.23
no private cars registered 4693 856 1814 43201.98 4490.18 43047.54 0.83 0.25
no registered cars per 1000 population 4549 2264 464 562.66 18.06 562.59 0.90 0.31
no tourist overnight stays in reg accomm. per year per resident 4821 2674 54 13.10 0.79 13.1 * 0.14
non-eu foreigners 4250 377 2730 7884.07 1085.92 7858 0.97 0.23
non-eu foreigners as a proportion of population 4191 2902 236 1.40 0.35 14 * 0.31
one person households 4234 231 2982 3901.77 14048.54 3900.09 1.00 0.14
people killed in road accidents per 10000 pop 5172 1765 37 0.33 0.02 0.33 * 0.19
persons unemployed female 5741 2105 7 734.71 387.00 734.71 * 0.28
persons unemployed male 5798 2054 7 808.36 342.44 807.88 1.00 0.22
persons unemployed total 5262 2402 14 450.51 523.96 450.51 * 0.51
population 17058 50 99081 746087.75 746119.20 746256.3 0.19 0.34
population female 14181 580 4380 76682.77 75971.54 76682.77 * 0.50
population living in private househ. excl. institutional househ. 3602 2498 614 55048.78 25328.24 55048.78 * 0.25
population male 14183 4838 122 71411.92 71769.93 71411.92 * 0.48
population on the 1st of january 10-14 years total 4914 272 1546 3831.38 656.61 3831.38 * 0.23
population on the 1st of january 25-34 years total 6416 276 666 13231.20 1064.67 13214.86 1.00 0.21
population on the 1st of january 35-44 years total 6461 194 724 7044.37 1020.55 7018.79 1.00 0.21
population on the st of january 45-54 years total 6435 366 551 6395.69 838.57 6352.97 1.00 0.20
population on the 1st of january 5-9 years total 4866 211 1629 4084.84 717.81 4084.84 * 0.22
population on the 1st of january 55-64 years total 8379 134 140 5172.41 808.54 5091.16 1.00 0.27
population on the 1st of january 65-74 years total 8401 124 123 4870.38 590.66 4837.58 1.00 0.25
population on the 1st of january 75 years and over female 6860 1140 * 471071.80 22798.19 114272.33 0.72 0.71
population on the 1st of january 75 years and over male 6889 1129 * 12645.78 279859.81 12645.78 * 0.72
population on the 1st of january 75 years and over total 8413 55 195 5594.77 539.03 5577.07 1.00 0.20
private households excl. institutional households 5130 3 2468 6759.09 51025.85 6672.43 0.96 0.37
proportion households that are lone-pensioner households 3508 3700 * 0.08 0.12 0.08 * 0.48
proportion of employment in agriculture fishery 3172 3525 253 0.26 25.71 0.26 * 0.55
proportion of employment in construction nace revl1 f 3386 3550 98 0.35 7.71 0.35 * 0.75
proportion of employment in industries nace rev1l c-e 3384 3325 325 1.66 9.79 1.66 * 0.60
proportion of households living in apartments 1867 4494 265 1.97 4.67 1.97 * 0.67
proportion of households living in houses 1929 4214 482 1.80 3.08 1.8 * 0.55
proportion of households living in owned dwellings 2299 4308 333 1.75 21.97 1.75 * 0.67
proportion of households that are 1-person households 4128 3254 51 0.87 3.06 0.87 * 0.77
proportion of households that are lone-parent households 3065 4088 66 0.18 0.57 0.18 * 0.68
proportion of households with children aged 0-17 3917 3345 54 0.52 2.20 0.52 * 0.79
proportion of population aged 0-4 years 8328 313 0 0.08 1.00 0.08 * 0.91
proportion of population aged 10-14 years 4893 1817 8 1.16 0.13 1.16 * 0.62
proportion of population aged 15-19 years 8341 272 0 0.10 6.72 0.1 * 0.94
proportion of population aged 20-24 years 8326 259 26 0.15 9.05 0.15 * 0.95
proportion of population aged 25-34 years 6337 771 190 10.25 0.47 10.25 * 0.35
proportion of population aged 35-44 years 6382 781 156 9.27 0.50 9.27 * 0.35
proportion of population aged 45-54 years 6356 672 264 10.43 0.48 10.43 * 0.24
proportion of population aged 5-9 years 4845 1847 0 1.15 0.14 1.15 * 0.65
proportion of population aged 65-74 years 8384 183 72 8.86 0.29 8.86 * 0.32
proportion of population aged 75 years and over 8396 198 60 6.71 0.25 6.71 * 0.36
proportion of total population aged 55-64 8362 208 74 13.61 0.40 13.61 * 0.28
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The work is different from our work in several regards. Our
work directly reuses W3C standardised vocabularies PROV and
QB as well as common Linked Data wrappers and crawlers and
as such is more widely applicable. Our work makes use of a
pre-existing carefully handcrafted list of common statistical in-
dicators (city data ontology) that was mainly inspired from the
Eurostat urban audit but also takes into account other city data
sources; the ISO 37120:2014 used by [36] only lists 100 roughly
defined indicators whereas urban audit uses over 200 indicators
with available numbers and for some of these indicators also
provides computation formulas. The work of [36] focusses on
automatic selection of suitable data for indicators using Prolog
inferences and automatically selecting the right visualisation;
this was demonstrated with only one indicator bicycle "trips
per station". Our work instead focusses on the combination of
declarative knowledge and machine learning for deriving/pre-
dicting new values from integrated datasets and for that presents
a widely-applicable data integration, enrichment and publication
pipeline evaluated on a set of more than 200 indicators.

8.1. Numerical Data in Databases

Siegel et al. [37] introduce the notion of semantic values —
numeric values accompanied by metadata for interpreting the
value, e.g., the unit — and propose conversion functions to fa-
cilitate the exchange of distributed datasets by heterogeneous
information systems.

Diamantini et al. [38] suggest to uniquely define indicators
(measures) as formulas, aggregation functions, semantics (math-
ematical meaning) of the formula, and recursive references to
other indicators. They use mathematical standards for describing
the semantics of operations (MathML, OpenMath) and use Pro-
log to reason about indicators, e.g., for equality or consistency
of indicators. In contrast, we focus on heterogeneities occurring
in terms of dimensions and members, and allow conversions and
combinations.

As a basis for sharing and integration of numerical data,
XML is often used [39]. XML standards such as XCube fulfil re-
quirements for sharing of data cubes [40] such as the conceptual
model of data cubes, the distinction of data (observations) and
metadata (dimensions, measures), a network-transportable data
format, support for linking and inclusion concepts, extensibil-
ity, conversion capability and OLAP query functionality. Other
advantages include that XML allows to define a schema (XML
Schema), there are data modification and query languages for
XML such as XSLT and XQuery, and there are widely-used
XML schemas for representing specific information, e.g., XBRL
for financial reports, SDMX for statistics, DDI* for research
studies. Another XML-based exchange standard for ETL trans-
formations and data warehouse metadata is the Common Ware-
house Metamodel (CWM)** by the Object Management Group
(OMGQG).

However, the integration of data across different standards
is still an open issue. CWM - but also other interfaces and

43http: //www.ddialliance.org/
44http: //www.omg.org/spec/CWM/
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protocols to share multidimensional datasets such as XML for
Analysis and OLE DB - lack a formal definition making it more
difficult to use such formalism as a basis for integration [41].
XML schemas are concerned with defining a syntactically valid
XML document representing some specific type of information.
Yet, XML schemas do not describe domain models; without
formal domain models, it is difficult to derive semantic rela-
tionships between elements from different XML schemas [42].
Often, the domain model for an XML schema is represented
in a semi-formal way using UML documents and free text. In
contrast, schemas described as an OWL or RDFS ontology such
as QB have a formal domain model based on logics.

Conceptually, we distinguish the global-as-view (GAYV, also
known as source-based integration) approach of data integration
where the global schema is represented in terms of the data
sources and the local-as-view (LAV) approach that requires
sources to be defined as views over the global schema [43-45].
We use the GAV approach and define the global cube in terms
of single data cubes using the drill-across operation. With GAYV,
queries over the global schema can easily be translated to queries
over the data sources [44]. The advantage of LAV is that the
global schema does not need to change with the addition of new
data sources. The advantage of GAV is that queries over the
global schema can easily be translated to queries over the data
sources.

8.2. RDF Data Pipelines

Within the Semantic Web community there is extensive work
around triplification and building data pipelines and Linked
Data wrappers for publicly available data sources on the web,
where for instance the LOD?2 project has created and promoted
a whole stack of tools to support the life cycle of Linked Data,
i.e. creating maintainable and sustainable mappings/wrappers of
existing data sources to RDF and Linked Data, a good overview
is provided in the book chapter by Auer et al. [46, 47]. All this
work could likewise be viewed as an application of the classical
ETL (Extract-Transform-Load) [48] methodology extended to
work on the web, based on open standards and Linked Data
principles [13]. Our work is not much different in this respect,
with the difference that we apply a tailored architecture for a
set of selected sources around a focused topic (city data), where
we believe that a bespoke combination of rule-based reasoning
methods in combination with statistical machine learning can
provide added value in terms of data enrichment. This is a key
difference to the above-mentioned methods that rather focus
on entity linkage and object consolidation in terms of semantic
enrichment. However, this focused approach is also different
from generic methods for reasoning over Linked Data on the
web (cf. e.g. [49] and references therein for an overview), solely
based on OWL and RDFs which (except very basic application
of owl:sameAs (for consolidating different city identifiers across
sources) and rdfs:subPropertyOf reasoning (for combining
overlapping base indicators occurring within different sources).

Other work tries to automatically derive new from existing
data. Ambite and Kapoor [50] present Shim Services providing
operations for accessing remote data, integrating heterogeneous
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data, and deriving new data. Workflows of operations are auto-
matically created based on semantic descriptions of operators.
Subsumption reasoning is included to match inputs of services
to outputs of other services. To avoid the infinite execution of
operations, a limit is defined to the depth of nested operations of
the same type. In contrast to the automatically constructed work-
flows, our pipeline consists of a fixed set of processing steps.
Instead of “shim services” that act as stand-alone components
accessible via the network, we base the computation on local
formulas and use a vocabulary to represent the formulas.

8.3. Data Modelling and Representation

Besides the RDF Data Cube Vocabulary (QB) that we are
using in this work there are other vocabularies available to pub-
lish raw or aggregated multidimensional datasets. For instance,
there are various OWL ontologies available for representing
multidimensional datasets [51]. Also, several light-weight on-
tologies have been proposed, such as SCOVO [52] and SCOV-
OLink [53]. Other vocabularies for statistical data are the DDI
RDF Vocabularies**, several vocabularies inspired by the Data
Documentation Initiative, and the StatDCAT application pro-
file* (StatDCAT-AP) to express in a structured way the metadata
of statistical datasets which are currently published by the dif-
ferent agencies in the European Union. In comparison to these
approaches, we see the following reasons for choosing QB:

QB, as a W3C recommendation, is an established standard
for aggregating and (re-)publishing statistical observations on
the web, with off-the-shelf tools to process and visualise QB data.
QB’s wide adoption is an important factor for data integration
use cases, as sources already represented in QB can be integrated
more easily than sources in other representations. Further, QB
has shown applicability in various use cases [54], and exhibits
the necessary formality to allow efficient and flexible integration
and analysis of statistical datasets. The multidimensional data
model of QB allows to make explicit different dimension — di-
mension value combinations, e.g., _:obs cd:unit "km2". and
_:obs dcterms:date "2010". which is important for interpret-
ing the semantics of values and for integration purposes [53].

8.4. Modelling of Equations

Modelling the actual numerical data and the structure of that
data captures only a part of the knowledge around statistical data
that can be represented in a machine-interpretable manner. Equa-
tions in particular are a rich source of knowledge in statistical
data. Lange [55] gives an extensive overview of representations
of mathematical knowledge for the Semantic Web. We first cover
representation of equations for layout purposes, and then cover
representations that permit the interpretation of the formulas by
machines.

Non-RDF based representations of mathematical knowledge
include MathML [56] and OpenMath [57] and use XML for
serialisation and focus more on a semantic representation of

45http://www.ddialliance.org/Specification/RDF
4(’https://www.europeandataportal‘eu/de/con’cent/
statdcat-ap-wg-virtual-meeting
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mathematical entities and are not directly useful for reasoning.
Although GeoSPARQL [58] uses MathML in XMLLiterals and
OpenMath provides preliminary integration into RDF,*’ these
representations are hard to reuse for RDF tools and still are not
suitable for an RDF QB setup.

The OWL ontologies QUDT [28], OM [59], and SWEET [60]
provide means to describe units and to some extent model conver-
sion between these units, but do not specify a concrete machinery
to perform these conversions. Our approach is orthogonal to
these efforts in that it provides not only a modelling tool for
unit conversions but more general equations and also gives a
semantics to automatically infer new values.

Semantic Web rule languages and systems often implement
numerical functions — for example RIF uses numerical functions
from XPath [61]. Other examples for rule languages and systems
include SWRL and Apache Jena rules. Converting equations to
rules naively can lead to a set of recursive rules which often lead
to non-termination even for one equation alone (cf. [8]).

To add reasoning over numbers Description Logics were
extended with concrete domains (cf. [62]). A concrete domain is
a domain separate from the usual instance domain of the model
based semantics. Examples for concrete domains include differ-
ent sets of numbers or strings. A specific concrete domain exten-
sion defines predicates over the concrete domain, e.g., greater
than for numbers, or substring for strings. Often also a limited
set of functions (for computation) can be supplied. Racer [63]
implements concrete domains with numbers. But computed
values are only used during reasoning and are not available to
the user afterwards. OWL Equations [64], a concrete domain
extension carried over to OWL, allows comparing numerical
values — even computed values; still the same limitations apply.

8.5. Missing Value Imputation

Several books provide information on handling missing val-
ues from the perspective of statistics as well as from social sci-
ences, e.g. cf. [65, 66]. Within the Semantic Web community, a
main focus on value completion has been in the prediction of gen-
eric relations, and mainly object relations (i.e. link-prediction)
on the object level rather than on numerical values, cf. [67] for
an excellent survey on such methods. The usage of numerical
values is a a rather recent topic in this respect. Along these lines,
but complementary to the present work, Neumaier et al. [68]
(as well as similar works referenced therein) have discussed
methods to assign bags of numerical values to property-class
pairs in knowledge graphs like DBpedia (tailored to finding out
relations such that for instance a certain set of numbers could
possibly be “population numbers of cities in France”), but not
specifically to complete/impute missing values.

Our method rather uses fairly standard, robust, and well-
known methods (KNN, linear regression, and random forest) for
numerical missing value imputation based on principle compon-
ents [20].

This could be certainly refined to more tailored methods in
the future, for instance using time-series analysis; indeed our

47http://www.openmath.org/cd/contrib/cd/rdf.xhtml
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predicted values, while reasonably realistic in the value ranges
often show some non-realistic “jumps” when raw data for a
certain indicator is available over a certain sequence of years,
but missing for only a few years in between. Since the missing
value imputation component in our architecture is modularly
extensible with new/refined methods, such refinements could be
added as future work.

9. Conclusions

In this paper we have presented the Open City Data Pipeline,
an extensible platform for collecting, integrating, and enriching
open city data from several data providers including Eurostat
and UNSD. We have developed several components including
wrappers, a data crawler, an ontology-based integration plat-
form, and a missing value prediction module, which relies on
both statistical regression methods and ontological inference
over equational background knowledge: since we deal with very
sparse datasets, the prediction (or, as it is often referred to, im-
putation) of missing values is a crucial component. For this, we
have developed two approaches, one based on basic regression
methods, and one based on exploiting known equations.

As for the former, we predict target indicators from com-
ponents calculated by Principal Components Analysis (PCA).
We applied three basic regression methods and selected the best
performing one.

As for the latter, we have shown that the predictions com-
puted this way can be further improved by exploiting equations,
where we have estimated and verified the assumption that this
combination improves prediction accuracy overall, in terms of
the number of filled-in values and estimated errors.

The created prediction values are fed back into our triple
store and are accessible via our SPARQL endpoint or Web UL
Here, we additionally publish provenance information including
the used prediction methods and equations along with estimated
prediction accuracy.

9.1. Lessons Learnt

In the wrapper component, integrating cities and indicators
for a new dataset (often CSV tables) is still a slow manual pro-
cess and needs custom scripting. Particularly, entity recognition
for cities can only partially be automated and needs manual
adaptation for each wrapper. Also, mapping indicators is still a
largely manual process, where in the future, we plan to apply
instance based mapping learning techniques used in ontology
matching (cf. [69]). We emphasise here, that in fact such ap-
proaches could rely on and extend similar regression techniques
as we used for imputing missing values.

As for our enrichment approach (combining missing value
prediction techniques and equations), we have improved over the
past 1 1/2 years significantly [7], not only refining our methods,
but also by proving the conjecture that the more data we collect,
the better the predictions actually get: by applying the PCA-
based prediction approach, using standard regression techniques
without customisation, we reach a good quality for predictions
(overall RMSE% of 0.55%) and are able to fill large gaps of the
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missing values, which can be further improved by the combina-
tion with equational knowledge.

The republication of our enriched dataset as Statistical Linked
Data [3], using the standard QB format shall allow combining
and integrating our dataset with other datasets of the Global
Cube [16].

9.2. Future Work

Our future work includes extensions of the presented data-
sets, methods, and the system itself.

Currently, the data sources are strongly focused on European
cities or demographic data. Hence, we aim to integrate further
national and international data sources, in particular the U.S.
Census Bureau statistics and the Carbon Disclosure Project.

The U.S. Census Bureau [70] offers two groups of tabular
datasets concerning U.S. statistics: Table C-1 to C-6 of [70]
cover the topics Area and Population, Crime and Civilian Labor
Force for cities larger than 20 000 inhabitants; Table D-1 to D-6
of [70] cover Population, Education, Income and Poverty for
locations with 100 000 inhabitants and more. Contrary to the
UNSD or Eurostat datasets, the U.S. Census Bureau datasets
have a low ratio of missing values ranging from 0% to 5% for
a total of 1267 cities. The data includes 21 indicators, e.g.,
population, crime, and unemployment rate.

The Carbon Disclosure Project (CDP) is an organisation
based in the U.K. aiming at “[...] using the power of measure-
ment and information disclosure to improve the management of
environmental risk”*®. The CDP cities project has data collected
on more than 200 cities worldwide. CDP cities offers a reporting
platform for city governments using an online questionnaire cov-
ering climate-related areas like Emissions, Governance, Climate
risks, Opportunities, and Strategies.

Many cities operate dedicated open data portals. The data
from these individual city open data portals (e.g., New York,
Vienna) could be added and integrated. This is surely a large
effort on its own, as we would require a unified interface to many
data portals. Either we would have to write wrappers for every
cities’ portal, or standardisation efforts on how cities publish
data would have to succeed.

Apart from that, we could include sources like DBpedia
or Wikidata in a more timely fashion, e.g. recording changes
in values, through projects such as the DBpedia wayback ma-
chine [71], to collect also historical data from DBpedia.

Compared to [7] we have completely refurbished our crawl-
ing framework and architecture to automatically and regularly
update the integrated sources dynamically. We therefore expect
new lessons learnt from more regular updates; e.g.; Eurostat
only since very recently updates its datasets monthly, instead of
annually only,* which we expect to benefit from.

We also plan to connect our platform to the Linked Geo Data
Knowledge Base [72] including OpenStreetMap (OSM) data.

48https://www‘cdp. net/en-US/Pages/About-Us.aspx

49¢f. Section 8.1 at http://ec.europa.eu/eurostat/cache/metadata/de/
urb_esms.htm: “From 2017 new data will be published the first day of every
month.”
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Based on such data, new indicators could be directly calculated,
e.g., the size of public green space by aggregating all the parks.
Some preliminary works on integrating indicators extracted from
OSM with our Open City Data Pipeline have been presented
in [73].

As we integrate more sources and datasets, another future
direction we should pursue is to revisit cross-dataset predictions
of missing values in more detail,’® i.e., how predictions can
be made from one data source to another. This is particularly
important, as typically different data sources have only a handful
(if any) of overlapping indicators.

We further aim to extend our basket of base regression meth-
ods with other well established methods. Promising candid-
ates are Support Vector Machines [74], Neural Networks, and
Bayesian Generalised Linear Models [75].

Moreover, we plan to publish more details on the best regres-
sion method per indicator as part of our ontology: so far, we only
indicate the method and estimated RMSE%, whereas further de-
tails such as used parameters and regression models would be
needed to reproduce and optimise our predictions. Ontologies
such as [26] could serve as a starting point.

Furthermore, we are in the process of improving the user
interface to make the Web application easier to use. For this
we investigate several libraries for more advanced information
visualisation.
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AppendixA. Complete Example of QB Equation Steps gbe:hasFunction "100*?population_female/?women_per_100_men"**
gbe: functionType

. . . 51 .
An excerpt of the Eurostat indicator QB equations”” in Turtle . \,7177456053419667c2b7deb4569a82b9 qbe s dimension cd:

syntax as example for a QB equation: the Eurostat indicator hasIndicator ; gbe:value cd:population_male
definition for “Women per 100 men”. Next the QB rules are converted to SPARQL INSERT/CON-
<http ://citydata.wu.ac.at/ocdp/eurosjtat—equations# STRUCT queries. We give here the SPARQL query for the
aber e L asemeci fiontomn second rule above (ee: e4c56a2955372924bde20c2944b2b28f3)
gbe:filter [ a gbe:DimSpecification ; which computes women_per_100_men.

gb:dimension cd:hasIndicator ;

gbe:value cd:women_per_100_men ] ;

gbe:variablename "?women_per_100_men"**qgbe:variableType 1 ;
gbe:variable [ a gbe:ObsSpecification ;

gbe:filter [ a gbe:DimSpecification ;

gb:dimension cd:hasIndicator ;

gbe:value cd:population_male ] ;

gbe:variablename "?population_male”**qgbe:variableType ] ;
gbe:variable [ a gbe:ObsSpecification ;

gbe:filter [ a gbe:DimSpecification ;

gb:dimension cd:hasIndicator ;

gbe:value cd:population_female ] ;

PREFIX cd: <http://citydata.wu.ac.at/ns#>

PREFIX gb: <http://purl.org/linked-data/cube#>

PREFIX sdmx-measure: <http://purl.org/linked-data/sdmx/2009/
measure#>

PREFIX sdmx-dimension: <http://purl.org/linked-data/sdmx/2009/
dimension#>

PREFIX dcterms: <http://purl.org/dc/terms/>

PREFIX prov: <http://www.w3.org/ns/prov#>

PREFIX gbe: <http://citydata.wu.ac.at/qgb-equations#>

PREFIX cd: <http://citydata.wu.ac.at/ns#>

PREFIX globalcube: <http://kalmar32.fzi.de/triples/global-cube.

gbe:variablename "?population_female"**qgbe:variableType 1 ; ttl#>
gbe:hasEquation "?women_per_100_men = ?population_female x PREFIX estatwrap: <http://ontologycentral.com/2009/01/eurostat/
100 / ?population_male"**qgbe:equationType. ns#>
In the first step this equation is normalised to the following INSERT {
?0bs gb:dataSet globalcube:global-cube-ds ;
three ru]eSS2. cd:hasIndicator cd:women_per_100_men ;
dcterms:publisher ?source ;
ee:e4bb866b19a383a5c7ce88e853ff8bdad a gbe:Rule ; dcterms:date ?year ;
prov:wasDerivedFrom <http://citydata.wu.ac.at/ocdp/eurostat- sdmx-dimension:refArea ?city ;
equations#women_per_100_men> ; sdmx -measure:obsValue ?value ;
gbe:structure globalcube:global-cube-dsd ; prov:wasDerivedFrom ?population_male_obs, ?
gbe:output [ population_female_obs ;
gbe:filter _:b4bb866b19a383a5c7ce88e853ff8bdad I; prov:wasGeneratedBy ?activity ;
gbe:input [ gbe:variableName "?women_per_100_men"*"*gbe: prov:generatedAtTime ?now ;
variableType ; cd:estimatedRMSE ?error
gbe:filter _:b4c56a22955372924bde20c2944b2b28f3 1;
gbe:input [ gbe:variableName "?population_male”**qgbe: ?activity a prov:activity ;
variableType ; prov:qualifiedAssociation [
gbe:filter _:b7177d26053419667c2b7deb4569a82b9 1; a prov:Association ;
gbe:hasFunction "?population_malex?women_per_100_men/100"*" prov:agent cd:import.sh ;
gbe: functionType . prov:hadPlan <http://citydata.wu.ac.at/ocdp/eurostat-rules#
€4c56a2955372924bde20c2944b2b283> ]
_:b4bb866b19a383a5c7ce88e853ff8bdad gbe:dimension cd: }
hasIndicator ; gbe:value cd:population_female . WHERE { { SELECT DISTINCT * WHERE {

?population_male_obs gb:dataSet globalcube:global-cube-ds;

ee:e4c56a2955372924bde20c2944b2b28f3 a gbe:Rule ; cd:hasIndicator cd:population_male ;

prov:wasDerivedFrom <http://citydata.wu.ac.at/ocdp/eurostat- dcterms:date ?year;
equations#women_per_100_men> ; sdmx-dimension:refArea ?city ;
gbe:structure globalcube:global-cube-dsd ; sdmx-measure:obsValue ?population_male ;
gbe:input [ gbe:variableName "?population_female”**qgbe: cd:estimatedRMSE ?population_male_error
variableType ;
gbe:filter _:b4bb866b19a383a5c7ce88e853ff8bdad 1; ?population_female_obs gb:dataSet globalcube:global-cube-ds;
gbe:output [ cd:hasIndicator cd:population_female ;
gbe:filter _:b4c56a2955372924bde20c2944b2b28f3 1; dcterms:date ?year;
gbe:input [ gbe:variableName "?population_male”**gbe: sdmx-dimension:refArea ?city ;
variableType ; sdmx -measure:obsValue ?population_female ;
gbe:filter _:b7177d26053419667c2b7deb4569a82b9 71; cd:estimatedRMSE ?population_female_error
gbe:hasFunction "100*?population_female/?population_male”"**
gbe: functionType . BIND (CONCAT (REPLACE ("http://citydata.wu.ac.at/ocdp/eurostat-
rules#e4c56a2955372924bde20c2944b2b28f3", "
_:b4c56a2955372924bde20c2944b2b28f3 gbe:dimension cd: e4c56a2955372924bde20c2944b2b28f3", MD5(CONCAT("http://
hasIndicator ; gbe:value cd:women_per_100_men . citydata.wu.ac.at/ocdp/eurostat-rules#

€4c56a2955372924bde20c2944b2b28f3",STR(?

ee:e7177d26053419667c2b7deb4569a82b9 a gbe:Rule ; population_male_obs), STR(?population_female_obs))))) AS

prov:wasDerivedFrom <http://citydata.wu.ac.at/ocdp/eurostat- ?skolem)
equations#women_per_100_men> ; BIND (IRI (CONCAT (?skolem, "_source”)) AS ?source)
gbe:structure globalcube:global-cube-dsd ; BIND (IRI (CONCAT (?skolem, "_obs”)) AS ?obs)
gbe:input [ gbe:variableName "?population_female"”""qgbe: BIND (IRI (CONCAT (?skolem, "_activity”)) AS ?activity)
variableType ; BIND(NOW() as ?now)
gbe:filter _:b4bb866b19a383a5c7ce88e853ff8bdad 1;
gbe:input [ gbe:variableName "?women_per_100_men""*"qgbe: ## computation and variable assignment
variableType ; BIND (100.0*?population_femalex1.0/IF (?population_male != 0@, ?
gbe:filter _:b4c56a2955372924bde20c2944b2b28f3 1; population_male, "err") AS ?value)
gbe:output [
gbe:filter _:b7177d26053419667c2b7deb4569a82b9 1; ## error propagation

BIND ((ABS (100.0)+0.0) x(ABS(?population_female)+?
population_female_error)*1.0/IF ((ABS(?population_male)-?

population_male_error) != 0.0, (ABS(?population_male)-?
51http://citydata.wu.ac‘at/ocdp/eurostat—equations population_male_error), "err")-100.0x?population_female
Zhttp://citydata.wu.ac.at/ocdp/eurostat-rules *1.0/IF(?population_male != @, ?population_male, "err")

+ 0.1 as ?error)
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FILTER(?error > 0.0)

## 1st termination condition:
## there exists no better observation with the same dimension
values
FILTER NOT EXISTS {
?o0bsa gb:dataSet globalcube:global-cube-ds ;
dcterms:date ?year;
sdmx-dimension:refArea ?city ;
cd:hasIndicator cd:women_per_100_men ;
sdmx-dimension:sex ?sex ;
estatwrap:unit ?unit ;
sdmx-dimension:age ?age ;
cd:estimatedRMSE ?errora
FILTER(?errora < ?error) }

## 2nd termination condition:

## the same equation was not used for the computation of any
source observation

FILTER NOT EXISTS { ?population_male_obs prov:wasDerivedFrom
*/prov:wasGeneratedBy/prov:qualifiedAssociation/prov:
hadPlan/prov:wasDerivedFrom? <http://citydata.wu.ac.at/
ocdp/eurostat-rules#e4c56a2955372924bde20c2944b2b28f3 >

3}

FILTER NOT EXISTS { ?population_female_obs prov:
wasDerivedFrom#*/prov:wasGeneratedBy/prov:
qualifiedAssociation/prov:hadPlan/prov:wasDerivedFrom? <
http://citydata.wu.ac.at/ocdp/eurostat-rules#
e4c56a2955372924bde20c2944b2b28f3> . }
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