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We describe a generic framework for representing and reasoning with annotated Semantic Web data, a
task becoming more important with the recent increased amount of inconsistent and non-reliable meta-
data on the Web. We formalise the annotated language, the corresponding deductive system and address
the query answering problem. Previous contributions on specific RDF annotation domains are encom-
passed by our unified reasoning formalism as we show by instantiating it on (i) temporal, (ii) fuzzy,
and (iii) provenance annotations. Moreover, we provide a generic method for combining multiple anno-
tation domains allowing to represent, e.g., temporally-annotated fuzzy RDF. Furthermore, we address the
development of a query language – AnQL – that is inspired by SPARQL, including several features of
SPARQL 1.1 (subqueries, aggregates, assignment, solution modifiers) along with the formal definitions
of their semantics.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

RDF (Resource Description Framework) [1] is the widely used
representation language for the Semantic Web and the Web of
Data. RDF exposes data as triples, consisting of subject, predicate
and object, stating that subject is related to object by the predicate
relation. Several extensions of RDF were proposed in order to deal
with time [2–4], truth or imprecise information [5,6], trust [7,8]
and provenance [9]. All these proposals share a common approach
of extending the RDF language by attaching meta-information
about the RDF graph or triples. RDF Schema (RDFS) [10] is the spec-
ification of a restricted vocabulary that allows one to deduce fur-
ther information from existing RDF triples. SPARQL [11] is the
W3C-standardised query language for RDF.

In this paper, we present an extension of the RDF model to sup-
port meta-information in the form of annotations of triples. We
specify the semantics by conservatively extending the RDFS
semantics and provide a deductive system for Annotated RDFS.
Further, we define a query language that extends SPARQL and in-
clude advanced features such as aggregates, nested queries and
variable assignments, which are part of the not-yet-standardised
SPARQL 1.1 specification. The present paper is based on and ex-
ll rights reserved.
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tends two previously published articles introducing Annotated
RDFS [12] and AnQL (our SPARQL extension) [13]. In addition to
improving the descriptions of this existing body of work, we pro-
vide the following novelties:

1. We introduce a use case scenario that better reflects a realistic
example of how annotations can be used.

2. We detail three concrete domains of annotations (temporal,
fuzzy, provenance) that were only sketched in our previous
publications.

3. We present a detailed and systematic approach for combining
multiple annotation domains into a new single complex
domain; this represents the most significant novel contribution
of the paper.

4. We discuss the integration of annotated triples with standard,
non-annotated triples, as well as the integration of data using
different annotation domains.

5. We describe a prototype implementation.

Section 2 gives preliminary definitions of the RDFS semantics
and query answering, restricting ourselves to the sublanguage
qdf. Our extension of RDF is presented in Section 3 together with
essential examples of primitive domains. Our extension of SPARQL,
is presented in Section 4. Furthermore, Section 5 presents a discus-
sion of important issues with respect to specific domains and their
combination. Finally, Section 6 describes our prototype
implementation.
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1.1. Related work

The basis for Annotated RDF were first established by Udrea
et al. [14,15], where they define triples annotated with values ta-
ken from a finite partial order. In their work, triples are of the form
(s, p : k, o), where the property, rather than the triple is annotated.
We instead rely on a richer, not necessarily finite, structure and
provide additional inference capabilities to [15], such as a more in-
volved propagation of annotation values through schema triples.
For instance, in the temporal domain, from (a, sc,b): [2,6] and
(b, sc, c): [3,8], we will infer (a, sc,c): [3,6] (sc is the subclass prop-
erty). Essentially, Udrea et al. do not provide an operation to com-
bine the annotation in such inferences, while the algebraic
structures we consider support such operations. Also, they require
specific algorithms, while we show that a simple extension to the
classical RDF inference rules is sufficient. The query language pre-
sented in this paper consists of conjunctive queries and, while
SPARQL’s Basic Graph Patterns are compared to their conjunctive
queries, they do not consider extending SPARQL with the possibil-
ity of querying annotations. Furthermore, OPTIONAL, UNION and
FILTER SPARQL queries are not considered which results in a sub-
set of SPARQL that can be directly translated into their previously
presented conjunctive query system.

Adding annotations to logical statements was already proposed
in the logic programming realm in which Kifer and Subrahmanian
[16] present a similar approach, where atomic formulas are anno-
tated with a value taken from a lattice of annotation values, an
annotation variable or a complex annotation, i.e., a function ap-
plied to annotation values or variables. Similarly, we can relate
our work to annotated relational databases, especially Green
et al. [17] who provides a similar framework for the relational alge-
bra. After presenting a generic structure for annotations, they focus
more specifically on the provenance domain. The specificities of
the relation algebra, especially Closed World Assumption, allows
them to define a slightly more general structure for annotation do-
mains, namely semiring (as opposed to the residuated lattice in our
initial approach [12,13]). In relation to our rule-based RDFS Rea-
soning, it should be mentioned that Green et al. [17] also provide
an algorithm that can decide ground query answers for annotated
Datalog, which might be used for RDFS rules; general query
answering or materialisation though might not terminate, due to
the general structure of annotations, in their case. Karvounarakis
et al. [18] extend the work of [17] towards various annotations –
not only provenance, but also confidence, rank, etc. – but do not
specifically discuss their combinations.

In a generic approach mostly focused on Semantic Web ontolo-
gies, Baader et al. [19,20] describe a framework to delimit sub-
ontologies according to access restrictions, where access rights
are modelled by labels from a finite lattice, attached to ontological
axioms. The approach is not tied to a particular ontology language,
thereby could be used on RDF datasets. As the algebraic structure is
fully compatible with our framework, we can consider that this
case is covered by our work. However, the goal of their work is
not to provide means to reason and query over the access right
annotations but rather to enforce the access rights on subsets of
the axioms.

For the Semantic Web, several extensions of RDF were proposed
in order to deal with specific domains such as truth of imprecise
information [5,21,22,6], time [2–4], trust [7,8] and provenance
[9]. These approaches are detailed in the following paragraphs.

Straccia [6], presents Fuzzy RDF in a general setting where tri-
ples are annotated with a degree of truth in [0,1]. For instance,
‘‘Rome is a big city to degree 0.8’’ can be represented with
(Rome, type,BigCity): 0.8; the annotation domain is [0,1]. For
the query language, it formalises conjunctive queries. Other similar
approaches for Fuzzy RDF [5,21,22] provide the syntax and seman-
tics, along with RDF and RDFS interpretations of the annotated tri-
ples. In [22] the author describes an implementation strategy that
relies on translating the Fuzzy triples into plain RDF triples by
using reification. However these works focus mostly on the repre-
sentation format and the query answering problem is not
addressed.

Gutiérrez et al. [2] presents the definitions of Temporal RDF,
including reduction of the semantics of Temporal RDF graphs to
RDF graphs, a sound and complete inference system and shows
that entailment of Temporal graphs does not yield extra complex-
ity than RDF entailment. Our Annotated RDFS framework encom-
passes this work by defining the temporal domain. They present
conjunctive queries with built-in predicates as the query language
for Temporal RDF, although they do not consider full SPARQL. Pug-
liese et al. [3] presents an optimised indexing schema for Temporal
RDF, the notion of normalised Temporal RDF graph and a query
language for these graphs based on SPARQL. The indexing scheme
consists of clustering the RDF data based on their temporal dis-
tance, for which several metrics are given. For the query language
they only define conjunctive queries, thus ignoring some of the
more advanced features of SPARQL. Tappolet and Bernstein [4]
present another approach to the implementation of Temporal
RDF, where each temporal interval is represented as a named
graph [23] containing all triples valid in that time period. Informa-
tion about temporal intervals, such as their relative relations, start
and end points, is asserted in the default graph. The s-SPARQL
query language allows to query the temporal RDF representation
using an extended SPARQL syntax that can match the graph pat-
tern against the snapshot of a temporal graph at any given time
point and allows to query the start and endpoints of a temporal
interval, whose values can then be used in other parts of the query.

SPARQL extensions towards querying trust have been presented
by Hartig [7]. Hartig introduces a trust aware query language,
tSPARQL, that includes a new constructor to access the trust value
of a graph pattern. This value can then be used in other statements
such as FILTERs or ORDER. Also in the setting of trust manage-
ment, Schenk [8] defines a bilattice structure to model trust relying
on the dimensions of knowledge and truth. The defined knowledge
about trust in information sources can then be used to compute the
trust of an inferred statement. An extension towards OWL is pre-
sented but there is no query language defined. Finally, this ap-
proach is used to resolve inconsistencies in ontologies arising
from connecting multiple data sources.

In [9] the authors also present a generic extension of RDF to rep-
resent meta information, mostly focused on provenance and uncer-
tainty. Such meta information is stored using named graphs and
their extended semantics of RDF, denoted RDFþ, assumes a prede-
fined vocabulary to be interpreted as the meta information. How-
ever they do not provide an extension of the RDFS inference
rules or any operations for combining meta information. The
authors also provide an extension of the SPARQL query language,
considering an additional expression that enables querying the
RDF meta information.

Our initial approach of using residuated lattices as the structure
for representing annotations [12,13] was extended to the more
general semiring structure by Buneman and Kostylev [24]. This pa-
per also shows that, once the RDFS inferences of an RDF graph have
been computed for a specific domain, it is possible to reuse these
inferences if the graph is annotated with a different domain. Based
on this result the authors define a universal domain which is pos-
sible to transform to other domains by applying the corresponding
transformations.

Aidan Hogan’s thesis [25, Chapter 6] provides a framework for a
specific combination of annotations (authoritativeness, rank,
blacklisting) within RDFS and (a variant of) OWL 2 RL. This work
is orthogonal to ours, in that it does not focus on aspects of query
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answering, or providing a generic framework for combinations of
annotations, but rather on scalable and efficient algorithms for
materialising inferences for the specific combined annotations un-
der consideration.

2. Preliminaries – classical RDF and RDFS

In this section we present notions and definitions that are nec-
essary for our discussions later. First we give a short overview of
RDF and RDFS.

2.1. Syntax

Consider pairwise disjoint alphabets U, B, and L denoting,
respectively, URI references, blank nodes and literals.1 We call the
elements in UBL (B) terms (variables, denoted x, y, z). An RDF triple
is s = (s, p, o) 2 UBL � U �UBL.2 We call s the subject, p the predicate,
and o the object. A graph G is a set of triples, the universe of G, uni-
verse(G), is the set of elements in UBL that occur in the triples of
G, the vocabulary of G, voc(G), is universe(G) \ UL.

We rely on a fragment of RDFS, called qdf [26], that covers
essential features of RDFS. qdf is defined as the following subset
of the RDFS vocabulary: qdf ¼ fsp; sc; type; dom; rangeg. Informally,
(i) (p, sp,q) means that property p is a subproperty of property q; (ii)
(c, sc,d) means that class c is a subclass of class d; (iii) (a, type,b)
means that a is of type b; (iv) (p,dom,c) means that the domain of
property p is c; and (v) (p, range,c) means that the range of property

p is c. In what follows we define a map as a function l : UBL ? UBL
preserving URIs and literals, i.e., l(t) = t, for all t2UL. Given a graph

G, we define lðGÞ ¼ fðlðsÞ;lðpÞ;lðoÞÞ j ðs; p; oÞ 2 Gg. We speak of a

map l from G1 to G2, and write l : G1 ! G2, if l is such that

lðG1Þ# G2.

2.2. Semantics

An interpretation I over a vocabulary V is a tuple
I ¼ DR;DP;DC ;DL; Ps � t;Cs � t; �Ih i, where DR;DP;DC ;DL are the inter-
pretation domains of I , which are finite non-empty sets, and
Ps � t;Cs � t; �I are the interpretation functions of I . They have to
satisfy:

1. DR are the resources (the domain or universe of I);
2. DP are property names (not necessarily disjoint from DR);
3. DC # DR are the classes;
4. DL # DR are the literal values and contains L \ V;
5. Ps � t is a function Ps � t : DP ! 2DR�DR ;
6. Cs � t is a function Cs � t : DC ! 2DR ;
7. �I maps each t 2 UL \ V into a value tI 2 DR [ DP , and such that
�I is the identity for plain literals and assigns an element in DR

to each element in L.

An interpretation I is a model of a ground graph G, denoted
I � G, if and only if I is an interpretation over the vocabulary
qdf [ universeðGÞ that satisfies the following conditions:

Simple:
1. For each ðs; p; oÞ 2 G; pIA 2 DP and ðsIA ; oIA Þ 2 PspIAt.
Subproperty:
1. PsspIAt is transitive over DP;
2. if ðp; qÞ 2 PsspIAt then p; q 2 DP and Pspt # Psqt.
1 We assume U, B, and L fixed, and for ease we will denote unions of these sets
simply concatenating their names.

2 As in [26] we allow literals for s.
Subclass:
1. PsscIAt is transitive over DC;
2. if ðc; dÞ 2 PsscIAt then c; d 2 DC and Csct # Csdt.
Typing I:
1. x 2 Csct if and only if ðx; cÞ 2 PstypeIAt;
2. if ðp; cÞ 2 PsdomIAt and ðx; yÞ 2 Pspt then x 2 Csct;
3. if ðp; cÞ 2 PsrangeIAt and ðx; yÞ 2 Pspt then y 2 Csct.
Typing II:
1. For each e 2 qdf ; eIA 2 DP;
2. if ðp; cÞ 2 PsdomIAt then p 2 DP and c 2 DC;
3. if ðp; cÞ 2 PsrangeIAt then p 2 DP and c 2 DC;
4. if ðx; cÞ 2 PstypeIAt then c 2 DC .

Entailment among ground graphs G and H is as usual. Now,
G � H, where G and H may contain blank nodes, if and only if for
any grounding G0 of G there is a grounding H0 of H such that
G0 � H0.3

Remark 2.1. In [26], the authors define two variants of the
semantics: the default one includes reflexivity of PsspI t (resp.
CsscI t) over DP (resp. DC) but we are only considering the
alternative semantics presented in [26, Definition 4] which omits
this requirement. Thus, we do not support an inference such as
G � ða; sc; aÞ, which anyway are of marginal interest.
Remark 2.2. In a First-Order Logic (FOL) setting, we may interpret
classes as unary predicates, and (RDF) predicates as binary predi-
cates. Then

1. a subclass relation between class c and d may be encoded as the
formula 8x:cðxÞ ) dðxÞ;

2. a subproperty relation between property p and q may be
encoded as 8x8y:pðx; yÞ ) qðx; yÞ;

3. domain and range properties may be represented as:
8x8y:pðx; yÞ ) cðxÞ and 8x8y:pðx; yÞ ) cðyÞ;

4. the transitivity of a property can be represented as
8x8y9z:ðpðx; zÞ ^ pðz; yÞÞ ) pðx; yÞ.

Although this remark is trivial, we will see that it will play an
important role in the formalisation of Annotated RDFS.

2.3. Deductive system

In what follows, we provide the sound and complete deductive
system for our language derived from [26]. The system is arranged
in groups of rules that captures the semantic conditions of models.
In every rule, A, B, C, X, and Y are meta-variables representing ele-
ments in UBL and D, E represent elements in UL. The rules are as
follows:

1. Simple:
3 A g
terms in
ðaÞ G
G0

for a mapl : G0 ! G ðbÞ G
G0

for G0 # G
2. Subproperty:
ðaÞ ðA; sp;BÞ; ðB; sp;CÞ
ðA; sp;CÞ ðbÞ ðD; sp; EÞ; ðX;D;YÞ

ðX; E;YÞ
3. Subclass:
ðaÞ ðA; sc;BÞ; ðB; sc;CÞ
ðA; sc;CÞ ðbÞ ðA; sc;BÞ; ðX; type;AÞ

ðX; type;BÞ
rounding G0 of graph G is obtained, as usual, by replacing variables in G with
UL.
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4. Typing:
ðaÞ ðD; dom;BÞ; ðX;D; YÞ
ðX; type;BÞ ðbÞ ðD; range; BÞ; ðX;D;YÞ

ðY ; type; BÞ
5. Implicit Typing:
ðaÞ A; dom;Bð Þ; D; sp;Að Þ; ðX;D; YÞ
X; type;Bð Þ

ðbÞ A; range;Bð Þ; D; sp;Að Þ; ðX;D; YÞ
Y ; type; Bð Þ
A reader familiar with [26] will notice that these rules are as rules
1–5 of [26] (which has 7 rules). We excluded the rules handling
reflexivity (rules 6–7) which are not needed to answer queries. Fur-
thermore, as noted in [26], the ‘‘Implicit Typing’’ rules are a neces-
sary addition to the rules presented in [27] for complete RDFS
entailment. These represent the case when variable A in (D,sp,A)
and (A,dom,B) or (A, range,B), is a property implicitly represented
by a blank node.

We denote with fs1; . . . ; sng‘RDFS s that the consequence s is
obtained from the premise s1; . . . ; sn by applying one of the infer-
ence rules 2–5 above. Note that n 2 f2;3g. ‘RDFS is extended to
the set of all RDFS rules as well, in which case n 2 f1;2;3g.

If a graph G0 can be obtained by recursively applying rules 1-5
from a graph G, the sequence of applied rules is called a proof, de-
noted G ‘ G0, of G0 from G. The following proposition shows that
our proof mechanism is sound and complete w.r.t. the qdf
semantics:

Proposition 2.1 (Soundness and completeness [26]). Inference ‘
based on rules 1–5 as of [26] and applied to our semantics defined
above is sound and complete for �, that is, G ‘ G0 if and only if G � G0.
Proposition 2.2 [26]. Assume G ‘ G0 then there is a proof of G0 from
G where the rule (1a) is used at most once and at the end.

Finally, the closure of a graph G is defined as clðGÞ ¼ fs j G ‘�sg,
where ‘� is as ‘ except that rule (1a) is excluded. Note that the size
of the closure of G is polynomial in the size of G and that the clo-
sure is unique. Now we can prove that:

Proposition 2.3. G ‘ G0 if and only if G0# clðGÞ or G0 is obtained from
clðGÞ by applying rule (1a).
4 A predicate pðx; yÞ is functional if for any t there is unique t0 for which pðt; t0Þ is
true.
2.4. Query answering

Concerning query answering, we are inspired by Gutiérrez et al.
[28] and the logic programming setting and we assume that a RDF
graph G is ground, that is, all blank nodes have been skolemised,
i.e., replaced with terms in UL.

A query is of the rule-like form

qðxÞ  9y:uðx; yÞ;

where qðxÞ is the head and 9y:uðx; yÞ is the body of the query, which
is a conjunction (we use the symbol ‘‘,’’ to denote conjunction in the
rule body) of triples sið1 6 i 6 n). x is a vector of variables occurring
in the body, called the distinguished variables, y are so-called non-
distinguished variables and are distinct from the variables in x, each
variable occurring in si is either a distinguished or a non-distin-
guished variable. If clear from the context, we may omit the exis-
tential quantification 9y.

In a query, we allow built-in triples of the form (s,p,o), where p
is a built-in predicate taken from a reserved vocabulary and having
a fixed interpretation. We generalise the built-ins to any n-ary pred-
icate p, where p’s arguments may be q df variables, values from UL,
and p has a fixed interpretation. We will assume that the evalua-
tion of the predicate can be decided in finite time. For convenience,
we write ‘‘functional predicates’’4 as assignments of the form
x :¼ f ðzÞ and assume that the function f ðzÞ is safe. We also assume
that a non functional built-in predicate pðzÞ should be safe as well.

A query example is:

qðx; yÞ  ðy;created; xÞ; ðy; type;ItalianÞ;
x;exhibitedAt;Uffizið Þ;

having intended meaning to retrieve all the artefacts x created by
Italian artists y, being exhibited at Uffizi Gallery.

In order to define an answer to a query we introduce the
following:

Definition 2.1 (Query instantiation). Given a vector x ¼ hx1; . . . ; xki
of variables, a substitution over x is a vector of terms t replacing
variables in x with terms of UBL. Then, given a query
qðxÞ  9y:uðx;yÞ, and two substitutions t;t0 over x and y,
respectively, the query instantiation uðt;t0Þ is derived from
uðx;yÞ by replacing x and y with t and t0, respectively.

Note that a query instantiation is an RDF graph.

Definition 2.2 (Entailment). Given a graph G, a query
qðxÞ  9y:uðx;yÞ, and a vector t of terms in universe(G), we say
that qðtÞ is entailed by G, denoted G � qðtÞ, if and only if in any
model I of G, there is a vector t0 of terms in universe(G) such that I
is a model of the query instantiation uðt;t0Þ.
Definition 2.3. If G � qðtÞ then t is called an answer to q. The
answer set of q w.r.t. G is defined as ansðG; qÞ ¼ ft j G � qðtÞg.

We next show how to compute the answer set. The following
can be shown:

Proposition 2.4. Given a graph G, t is an answer to q if and only if
there exists an instantiation uðt;t0Þ that is true in the closure of G
(i.e., all triples in uðt;t0Þ are in clðGÞ).

Therefore, we have a simple method to determine ansðG; qÞ.
Compute the closure clðGÞ of G and store it into a database, e.g.,
using the method [29]. It is easily verified that any query can be
mapped into an SQL query over the underlying database schema.
Hence, ansðG; qÞ can be determined by issuing such an SQL query
to the database.

3. RDFS with annotations

This section presents the extension to RDF towards generic
annotations. Throughout this paper we will use an RDF dataset
describing companies, acquisitions between companies and
employment history. This dataset is partially presented in Fig. 1.
We consider this data to be annotated with the temporal domain,
which intuitively means that the annotated triple is valid in dates
contained in the annotation interval (the exact meaning of the
annotations will be explained later). Also, the information in this
example can be derived from Wikipedia and thus we can consider
this data also annotated with the provenance domain (although
not explicitly represented in the example). We follow the model-
ling of employment records proposed by DBpedia, for instance a
list of employees of Google is available as members of the class
http://dbpedia.org/class/yago/GoogleEmployees. For presentation
purposes we use the shorter name googleEmp. We also introduce

http://dbpedia.org/class/yago/GoogleEmployees


Fig. 1. Company acquisition dataset example.
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SkypeCollab (resp. EbayCollab) to represent Skype’s (resp.
Ebay’s) collaborators.

3.1. Syntax

Our approach is to extend triples with annotations, where an
annotation is taken from a specific domain.5

An annotated triple is an expression s : k, where s is a triple and
k is an annotation value (defined below). An annotated graph is a fi-
nite set of annotated triples. The intended semantics of annotated
triples depends of course on the meaning we associate to the anno-
tation values. For instance, in a temporal setting [2]

niklasZennstrom;ceoOf;skypeð Þ : ½2003;2007�

has intended meaning ‘‘Niklas was CEO of Skype during the period
2003–2007’’, while in the fuzzy setting [6] (skype,ownedBy,big-
Company): 0.3 has intended meaning ‘‘Skype is owned by a big com-
pany to a degree not less than 0.3’’.

3.2. RDFS Annotation domains

To start with, let us consider a non-empty set L. Elements in L
are our annotation values. For example, in a fuzzy setting,
L = [0,1], while in a typical temporal setting, L may be time points
or time intervals. In our annotation framework, an interpretation
will map statements to elements of the annotation domain. Our
semantics generalises the formulae in Remark 2.2 by using a well
known algebraic structure.

We say that an annotation domain for RDFS is an idempotent,
commutative semi-ring
D ¼ hL;�;�;?;>i;
where � is >-annihilating [24]. That is, for k; ki 2 L

1. � is idempotent, commutative, associative;
2. � is commutative and associative;
3. ? �k ¼ k;>� k ¼ k;? �k ¼?, and >� k ¼ >;
4. � is distributive over �, i.e., k1 � ðk2 � k3Þ ¼ ðk1 � k2Þ� ðk1 � k3Þ.
It is well-known that there is a natural partial order on any
idempotent semi-ring: an annotation domain D ¼ hL;�;�;?;>i in-
duces a partial order 	 over L defined as:

k1 	 k2 if and only if k1 � k2 ¼ k2:

The order 	 is used to express redundant/entailed/subsumed
information. For instance, for temporal intervals, an annotated tri-
ple ðs;p; oÞ : ½2000;2006� entails ðs;p; oÞ : ½2003;2004�, as
½2003;2004�# ½2000;2006� (here, # plays the role of 	).
5 The readers familiar with the annotated logic programming framework [16], will
notice the similarity of the approaches.
Remark 3.1. In previous work [12,13], an annotation domain was
assumed to be a more specific structure, namely a residuated
bounded lattice D ¼ hL;	;^;_;�;);?;>i. That is:

1. hL;	;^;_;?;>i is a bounded lattice, where ? and > are bottom
and top elements, and ^ and _ are meet and join operators.

2. hL;�;>i is a commutative monoid.

3. ) is the so-called residuum of �, i.e., for all k1; k2; k3; k1 �k3 	 k2

if and only if k3 	 ðk1 ) k2Þ.

Note that any bounded residuated lattice satisfies the condi-
tions of an annotation domain. In [24] it was shown that we may
use a slightly weaker structure than residuated lattices for annota-
tion domains.
Remark 3.2. Observe that hL;	;�;?;>i is a bounded join semi-
lattice.
Remark 3.3. Note that the domain D01 ¼ hf0;1g;max;min;0;1i
corresponds to the boolean case. In fact, in this case Annotated
RDFS will turn out to be the same as classical RDFS.
Remark 3.4. We use � to combine information about the same
statement. For instance, in temporal logic, from s : ½2000;2006�
and s : ½2003;2008�, we infer s : ½2000;2008�, as
[2000,2008] = [2000,2006] [ [2003,2008]; here, [ plays the role
of �. In the fuzzy context, from s : 0:7 and s : 0:6, we infer
s : 0:7, as 0.7 = max(0.7,0.6) (here, max plays the role of �).
Remark 3.5. We use � to model the ‘‘conjunction’’ of information.
In fact, a � is a generalisation of boolean conjunction to the many-
valued case. In fact, � satisfies also that

1. � is bounded: i.e., k1 � k2 	 k1.
2. � is 	-monotone, i.e., for k1 	 k2; k� k1 	 k� k2.

For instance, on interval-valued temporal logic, from (a,sc,b):
[2000,2006] and (b, sc,c): [2003,2008], we will infer (a, sc,c):
[2003,2006], as [2003,2006] = [2000,2006] \ [2003,2008]; here,
\ plays the role of �.6 In the fuzzy context, one may chose any t-
norm [30,31], e.g., product, and, thus, from (a, sc,b): 0.7 and (b,sc, c):
0.6, we will infer (a, sc,c): 0.42, as 0.42 = 0.7 � 0.6 (here, � plays the
role of �).
Remark 3.6. Observe that the distributivity condition is used to
guarantee that, e.g., we obtain the same annotation k� ðk2 � k3Þ
¼ ðk1 � k2Þ � ðk1 � k3Þ of the triple (a, sc,c) that can be inferred from
triples ða; sc; bÞ : k1; ðb; sc; cÞ : k2 and ðb; sc; cÞ : k3.

Finally, note that, conceptually, in order to build an annotation
domain, one has to:

1. determine the set of annotation values L (typically a countable
set7), identify the top and bottom elements;

2. define suitable operations � and � that acts as ‘‘conjunction’’
and ‘‘disjunction’’ function, to support the intended inference
over schema axioms, such as
6 As w
7 Not

fuzzy d
‘‘from ða; sc; bÞ : k and ðb; sc; cÞ : k0 infer ða; sc; cÞ : k� k0’’
and

‘‘from s : k and s : k0 infer s : k� k0’’.
e will see, � and � may be more involved.
e that one may use XML decimals in [0,1] in place of real numbers for the
omain.
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3.3. Semantics

Fix an annotation domain D ¼ hL;�;�;?;>i. Informally, an
interpretation I will assign to a triple s an element of the annota-
tion domain k 2 L. Formally, an annotated interpretation I over a
vocabulary V is a tuple
I ¼ DR;DP ;DC ;DL; Ps � t;Cs � t; �I
� �

;

where DR;DP ;DC ;DL are interpretation domains of I and
Ps � t;Cs � t; �I are interpretation functions of I .

They have to satisfy:

1. DR is a nonempty finite set of resources, called the domain or
universe of I;

2. DP is a finite set of property names (not necessarily disjoint
from DR);

3. DC # DR is a distinguished subset of DR identifying if a resource
denotes a class of resources;

4. DL # DR, the set of literal values, DL contains all plain literals in
L \ V;

5. Ps � t maps each property name p 2 DP into a function
Pspt : DR � DR ! L, i.e., assigns an annotation value to each pair
of resources;

6. Cs � t maps each class c 2 DC into a function Csct : DR ! L, i.e.,
assigns an annotation value representing class membership in
c to every resource;

7. �I maps each t 2 UL \ V into a value tI 2 DR [ DP and such that �I
is the identity for plain literals and assigns an element in DR to
each element in L.

An interpretation I is a model of an annotated ground graph G,
denoted I � G, if and only if I is an interpretation over the vocab-
ulary qdf [ universeðGÞ that satisfies the following conditions:

Simple:
1. ðs; p; oÞ : k 2 G implies pI 2 DP and PspItðsI; oIÞ 
 k.
Subproperty:
1. PsspItðp; qÞ � PsspItðq; rÞ 	 PsspItðp; rÞ;
2. PspItðx; yÞ � PsspItðp; qÞ 	 PsqItðx; yÞ.
Subclass:
1. PsscItðc; dÞ � PsscItðd; eÞ 	 PsscItðc; eÞ;
2. CscItðxÞ � PsscItðc; dÞ 	 PsdI

tðxÞ.
Typing I:
1. CsctðxÞ ¼ PstypeItðx; cÞ;
2. PsdomItðp; cÞ � Psptðx; yÞ 	 CsctðxÞ;
3. PsrangeItðp; cÞ � Psptðx; yÞ 	 CsctðyÞ.
Typing II:
1. For each e 2 qdf, eI 2 DP;
2. PsspItðp; qÞ is defined only for p; q 2 DP;
3. CsscItðc; dÞ is defined only for c; d 2 DC;
4. PsdomItðp; cÞ is defined only for p 2 DP and c 2 DC;
5. PsrangeItðp; cÞ is defined only for p 2 DP and c 2 DC;
6. PstypeItðs; cÞ is defined only for c 2 DC .

Intuitively, a triple ðs; p; oÞ : k is satisfied by I if (s,o) belongs to
the extension of p to a ‘‘wider’’ extent than k. Note that the major
differences from the classical setting relies on items 5 and 6.

We further note that the classical setting is as the case in which
the annotation domain is D01 where L ¼ f0;1g.

Finally, entailment among annotated ground graphs G and H is
as usual. Now, G � H, where G and H may contain blank nodes, if
and only if for any grounding G0 of G there is a grounding H0 of H
such that G0 � H0.
Remark 3.7. Note that we always have that G � s :?. Clearly,
triples of the form s :? are uninteresting and, thus, in the following
we do not consider them as part of the language.

As for the crisp case, it can be shown that:

Proposition 3.1. Any Annotated RDFS graph has a finite model.
Proof 3.1. Let G be an annotated graph over domain d. Let
Lit ¼ L \ universeðGÞ be the set of literals present in G and l0 2 Lit.
We define the interpretation I over V as follows:

1. DR ¼ DP ¼ DC ¼ Lit ¼ DL ¼ Lit;
2. 8x; y; p Psptðx; yÞ# >;
3. 8x; c CsctðxÞ# >;
4. (a) 8l 2 L; lI ¼ l,

(b) 8x 2 V ; lI ¼ l0.
It is easy to see that I satisfies all the conditions of RDF-
satisfiability and thus is a model of G.

Therefore, we do not have to care about consistency.

3.4. Examples of primitive domains

To demonstrate the power of our approach, we illustrate its
application to some domains: fuzzy [6], temporal [2] and
provenance.

3.4.1. The fuzzy domain
To model fuzzy RDFS [6] we may define the annotation domain

as D½0;1� ¼ h½0;1�;max;�;0;1i where � is any continuous t-norm on
[0,1].

Example 3.1. Adapting our example of employment records to the
fuzzy domain we can state the following: Skype collaborators are
also Ebay collaborators to some degree since Ebay possesses 30% of
Skype’s shares, and also that Toivo is a part-time Skype
collaborator:

ðSkypeCollab; sc; EbayCollabÞ : 0:3
ðtoivo; type; SkypeCollabÞ : 0:5:

Then, e.g., under the product t-norm �, we can infer the following
triple:

ðtoivo; type; EbayCollabÞ : 0:15:
3.4.2. The temporal domain

Most of the semantic information on the Web deals with time in
an implicit or explicit way. Social relation graphs, personal profiles,
information about various entities continuously evolve and do not
remain static. This dynamism can take various forms: certain infor-
mation is only valid in a specific time interval (e.g., somebody’s ad-
dress), some data talks about events that took place at a specific
time point in the past (e.g., beginning of a conference), some data
describe eternal truth (e.g., tigers are mammals), or truth that is
valid from a certain point of time onwards forever (e.g., Elvis is
dead), or creation or change dates of online information items
(e.g., the edit history of a wiki page). We believe that treating
Web data in a time-sensitive way is one of the biggest steps
towards turning the Semantic Web idea into reality.

3.4.2.1. Precise temporal information. For our representation of the
temporal domain we aim at using non-discrete time as it is neces-
sary to model temporal intervals with any precision. however, for
presentation purposes we will show the dates as years only.
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3.4.2.2. Modelling the temporal domain. To start with, time points are
elements of the value space Q [ f�1;þ1g. A temporal interval is
a non-empty interval ½a1;a2�, where ai are time points. An empty
interval is denoted as ;. We define a partial order on intervals as
I1 6 I2 if and only if I1 # I2. The intuition here is that if a triple is
true at time points in I2 and I1 6 I2 then, in particular, it is true
at any time point in I1 – ;.

Now, apparently the set of intervals would be a candidate for L,
which however is not the case. The reason is that, e.g., in order to
represent the upper bound interval of s : ½1;5� and s : ½8;9� we
rather need the union of intervals, denoted f½1;5�; ½8;9�g, meaning
that a triple is true both in the former as well as in the latter inter-
val. Now, we define L as (where ?¼ f;g;> ¼ f½�1;þ1�g)

L ¼ ftjt is a finite set of disjoint temporal intervalsg [ f?;>g:

Therefore, a temporal term is an element t 2 L, i.e., a set of pair-
wise disjoint time intervals. We allow to write [a] as a shorthand
for ½a;a�; s : a as a shorthand of s : f½a�g and s : ½a;a0� as a shorthand
of s : f½a;a0�g. Furthermore, on L we define the following partial
order:

t1 	 t2 if and only if 8I1 2 t19I2 2 t2; such that I1 6 I2:

Please note that 	 is the Hoare order on power sets [32], which is a
pre-order. For the anti-symmetry property, assume that t1 	 t2 and
t2 	 t1: so for I1 2 t1, there is I2 2 t2 for which there is I3 2 t1 such
that I1 # I2 # I3. But, t1 is maximal and, thus, I1 ¼ I3 ¼ I2. So,
t1 ¼ t2 and, thus, 	 is a partial order. Similarly as for time intervals,
the intuition for 	 is that if a triple is true at time points in intervals
in t2 and t1 	 t2, then, in particular, it is true at any time point in
intervals in t1. Essentially, if t1 	 t2 then a temporal triple s2 : t2 is
true to a larger ‘‘temporal extent’’ than the temporal triple s1 : t1.
It can also be verified that hL;	;?;>i is a bounded lattice. Indeed,
to what concerns us, the partial order 	 induces the following join
(�) operation on L. Intuitively, if a triple is true at t1 and also true at
t2 then it will be true also for time points specified by t1 � t2 (a kind
of union of time points). As an example, if s : f½2;5�; ½8;12�g and
s : f½4;6�; ½9;15�g are true then we expect that this is the same as
saying that s : f½2;6�; ½8;15�g is true. The join operator will be de-
fined in such way that f½2;5�; ½8;12�g � f½4;6�; ½9;15�g ¼
f½2;6�; ½8;15�g. Operationally, this means that t1 � t2 will be ob-
tained as follows: (i) take the union of the sets of intervals
t ¼ t1 [ t2; and (ii) join overlapping intervals in t until no more
overlapping intervals can be obtained. Formally,

t1 � t2 ¼ infft j t 
 ti; i ¼ 1;2g:

It remains to define the meet � over sets of intervals.
Intuitively, we would like to support inferences such as ‘‘from
ða; sc; bÞ : f½2;5�; ½8;12�g and ðb; sc; cÞ : f½4;6�; ½9;15�g infer
ða; sc; bÞ : f½4;5�; ½9;12�g’’, where f½2;5�; ½8;12�g � f½4;6�, ½9;15�g ¼
f½4;5�; ½9;12�g. We get it by means of

t1 � t2 ¼ supft j t 	 ti; i ¼ 1;2g:

Note that here the t-norm used for modelling ‘‘conjunction’’
coincides with the lattice meet operator.

Example 3.2. Using the data from our running example, we can
infer that

ðchadHurley; type; googleEmpÞ : ½2006;2010�;

where

f½2005;2010�g � f½2006;2011�g ¼ f½2006;2010�g:
In [2] are described some further features such as a ‘‘Now’’ time
point (which is just a defined time point in DT ) and anonymous
time points, allowing to state that a triple is true at some point.
Adding anonymous time points would require us to extend the lat-
tice by appropriate operators, e.g. ½4; T� � ½T;8� ¼ ½4;8� (where T is
an anonymous time point), etc.
3.4.3. Provenance domain
Identifying provenance of triples is regarded as an important is-

sue for dealing with the heterogeneity of Web data, and several
proposals have been made to model provenance [33–36]. Typically,
provenance is identified by a URI, usually the URI of the document
in which the triples are defined or possibly a URI identifying a
named graph. However, provenance of inferred triples is an issue
that have been little tackled in the literature [37,35]. We propose
to address this issue by introducing an annotation domain for
provenance.

The intuition behind our approach is similar to the one of [37]
and [35] where provenance of an inferred triple is defined as the
aggregation of provenances of documents that allow to infer that
triple. For instance, if a document d1 defines (youtubeEmp, sc,
googleEmp):d1 and a second document d2 defines (chadHurley,
type, youtubeEmp):d2, then we can infer (chadHurley, type,
googleEmp):d1 ^ d2.

Such a mechanism makes sense and would fit well as a meet
operator, but these approaches do not address the join operation
which should take place when identical triples are annotated dif-
ferently. We improve this with the following formalisation.
3.4.3.1. Modelling the provenance domain. We start from a count-
ably infinite set of atomic provenances P which, in practice, can
be represented by URIs. We consider the propositional formulae
made from symbols in P (atomic propositions), logical or (_) and
logical and (^), for which we have the standard entailment �. A
provenance value is an equivalent class for the logical
equivalence relation, i.e., the set of annotation values is the quo-
tient set of P by the logical equivalence. The order relation is �,
� and � are ^ and _, respectively. We set > to true and ? to
false.

Example 3.3. Consider the following data:

ðchadHurley; worksFor; youtubeÞ : chad

ðchadHurley; type; PersonÞ : chad

ðyoutube; type; CompanyÞ : chad
ðPerson; sc; AgentÞ : foaf

ðworksFor; dom; PersonÞ : workont

ðworksFor; range; CompanyÞ : workont:

We can deduce that chadHurley is an Agent in two different
ways: using the first, fourth and fifth statement or using the second
and fourth statement. So, it is possible to infer the following anno-
tated triple:

ðchadHurley; type; AgentÞ : ðchad ^ foaf ^ workontÞ
_ ðchad ^ foaf Þ

However, since ðchad ^ foaf ^workontÞ _ ðchad ^ foaf Þ is logi-
cally equivalent to chad^foaf, the aggregated inference can be
collapsed into:

ðchadHurley; type; AgentÞ : chad ^ foaf :
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Intuitively, a URI denoting a provenance can also denote a RDF
graph, either by using a named graph approach, or implicitly by
getting a RDF document by dereferencing the URI. In this case,
we can see the conjunction operation as a union of graphs and dis-
junction as an intersection of graphs.
3.4.3.2. Comparison with other approaches. [37] does not formalise
the semantics and properties of his aggregation operation (simply
denoted by ^) nor the exact rules that should be applied to cor-
rectly and completely reason with provenance. Query answering
is not tackled either.

The authors of [35] are providing more insight on the formalisa-
tion and actually detail the rules by reusing (tacitly) [26]. They also
provide a formalisation of a simple query language. However, the
semantics they define is based on a strong restriction of qdf.8

As an example, they define the answers to the query (?x, type, ?-
y, ?c) as the tuples (X,Y,C) such that there is a triple (X, type,Y,C)
which can be inferred from only the application of rules (3a) and
(3b). This means that a domain or range assertion would not pro-
vide additional answers to that type of query.

Provenance also relates to the named graphs formalism [23]
where one can identify distinct graphs with a URI. The name can
be seen as an atomic provenance annotation. However, named
graphs do not provide operations to combine the provenances.
Yet, the formalism could be used as a possible syntactic solution
for representing annotated triples.

Finally, none of those papers discuss the possibility of univer-
sally true statements (the > provenance) or the statements from
unknown provenance (?). They also do not consider mixing non-
annotated triples with annotated ones as we do in Section 5.3.

3.5. Deductive system

An important feature of our framework is that we are able to
provide a deductive system in the style of the one for classical
RDFS. Moreover, the schemata of the rules are the same for any anno-
tation domain (only support for the domain dependent � and �
operations has to be provided) and, thus, are amenable to an easy
implementation on top of existing systems. The rules are arranged
in groups that capture the semantic conditions of models, A, B, C, X
and Y are meta-variables representing elements in UBL and D, E
represent elements in UL. The rule set contains two rules (1a)
and (1b), that are the same as for the crisp case, while rules
(2a)–(5b) are the annotated rules homologous to the crisp ones. Fi-
nally, rule (6) is specific to the annotated case.

Please note that rule (6) is destructive i.e., this rule removes the
premises as the conclusion is inferred. We also assume that a rule
is not applied if the consequence is of the form s :? (see Remark
3.7). It can be shown that:

1. Simple:
8 Rem
ðaÞ G
G0

for a map l : G0 ! G

ðbÞ G
G0

for G0 # G
2. Subproperty:
ðaÞ ðA; sp;BÞ : k1; ðB; sp;CÞ : k2

ðA; sp;CÞ : k1 � k2

ðbÞ ðD; sp; EÞ : k1; ðX;D;YÞ : k2

ðX; E;YÞ : k1 � k2
ember that qdf is already a restriction of RDFS.
3. Subclass:
ðaÞ ðA; sc;BÞ : k1; ðB; sc;CÞ : k2

ðA; sc;CÞ : k1 � k2

ðbÞ ðA; sc;BÞ : k1; ðX; type;AÞ : k2

ðX; type;BÞ : k1 � k2
4. Typing:
ðaÞ ðD; dom;BÞ : k1; ðX;D;YÞ : k2

ðX; type;BÞ : k1 � k2

ðbÞ ðD; range;BÞ : k1; ðX;D;YÞ : k2

ðY ; type;BÞ : k1 � k2
5. Implicit Typing:
ðaÞ ðA; dom;BÞ : k1; ðD; sp;AÞ : k2; ðX;D;YÞ : k3

ðX; type;BÞ : k1 � k2 � k3

ðbÞ ðA; range;BÞ : k1; ðD; sp;AÞ : k2; ðX;D;YÞ : k3

ðY ; type;BÞ : k1 � k2 � k3
6. Generalisation:
ðX;A;YÞ : k1; ðX;A;YÞ : k2

ðX;A;YÞ : k1 � k2
Proposition 3.2 (Soundness and completeness). For an annotated
graph, the proof system ‘ is sound and complete for �, that is, (1) if
G ‘ s : k then G � s : k and (2) if G � s : k then there is k0 
 k with
G ‘ s : k0.

We point out that rules 2–5 can be represented concisely using
the following inference rule:

ðAGÞ s1 : k1; . . . ; sn : kn; fs1; . . . sng ‘RDFSs
s : �iki

:

Essentially, this rule says that if a classical RDFS triple s can be in-
ferred by applying a classical RDFS inference rule to triples s1; . . . sn

(denoted fs1; . . . ; sng‘RDFSs), then the annotation term of s will be
�iki, where ki is the annotation of triple si. It follows immediately
that, using rule (AG), in addition to rules (1) and (6) from the deduc-
tive system above, it is easy to extend these rules to cover complete
RDFS.

Finally, like for the classical case, the closure is defined as
clðGÞ ¼ fs : k j G ‘�s : kg, where ‘� is as ‘ without rule (1a). Note
again that the size of the closure of G is polynomial in j G j and
can be computed in polynomial time, provided that the computa-
tional complexity of operations � and � are polynomially bounded
(from a computational complexity point of view, it is as for the
classical case, plus the cost of the operations � and � in L). Even-
tually, similar propositions as Propositions 2.2 and 2.3 hold.

Example 3.4. As an example, consider the following triples from
Fig. 1:

ðyoutubeEmp; sc; googleEmpÞ : ½2006;2011�
ðchadHurley; worksFor; youtubeEmpÞ : ½2005;2010�

we infer the following triple:

ðchadHurley; type; googleEmpÞ : ½2006;2010�
3.6. Query answering

Informally, queries are as for the classical case where triples are
replaced with annotated triples in which annotation variables
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(taken from an appropriate alphabet and denoted K) may occur.
We allow built-in triples of the form (s,p,o), where p is a built-in
predicate taken from a reserved vocabulary and having a fixed
interpretation on the annotation domain d, such as (k,	, l) stating
that the value of lambda has to be 	 than the value l 2 L. We gen-
eralise the built-ins to any n-ary predicate p, where p’s arguments
may be annotation variables, qdf variables, domain values of d, val-
ues from UL, and p has a fixed interpretation. We will assume that
the evaluation of the predicate can be decided in finite time. As for
the crisp case, for convenience, we write ‘‘functional predicates’’ as
assignments of the form x :¼ f ðzÞ and assume that the function f ðzÞ
is safe. We also assume that a non functional built-in predicate
pðzÞ should be safe as well.

For instance, informally for a given time interval ½t1; t2�, we may
define x :¼ lengthð½t1; t2�Þ as true if and only if the value of x is t2 � t1.

Example 3.5. Considering our dataset from Fig. 1 as input and the
query asking for people that work for Google between 2002 and
2011 and the temporal term at which this was true:

qðx;KÞ  ðx;worksFor;googleÞ : K0;

K :¼ ðK0 ^ ½2002;2011�Þ;

will get the following answers:

steveChen; ½2006;2011�h i
chadHurley; ½2006;2010�h i
jawedKarim; ½2006;2011�h i
larryPage; ½2002;2011�h i
sergeyBrin; ½2002;2011�h i:

Formally, an annotated query is of the form

qðx;KÞ  9y9K0:u x;K;y;K0
� �

in which uðx;K;y;K0Þ is a conjunction (as for the crisp case, we use
‘‘,’’ as conjunction symbol) of annotated triples and built-in predi-
cates, x and K are the distinguished variables, y and K0 are the vec-
tors of non-distinguished variables (existential quantified variables),
and x;K;y and K0 are pairwise disjoint. Variables in K and K0 can
only appear in annotations or built-in predicates. The query head
contains at least one variable.

Given an annotated graph G, a query qðx;KÞ  9y9K0:
uðx;K;y;K0Þ, a vectort of terms in universeðGÞ and a vector K of anno-
tated terms in L, we say that qðt;KÞ is entailed by G, denoted
G � qðt;KÞ, if and only if in any model I of G, there is a vectort0 of terms
in universeðGÞ and a vector K0 of annotation values in L such that I is a
model of uðt;K;t0;K0Þ. If G � qðt;KÞ then ht;Ki is called an answer to
q. The answer set of q w.r.t. G is (	 extends to vectors point-wise)

ansðG; qÞ ¼ fht; ki j G � qðt; kÞ; k – ? and

for any k0–k such that G � qðt; k0Þ; k0 	 k holdsg:

That is, for any tuple t, the vector of annotation values k is as large
as possible. This is to avoid that redundant/subsumed answers oc-
cur in the answer set. The following can be shown:

Proposition 3.3. Given a graph G, ht; ki is an answer to q if and only
if 9y9K0:uðt; k;y;K0Þ is true in the closure of G and k is 	-maximal.9

Therefore, we may devise a similar query answering method as
for the crisp case by computing the closure, store it into a database
and then using SQL queries with the appropriate support of built-in
predicates and domain operations.
9 9�y9K0:uð�t; �k; �y; �k0Þ is true in the closure of G if and only if for some �t0; �k0 for all
triples in u �t; �k; �t0; �k0Þ

�
there is a triple in clðGÞ that subsumes it and the built-in

predicates are true, where an annotated triple s : k1 subsumes s : k2 if and only if
k2 	 k1.
3.7. Queries with aggregates

As next, we extend the query language by allowing so-called
aggregates to occur in a query. Essentially, aggregates may be like
the usual SQL aggregate functions such as SUM, AVG, MAX, MIN.
But, we have also domain specific aggregates such as � and �.

The following examples present some queries that can be ex-
pressed with the use of built-in queries and aggregates.

Example 3.6. Using a built-in aggregate we can pose a query that,
for each employee, retrieves his maximal time of employment for
any company in the following way:

qðx;maxLÞ  ðx;worksFor; yÞ : k;

maxL :¼ maxlengthðkÞ:
Here, the maxlength built-in predicate returns, given a set of tempo-
ral intervals, the maximal interval in the set.
Example 3.7. Suppose we are looking for employees that work for
some companies for a certain time period. We would like to know
the average length of their employment. Then such a query will be
expressed as

qðx; avgLÞ  ðx;worksFor; yÞ : k;

GroupedByðxÞ;
avgL :¼ AVG½lengthðkÞ�

Essentially, we group by the employee, compute for each employee
the time he worked for a company by means of the built-in function
length, and compute the average value for each group. That is,
g ¼ fht; t1i; . . . ; ht; tnig is a group of tuples with the same value t
for employee x, and value ti for y, where each length of employment
for ti is li (computed as lengthð�Þ), then the value of avgL for the
group G is ð

P
iliÞ=n.

Formally, let @ be an aggregate function with @ 2 fSUM; AVG;

MAX; MIN; COUNT;�;�g then a query with aggregates is of the
form

qðx;K;aÞ  9y9K0:uðx;K;y;K0Þ;
GroupedByðwÞ;
a :¼ @½f ðzÞ�

where �w are variables in �x, �y or �K and each variable in �x and �K oc-
curs in �w and any variable in �z occurs in y or �K0.

From a semantics point of view, we say that I is a model of (sat-
isfies) qð�t; �k; aÞ, denoted I � qð�t; �k; aÞ if and only if

a ¼ @ ½a1; . . . ; ak� where g ¼ �t; �k; �t01;
�k01

� �
; . . . ; �t; �k; �t0k;

�k0k
� �� �

;

is a group of k tuples with identical projection
on the variables in �w;uð�t; �k:; �t0r;

�k0rÞ is true inI

and ar ¼ f ð�tÞ where �t is the projection of h�t0r; �k0ri
on the variables �z:

Now, the notion of G � qð�t;K; aÞ is as usual: any model of G is a
model of qðt;K; aÞ.

Eventually, we further allow to order answers according to
some ordering functions.

Example 3.8. Consider Example 3.7. We additionally would like to
order the employee according to the average length of employ-
ment. Then such a query will be expressed as

qðx; avgLÞ  ðx;worksFor; yÞ : k;

GroupedByðxÞ;
avgL :¼ AVG½lengthðkÞ�;
OrderByðavgLÞ



10 We do not consider blank nodes in triple patterns since they can be considered as
variables.

11 For simplicity, we will omit from the presentation FILTERs such as comparison
operators (‘<’, ‘>’, ‘6’, ‘P’), data type conversion and string functions and refer the
reader to [11, Section 11.3] for details.
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Formally, a query with ordering is of the form

qðx;K; zÞ  9y9K0:u x;K;y;K0
� �

; OrderByðzÞ

or, in case grouping is allowed as well, it is of the form

qðx;K; z;aÞ  9y9K0:uðx;K;y;K0Þ;
GroupedByðwÞ;
a :¼ ½f ðzÞ�;
OrderByðzÞ

From a semantics point of view, the notion of G � qðt;K; z; aÞ is as
before, but the notion of answer set has to be enforced with the fact
that the answers are now ordered according to the assignment to
the variable z. Of course, we require that the set of values over
which z ranges can be ordered (like string, integers, reals). In case
the variable z is an annotation variable, the order is induced by 	.
In case, 	 is a partial order then we may use some linearisation
method for posets, such as [38]. Finally, note that the additional
of the SQL-like statement LIMIT(k) can be added straightforwardly.

4. AnQL: Annotated SPARQL

Our introduced query language so far allows for conjunctive
queries. Languages like SQL and SPARQL allow to pose more com-
plex queries including built-in predicates to filter solutions, ad-
vanced features such as negation or aggregates. In this section
we will present an extension of the SPARQL [11] query language,
called AnQL, that enables querying annotated graphs. We will be-
gin by presenting some preliminaries on SPARQL.

4.1. SPARQL

SPARQL [11] is the W3C recommended query language for RDF.
A SPARQL query is defined by a triple Q = (P,G,V), where p is a graph
pattern and the dataset G is an RDF graph and V is the result form.
We will restrict ourselves to SELECT queries in this work so it is
sufficient to consider the result form V as a list of variables.

Remark 4.1. Note that, for presentation purposes, we simplify the
notion of datasets by excluding named graphs and thus GRAPH
queries. Our definitions can be straightforwardly extended to
named graphs and we refer the reader to the SPARQL W3C
specification [11] for details.

We base our semantics of SPARQL on the semantics presented
by Pérez et al. [39], extending the multiset semantics to lists, which
are considered a multiset with ‘‘default’’ ordering. RDF triples, pos-
sibly with variables in subject, predicate or object positions, are
called triple patterns. In the basic case, graph patterns are sets of
triple patterns, also called Basic Graph Patterns (BGP). Let U, B, L
be defined as before and let V denote a set of variables, disjoint
from UBL. We further denote by var(P) the set of variables present
in a graph pattern p.

Definition 4.1 (Solution [11, Section 12.3.1]). Given a graph G and a
BGP p, a solution h for p over G is a mapping over a subset V of
var(P), i.e., h : V ! termðGÞ such that G � Ph where Ph represents
the triples obtained by replacing the variables in graph pattern p
according to h, and whre G � Ph means that any triple in Ph is
entailed by G. We call V the domain of h, denoted by dom(h). For
convenience, sometimes we will use the notation h ¼ fx1=

t1; . . . ; xn=tng to indicate that hðxiÞ ¼ ti, i.e., variable xi is assigned
to term ti.

Two mappings h1 and h2 are considered compatible if for all
x 2 domðh1Þ \ domðh2Þ; h1ðxÞ ¼ h2ðxÞ. We call the evaluation of a
BGP p over a graph G, denoted sPtG, the set of solutions.
Remark 4.2. Note that variables in the domain of h play the role of
distinguished variables in conjunctive queries and there are no
non-distinguished variables.

The notion of solution for BGPs is the same as the notion of an-
swers for conjunctive queries:

Proposition 4.1. Given a graph G and a BGP p, then the solutions of p
are the same as the answers of the query qðvarðPÞÞ  P (where var(P)
is the vector of variables in p), i.e., ansðG; qÞ ¼ sPtG.

We present the syntax of SPARQL based on [39] and present
graph patterns similarly. A triple pattern (s,p,o) is a graph pattern
where s,o 2 ULV and p 2 UV.10 Sets of triple patterns are called Basic
Graph Patterns (BGP). A generic graph pattern is defined in a recursive
manner: any BGP is a graph pattern; if p and P0 are graph patterns, R
is a filter expression (see [11]), then ðP AND P0Þ; ðP OPTIONAL P0Þ;
ðP UNION P0Þ; ðP FILTER RÞ are graph patterns. As noted in Remark
4.1 we do not consider GRAPH patterns.

Evaluations of more complex patterns including FILTERs, OP-
TIONAL patterns, AND patterns, UNION patterns, etc. are defined
by an algebra that is built on top of this basic graph pattern match-
ing (see [11,39]).

Definition 4.2 (SPARQL Relational Algebra). Let X1 and X2 be sets
of mappings:

X1 ffl X2 ¼ fh1 [ h2 j h1

2 X1; h2 2 X2; h1 and h2 compatibleg
X1 X2 ¼ fh j h 2 X1 or h 2 X2g
X1 �X2 ¼ fh1 2 X1 j forall h2 2 X2;

h1 and h2 not compatibleg
X1 X2 ¼ ðX1 ffl X2Þ ðX1 �X2Þ

Definition 4.3 (Evaluation [39, Definition 2.2]). Let s = (s,p,o) be a
triple pattern, P; P1; P2 graph patterns and G an RDF graph, then
the evaluation s � tG is recursively defined as follows:

sttG ¼ fh j domðhÞ ¼ varðPÞ and G � shg
sP1 AND P2tG ¼ sP1tG ffl sP2tG

sP1 UNION P2tG ¼ sP1tG sP2tG

sP1 OPTIONAL P2tG ¼ sP1tG sP2tG

sP FILTER RtG ¼ fh 2 sPtG j Rh is trueg

Let R be a FILTER11 expression, u; v 2 V [ UBL. The valuation of R
on a substitution h, written Rh, is true if:

(1) R ¼ BOUNDðvÞ with v 2 domðhÞ;
(2) R ¼ isBLANKðvÞ with v 2 domðhÞ and hðvÞ 2 B;
(3) R ¼ isIRIðvÞ with v 2 domðhÞ and hðvÞ 2 U;

(4) R ¼ isLITERALðvÞ with v 2 domðhÞ and hðvÞ 2 L;
(5) R ¼ ðu ¼ vÞ with u;v 2 domðhÞ [ UBL ^ hðuÞ ¼ hðvÞ;
(6) R ¼ ð:R1Þ with R1h is false;
(7) R ¼ ðR1 _ R2Þ with R1h is true or R2h is true;
(8) R ¼ ðR1 ^ R2Þ with R1h is true and R2h 9m.

Rh yields an error (denoted e), if:

(1) R ¼ isBLANKðvÞ, R ¼ isIRIðvÞ, or R ¼ isLITERALðvÞ and
v R domðhÞ [ T;
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(2) R ¼ ðu ¼ vÞ with u R domðhÞ [ T or v R domðhÞ [ T;
(3) R ¼ ð:R1Þ and R1h ¼ e;
(4) R ¼ ðR1 _ R2Þ and ðR1h – > and R2h – >Þ and ðR1h ¼ e or

R2h ¼ eÞ;
(5) R ¼ ðR1 ^ R2Þ and R1h ¼ e or R2h ¼ e.

Otherwise Rh is false.

In order to make the presented semantics compliant with the
SPARQL specification [11], we need to introduce an extension to
consider unsafe FILTERs (also presented in [40]):

Definition 4.4 (OPTIONAL with FILTER Evaluation). Let P1; P2 be
graph patterns R a FILTER expression. A mapping h is in
sP1 OPTIONAL ðP2 FILTER RÞtDS if and only if:


 h ¼ h1 [ h2, s.t. h1 2 sP1tG; h2 2 sP2tG are compatible and Rh is
true, or

 h 2 sP1tG and 8h2 2 sP2tG; h and h2 are not compatible, or


 h 2 sP1tG and 8h2 2 sP2tG s.t. h and h2 are compatible, and Rh3 is
false for h3 ¼ h [ h2.

4.2. AnQL

We are now ready to extend SPARQL for querying Annotated
RDF. We call the novel query language AnQL. For the rest of this
section we fix a specific annotation domain, D ¼ hL;�;�;?;>i, as
defined in Section 3.2.

4.2.1. Syntax
We take inspiration on the notion of conjunctive annotated

queries discussed in Section 3.6. A simple AnQL query is defined –
analogously to a SPARQL query – as a quadruple Q = (P,G,V,A) with
the differences that (1) G is an Annotated RDF graph; (2) we allow
annotated graph patterns as presented in Definition 4.5 and (3) A is
the set of annotation variables taken from an infinite set A (distinct
from V). We further denote by avar(P) the set of annotation vari-
ables present in a graph pattern p.

Definition 4.5 (Annotated graph pattern). Let k be an annotation
value from L or an annotation variable from A. We call k an
annotation label. Triple patterns in annotated AnQL are defined
the same way as in SPARQL. For a triple pattern s, we call s : k
an annotated triple pattern and sets of annotated triple patterns
are called Basic Annotated Patterns (BAP). A generic annotated
graph pattern is defined in a recursive manner: any BAP is an
annotated graph pattern; if p and P0 are annotated graph
patterns, R is a filter expression (see [11]), then
ðP AND P0Þ; ðP OPTIONAL P0Þ; ðP UNION P0Þ; ðP FILTER RÞ are
annotated graph patterns.
Example 4.1. Suppose we are looking for Ebay employees during
some time period and that optionally owned a car during that per-
iod. This query can be posed as follows:

SELECT ?p ?l ?c WHERE {
(?p type ebayEmp) : ?l

OPTIONAL{(?p hasCar ?c) : ?l}
}

Assuming our example dataset from Fig. 1 extended with the
following triples:
toivo; type; paypalEmpð Þ : ½2000;2009�
toivo; hasCar; peugeotð Þ : ½1999;2005�
toivo; hasCar; renaultð Þ : ½2005;2010�

we will get the following answers:

h1 ¼ f?p=toivo; ?l=½2002;2009�g
h2 ¼ f?p=toivo; ?l=½2002;2005�; ?c=peugeotg
h3 ¼ f?p=toivo; ?l=½2005;2009�; ?c=renaultg:

The first answer corresponds to the answer in which the
OPTIONAL pattern is not satisfied, so we get the annotation value
[2002,2009] that corresponds to the time toivo is an Ebay
employee. In the second and third answers, the OPTIONAL pattern
is also matched and, in this case, the annotation value is restricted
to the time when Toivo is employed by Paypal and has a car.

Note that – as we will see – this first query will return as a re-
sult for the annotation variable the periods where a car was owned.

Example 4.2. A slightly different query can be the employees of
Ebay during some time period and optionally owned a car at some
point during their stay. This query – which will rather return the
time periods of employment – can be written as follows:
SELECT ?p ?l ?c WHERE {
(?p type ebayEmp) : ?l

OPTIONAL {(?p hasCar ?c) : ?l2

FILTER (?l2 	 ?l)}
}

Using the input data from Example 4.1, we obtain the following
answers:

h1 ¼ f?p=toivo; ?l=½2002;2009�g
h2 ¼ f?p=toivo; ?l=½2002;2009�; ?c=renaultg

In this example the FILTER behaves as in SPARQL by removing from
the answer set the mappings that do not make the FILTER expres-
sion true.

This query also exposes the issue of unsafe filters, noted in [40]
and we presented the semantics to deal with this issue in Defini-
tion 4.4.

4.2.2. Semantics
We are thus ready to define the semantics of AnQL queries by

extending the notion of SPARQL BGP matching. As for the SPARQL
query language, we are going to define the notion of solutions for
BAP as the equivalent notion of answers set of annotated conjunc-
tive queries. Just as matching BGPs against RDF graphs is at the
core of SPARQL semantics, matching BAPs against Annotated RDF
graphs is the heart of the evaluation semantics of AnQL.

We extend the notion of substitution to include a substitution of
annotation variables in which we do not allow any assignment of
an annotation variable to ? (of the domain d). An annotation value
of ?, although it is a valid answer for any triple, does not provide
any additional information and thus is of minor interest. Further-
more this would contribute to increasing the number of answers
unnecessarily.

Definition 4.6 (BAP evaluation). Let p be a BAP and G an Annotated
RDF graph. We define evaluation sPtG as the list of substitutions
that are solutions of p, i.e., sPtG ¼ fh j G � hðPÞg, and where G � h(P)
means that any annotated triple in h(P) is entailed by G.

As for SPARQL, we have:



A. Zimmermann et al. / Web Semantics: Science, Services and Agents on the World Wide Web 11 (2012) 72–95 83
Proposition 4.2. Given an annotated graph G and a BAP p, the
solutions of p are the same as the answers of the annotated query
qðvarðPÞÞ  P (where var(P) is the vector of variables in p), i.e.,
ansðG; qÞ ¼ sPtG.

For the extension of the SPARQL relational algebra to the anno-
tated case we introduce – inspired by the definitions in [39] – def-
initions of compatibility and union of substitutions:

Definition 4.7 (�-compatibility). Two substitutions h1 and h2 are
�-compatible if and only if (i) h1 and h2 are compatible for all the
non-annotation variables, i.e., h1ðxÞ ¼ h2ðxÞ for any non-annotation
variable x 2 domðh1Þ \ domðh2Þ; and (ii) h1ðkÞ � h2ðkÞ– ? for any
annotation variable k 2 domðh1Þ \ domðh2Þ.
Definition 4.8 (�-union of substitutions). Given two �-compatible
substitutions h1 and h2, the �-union of h1 and h2, denoted h1 � h2, is
as h1 [ h2, with the exception that any annotation variable
k 2 domðh1Þ \ domðh2Þ is mapped to h1ðkÞ � h2ðkÞ.

We now present the notion of evaluation for generic AnQL
graph patterns. This consists of an extension of Definition 4.3:

Definition 4.9 (Evaluation, extends [39, Definition 2]). Let p be a
BAP, P1; P2 annotated graph patterns, G an annotated graph and R a
filter expression, then the evaluation s � tG, i.e., set of answers,12 is
recursively defined as:

sPt ¼ h j domðhÞ ¼ varðPÞ and G � hðPÞf g,
G

sP1 AND P2tG ¼ h1 � h2 j h1 2 sP1tG; h2 2 sP2tG; h1
�

and
h2 ��compatibleg,
sP1 UNION P2tG ¼ sP1tG [ sP2tG,
sP1 FILTER RtG ¼ h j h 2 sP1tG and Rh is true

� �
,

sP1 OPTIONAL P2½R�tG ¼ fh j and h meets one of the following
conditions:
1. h ¼ h1 � h2 if h1 2 sP1tG; h2 2 sP2tG; h1 and h2�-compatible,

and Rh is true;
2. h ¼ h1 2 sP1tG and 8h2 2 sP2tG such that h1 and h2 �-com-

patible, Rðh1 � h2Þ is true, and for all annotation variables
k 2 domðh1Þ \ domðh2Þ; h2ðkÞ � h1ðkÞ;

3. h ¼ h1 2 sP1tG and 8h2 2 sP2tG such that h1 and h2 �-com-
patible, Rðh1 � h2Þ is false.

Let R be a FILTER expression and x; y 2 A [ L, in addition to the
FILTER expressions presented in Definition 4.3 we further allow
the expressions presented next. The valuation of R on a substitu-
tion h, denoted Rh is true if:13

(9) R ¼ ðx 	 yÞ with x; y 2 domðhÞ [ L ^ hðxÞ 	 hðyÞ;

(10) R ¼ pðzÞ with pðzÞh ¼ true if and only if pðhðzÞÞ ¼ true,
where p is a built-in predicate.
Otherwise Rh is false.

In the FILTER expressions above, a built-in predicate p is any n-
ary predicate p, where p’s arguments may be variables (annotation
and non-annotation ones), domain values of d, values from UL, p
has a fixed interpretation and we assume that the evaluation of
the predicate can be decided in finite time. Annotation domains
may define their own built-in predicates that range over annota-
tion values as in the following query:
12 Strictly speaking, we consider sequences of answers – note that SPARQL allows
duplicates and imposes an order on solutions, cf. Section 4.2.3 below for more
discussion – but we stick with set notation representation here for illustration.
Whenever we mean ‘‘real’’ sets where duplicates are removed we write f. . . gDISTINCT .

13 We consider a simple evaluation of filter expressions where the ‘‘error’’ result is
ignored, see [11, Section 11.3] for details.
Example 4.3. Consider our example dataset from Fig. 1 and that
we want to know where chadHurley was working before 2005.
This query can be expressed in the following way:

SELECT ?city WHERE {
(chadHurley worksFor ?comp) : ?l

FILTER(before(?l, [2005]))

}

Remark 4.3. For practical convenience, we retain in s � tG only
‘‘domain maximal answers’’. That is, let us define h0 	 h if and only
if (i) h0 – h; (ii) domðhÞ ¼ domðh0Þ; (iii) hðxÞ ¼ h0ðxÞ for any non-
annotation variable x; and (iv) h0ðkÞ 	 hðkÞ for any annotation var-
iable k. Then, for any h 2 sPtG we remove any h0 2 sPtG such that
h0 	 h.
Remark 4.4. Please note that the cases for the evaluation of the
OPTIONAL are compliant with the SPARQL specification [11], cov-
ering the notion of unsafe FILTERs as presented in [40]. However,
there are some peculiarities inherent to the annotated case. More
specifically case 2 introduces the side effect that annotation vari-
ables that are compatible between the mappings may have differ-
ent values in the answer depending if the OPTIONAL is matched or
not. This is the behaviour demonstrated in Example 4.1.

The following proposition shows that we have a conservative
extension of SPARQL.

Proposition 4.3. Let Q ¼ ðP;G;VÞ be a SPARQL query over an RDF
graph G. Let G0 be obtained from G by annotating triples with >. Then
sPtG under SPARQL semantics is in one-to-one correspondence to sPtG0

under AnQL semantics such that for any h 2 sPtG there is a h0 2 sPtG0

with h and h0 coinciding on varðPÞ.
4.2.3. Further Extensions of AnQL
In this section we will present extensions of Definition 4.9 to

include variable assignments, aggregates and solution modifiers.
These are extensions similar to the ones presented in
Section 3.7.

Definition 4.10. Let p be an annotated graph pattern and G an
annotated graph, the evaluation of an ASSIGN statement is defined
as:

sP ASSIGN f ðzÞ AS ztG ¼ fh j h1 2 sPtG;

h ¼ h1½z=f ðh1ðzÞÞ�g

where

h½z=t� ¼
h [ fz=tg if z R domðhÞ
h n fz=t0gð Þ [ fz=tg otherwise:

�
Essentially, we assign to the variable z the value f ðh1ðzÞÞ, which

is the evaluation of the function f ðzÞ with respect to a substitution
h1 2 sPtG.
Example 4.4. Using a built-in function we can retrieve for each
employee the length of employment for any company:

SELECT ?x ?y ?z WHERE {
(?x worksFor ?y):?l

ASSIGN length(?l) AS ?z

}

Here, the length built-in predicate returns, given a set of
temporal intervals, the overall total length of the intervals.
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Remark 4.5. Note that this definition is more general than
‘‘SELECT expr AS ?var’’ project expressions in current SPARQL 1.1
[41] due to not requiring that the assigned variable be unbound.

We introduce the ORDERBY clause where the evaluation of a
sP ORDERBY ?xtG statement is defined as the ordering of the solu-
tions – for any h 2 sPtG – according to the values of h(?x). Ordering
for non-annotation variables follows the rules in [11, Section 9.1].

Similarly to ordering in the query answering setting, we require
that the set of values over which x ranges can be ordered and some
linearisation method for posets may be applied if necessary, such
as [38]. We can further extend the evaluation of AnQL queries with
aggregate functions

@ 2 fSUM; AVG; MAX; MIN; COUNT;�;�g

as follows:

Definition 4.11. The evaluation of a GROUPBY statement is
defined as14:

sP GROUPBYðwÞ @fðzÞ ASatG ¼fh j h1in sPtG;

h ¼ h1jw½ai=@ifiðhiðziÞÞ�gDISTINCT

where the variables ai R varðPÞ;zi 2 varðPÞ and none of the GROUP-

BY variables w are included in the aggregation function variables zi.
Here, we denote by hj

w
the restriction of variables in h to variables in

w. Using this notation, we can also straightforwardly introduce pro-
jection, i.e., sub-SELECTs as an algebraic operator in the language
covering another new feature of SPARQL 1.1:

sSELECT V fPgtG ¼ fh j h1 in sPtG; h ¼ h1jvg:
Remark 4.6. Please note that the aggregator functions have a
domain of definition and thus can only be applied to values of their
respective domain. For example, SUM and AVG can only be used on
numeric values, while MAX, MIN are applicable to any total order.
Resolution of type mismatches for aggregates is currently being
defined in SPARQL 1.1 [41] and we aim to follow those, as soon
as the language is stable. The COUNT aggregator can be used for
any finite set of values. The last two aggregation functions, namely
� and �, are defined by the annotation domain and thus can be
used on any annotation variable.
Remark 4.7. Please note that, unlike the current SPARQL 1.1 syn-
tax, assignment, solution modifiers (ORDER BY, LIMIT) and aggre-
gation are stand-alone operators in our language and do not
need to be tied to a sub-SELECT but can occur nested within any
pattern. This may be viewed as syntactic sugar allowing for more
concise writing than the current SPARQL 1.1 [41] draft.
Example 4.5. Suppose we want to know, for each employee, the
average length of their employments with different employers.
Then such a query will be expressed as:

SELECT ?x ?avgL WHERE {
(?x worksFor ?y) : ?l

GROUPBY(?x)

AVG(length(?l)) AS ?avgL

}

Essentially, we group by the employee, compute for each
employee the time he worked for a company by means of the built-
in function length, and compute the average value for each group.
14 In the expression, @fðzÞ AS a is a concise representation of n aggregations of the
form @i fiðziÞ AS ai .
That is, if g ¼ fht; t1i; . . . ; ht; tnig is a group of tuples with the same
value t for employee x, and value ti for y, where each length of
employment for ti is li (computed as lengthð�Þ), then the value of
avgL for the group G is

P
ili

� �
=n.
Proposition 4.4. Assuming the built-in predicates are computable in
finite time, the answer set of any AnQL is finite and can also be com-
puted in finite time.

This proposition can be demonstrated by induction over all the
constructs we allow in AnQL.

4.3. Constraints vs. filters

Please note that FILTERs do not act as constraints over the
query. Given the data from our dataset example and for the follow-
ing query:

SELECT ?l1 ?l2 WHERE {
(?p type youtubeEmp) : ?l1.

(steveChen type youtubeEmp) : ?l2

}

with an additional constraint that requires ?l1 to be ‘‘before’’ ?l2,
we could expect the answer

f?l1=½2005;2010�; ?l2=½2011;2011�g:

This answer matches the following triples of our dataset:

steveChen; type; youtubeEmpð Þ : ½2005;2011�
chadHurley; type; youtubeEmpð Þ : ½2005;2010�

and satisfies the proposed constraint. However, we require maxi-
mality of the annotation values in the answers, which in general,
do not exist in presence of constraints. For this reason, we do not al-
low general constraints.

4.4. Union of annotations

The SPARQL UNION operator may also introduce some discus-
sion when considering shared annotations between graph pat-
terns. Take for example the following query:

SELECT ?l WHERE {
{(chadHurley type youtubeEmp) : ?l1}
UNION

(chadHurley type paypalEmp) : ?l

}

and assume our dataset from Fig. 1 as input. Considering the
temporal domain, the intuitive meaning of the query is ‘‘retrieve
all time periods when chadHurley was an employee of Youtube
or PayPal’’. In the case of UNION patterns the two instances of
the variable ?l are treated as two different variables. If the intended
query would rather require treating both instances of the variable
?l as the same, for instance to retrieve the time periods when chad-
Hurley was an employee of either Youtube or PayPal but assuming
we may not have information for one of the patterns, the query
should rather look like:

SELECT ?l WHERE {
{(chadHurley type youtubeEmp):?l1}
UNION

{(chadHurley type paypalEmp):?l2}
ASSIGN ?l1 _ ?l2 as ?l

}



(a) (b)

(c) (d)

(e)
Fig. 2. Temporal relations.
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where _ represents the domain specific built-in predicate for union
of annotations.
5. On primitive domains and their combinations

In this section we discuss some practical issues related to (i) the
representation of the temporal domain (Section 5.1); (ii) the com-
bination of several domains into one compound domain (Sec-
tion 5.2); (iii) the integration of differently annotated triples or
non-annotated triples in the data or query (Section 5.3).

5.1. Temporal issues

Let us highlight some specific issues inherent to the temporal
domain. Considering queries using Allen’s temporal relations [42]
(before, after, overlaps, etc.) as allowed in [4], we can pose queries
like ‘‘find persons who were employees of PayPal before toivo’’.
This query raises some ambiguity when considering that persons
may have been employed by the same company at different dis-
joint intervals. We can model such situations – relying on sets of
temporal intervals modelling the temporal domain. Consider our
dataset triples from Fig. 1 extended with the following triple:

ðtoivo; type; paypalEmpÞ : f½1999;2004�; ½2006;2008�g:

Tappolet and Bernstein [4] consider this triple as two triples with
disjoint intervals as annotations. For the following query in their
language sSPARQL:

SELECT ?p WHERE {
[?s1,?e1] ?p type youtubeEmp.

[?s2,?e2] chadHurley type youtubeEmp.

[?s1,?e1] time:intervalBefore [?s2,?e2]

}

We would get chadHurley as an answer although toivo was
already working for PayPal when chadHurley started. This is
one possible interpretation of ‘‘before’’ over a set of intervals. In
AnQL we could add different domain specific built-in predicates,
representing different interpretations of ‘‘before’’. For instance,
we could define binary built-ins (i) beforeAny (?A1,?A2) which is
true if there exists any interval in annotation ?A1 before an interval
in ?A2, or, respectively, a different built-in beforeAll (?A1,?A2)
which is only true if all intervals in annotation ?A1 are before
any interval in ?A2. Using the latter, an AnQL query would look
as follows:

SELECT ?p WHERE {
(?p type youtubeEmp):?l1.

(toivo type youtubeEmp):?l2.

FILTER(beforeAll(?l1,?l2))

}

This latter query gives no result, which might comply with peo-
ple’s understanding of ‘‘before’’ in some cases, while we also have
the choice to adopt the behaviour of [4] by use of beforeAny instead.

More formally, if we consider an Allen relation r that holds be-
tween individual intervals, we can define a relation r over sets of
intervals in five different ways:

Definition 5.1. Let T1 and T2 be two non-empty sets of disjoint
intervals. We define the following relations:


 r99 ¼ fhT1; T2i j 9t1 2 T1; 9t2 2 T2 such that ht1; t2i 2 rg;

 r98 ¼ fhT1; T2i j 9t1 2 T1;8t2 2 T2 such that ht1; t2i 2 rg;

 r89 ¼ fhT1; T2i j 8t1 2 T1; 9t2 2 T2 such that ht1; t2i 2 rg;


 r98^89 ¼ r98 \ r89;

 r88 ¼ fhT1; T2i j 8t1 2 T1;8t2 2 T2 such that ht1; t2i 2 rg.

These relations can be compared with each others according to
set inclusion, as shown in Fig. 3. We illustrate them by the follow-
ing examples, taking the Allen relation before:

Example 5.1. Fig. 2is an example of time intervals that make each
of the relations introduced in Definition 5.1 true for the before Allen
relation.

It should be noticed that if one sticks to one choice of quantifier,
the resulting set of relations does not form a proper relation alge-
bra. Indeed, it is easy to see that, in the first 3 cases, the relations
are not disjoint. For instance, two sets of intervals can be involved
in both a before99 and an after99 relation. On the other hand, the last
4 cases are incomplete, that is, there are pairs of sets of intervals
that cannot be related with any of the r98;r89;r88 or r98^89.



Fig. 3. Hierarchy of relations.
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5.2. Extensions to multiple domains

Since annotations in our framework can range over different do-
mains in different applications, one may be interested in combin-
ing several annotation domains such as annotating triples with a
temporal term and a truth degree or degree of trust, etc. In [12],
we proposed an approach for easily combining multiple domains,
based on the pointwise extension of domain operators to a product
of domains. Here, we criticise this approach and propose a revised
approach that better fits the intuition.
5.2.1. Former approach and criticism
The approach described in [12] is the following. In general,

assuming having domains D1; . . . ;Dn, where Di ¼ hLi;�i;�i;?i;>ii,
we may build the domain D ¼ D1 � � � � � Dn ¼ hL;�;�;?;>i, where
L ¼ L1 � � � � � Ln;?¼ h?1; . . . ;?ni;> ¼ h>1; . . . ;>ni and the meet
and join operations � and � are extended pointwise to L, e.g.,
hk1; . . . ; kni � hk01; . . . ; kni0 ¼ hk1 � k01; . . . ; kn � k0ni. For instance,

ðSkypeCollab; sc; EbayCollabÞ : h½2009;2011�;0:3i

may indicate that during 2009–2011, the collaborators of Skype
were also considered collaborators of Ebay to degree 0.3 (here we
combine a temporal domain and a fuzzy domain). The interesting
point of our approach is that the rules of the deductive systems
need not be changed, nor the query answering mechanism (except
to provide the support to compute � and � accordingly).

The problem with this approach is that the annotations are
dealt with independently from each others. As a result, e.g., the
truth value 0:3 does not apply to the time range [2009,2011]. This
problem is made very apparent when one observes the unexpected
consequences of our � operator on such a combination:

ðSkypeCollab; sc; EbayCollabÞ : h½2005;2009�;1i
ðSkypeCollab; sc; EbayCollabÞ : h½2009;2011�; 0:3i

Applying the point-wise operation �, this leads to the conclusion:

ðSkypeCollab; sc;EbayCollabÞ : h½2005;2011�;1i:

This defies the intuition that, between 2005 and 2009, Skype collab-
orators where also Ebay employees (collaborate to degree 1), but
from 2009 to 2011 Skype collaborators were Ebay collaborators to
the degree 0.3. The pointwise aggregation does not follow this intu-
ition and levels up everything. In the example above, we would like
to say that the fuzzy value itself has a duration, so that the temporal
interval corresponds more to an annotation of a quadruple. Note
that this problem is not specific to the combination of time and
fuzziness. We observe a similar issue when combining provenance,
for instance, with other domains:
skypeEmp; sc; ebayEmpð Þ : h½2005;2009�;wikipediai
ðskypeEmp; sc; ebayEmpÞ : h½1958;2012�; wrongi

Using a point-wise aggregation method, the result would be:

ðskypeEmp; sc; ebayEmpÞ : h½1958;2012�;
wikipedia _ wrongi

which entails:

ðskypeEmp; sc; ebayEmpÞ : h½1958;2012�;wikipediai:

Again, the problem is that provenance here does not define the
provenance of the temporal annotation and the temporal annota-
tion is not local to a certain provenance.

In order to match the intuition, we devise a systematic con-
struction that defines a new compound domain out of two existing
domains.

5.2.2. Improved formalisation
In this section, we propose a generic construction that builds an

annotation domain by combining two predefined domains in a sys-
tematic way. To achieve this, we will assume the existence of two
annotation domains D1 ¼ hL1;�1;�1;?1;>1i and D2 ¼ hL2;�2;

�2;?2;>2iwhich will be instantiated in examples with the tempo-
ral domain for D1 (abbreviated Dt) and either the fuzzy domain (Df)
or the provenance domain (Dp) for D2. We denote the temporal and
fuzzy combination time + fuzzy, and the temporal and provenance
combination time + provenance.

5.2.2.1. Intuition and desired properties. In our former approach, we
remarked that some information is lost in the join operation. Con-
sidering time + fuzzy, we see that the join should represent tempo-
rary changes in the degree of truth of the triple. Yet, it is clear that
representing such changes cannot be done with a simple pair
(intervals,value). So, as a first extension of our previous naïve solu-
tion, we suggest using sets of pairs of primitive annotations, as
exemplified below

ðSkypeCollab; sc;EbayCollabÞ : fh½2005;2009�;1i;
h½2009;2011�;0:3ig

Starting from this, we devise an annotation domain that correctly
matches the intuitive meaning of the compound annotations. The
annotated triple above can be interpreted as follows: for each pair
in the annotation, for each time point in the temporal value of the
pair, the triple holds to at least the degree given by the fuzzy value
of the pair. The time + provenance combination is interpreted anal-
ogously, except that the triple holds (at least) in the context given
by the provenance value of the pair.

This interpretation of the compound annotations implies that
multiple sets of pairs can convey the exact same information. For
example, the following time + fuzzy annotated triples are
equivalent:

SkypeCollab; sc;EbayCollabð Þ : fh½2005;2009�;1ig
ðSkypeCollab; sc;EbayCollabÞ : fh½2005;2009�;0:3i;

h½2005;2009�;1ig

From this observation, we postulate the following desired property:

Property 1. For all x 2 L1; y; y0 2 L2 and for all qdf triples s,
s : fhx; yi; hx; y0ig is semantically equivalent to s : fhx; y�2y0ig.

Consequently, it is always possible to assign a unique element
y 2 L2 to a given element of L1. Thus, an arbitrary set of pairs in
L1 � L2 is equivalently representable as a partial mapping from L1

to L2. Additionally, given a certain time interval, we can easily com-
pute the maximum known degree to which a time + fuzzy anno-
tated triple holds. For instance, with the annotation



15 Note that as D2 is an annotation domain, the lub operation is well defined.
16 Particularly, we note that there can still be an infinite set of finite representations

of the same compound annotation.
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fh½2005;2009�;0:3i; h½2008;2011�;1ig, we can assign the degree 1
to any subset of [2008,2011]; the degree 0.3 to any subset of
[2005,2009] which is not contained in [2008,2009]; the degree 0
to any other temporal value.

This remark justifies that we can consider a compound annota-
tion A as a total function from L1 and L2. From now on, whenever A
is a finite set of pairs, we will denote by A the function that maps
elements of L1 to an element of L2 that, informally, minimally sat-
isfies the constraints imposed by the pairs in A. This is formalised
below. For instance, if A ¼ fh½2005;2009�;0:3i; h½2008; 2011�;1ig,
then:

AðxÞ ¼
1 if x # ½2008;2011�
0:3 if x # ½2005;2009� and x � ½2008;2009�
0 otherwise

8><>:
Whereas in this example, for the time + fuzzy domain the value

of A for a particular interval seems to follow quite intuitively, let us
next turn to the less obvious combination of time + provenance.
Here, we postulate that the following triples

s : f h½2005;2009�;wikipediai;
h½2008;2011�;wrongig

s : f h½2005;2007�;wikipediai;
h½2007;2009�;wikipediai;
h½2008;2011�;wrongig

s : f h½2005;2008�;wikipediai;
h½2008;2009�;wikipedia _ wrongi;
h½2009;2011�;wrongig;

represent in fact equivalent annotations. Let us check the intuition
behind this on a particular interval, [2005,2009], which for the
first triple has unambigously associated the provenance value
wikipedia. Considering the second annotated triple, we observe
that the provenance wikipedia can likewise be associated with
the interval [2005,2009] because this provenance is associated
with two intervals that – when joined – cover the time span
[2005,2009]. In the case of the last annotated triple, the prove-
nance wikipedia_wrong means that the triple holds in wikipe-

dia as well as in wrong (notice that x_y means that the assertion
holds in x and in y likewise, see Section 3.4.3 for details). Intui-
tively, we expect for the last triple that the provenance associated
with the joined interval [2005,2009] is obtained from applying the
meet operator over the respective provenance annotations wiki-

pedia (for the partial interval [2005,2008]) and wikipe-

dia_wrong (for the partial interval [2008,2009]), i.e.,
(wikipedia_wrong)^ wikipedia which – again – is equivalent
to wikipedia in the provenance domain. Besides, considering
now the interval [2005,2011], the triple is true in either wikipe-
dia.org or wrong, which is modelled as (wikipedia^wrong) in
the provenance domain. Let us cast this intuition into another
property we want to ensure on the function A:

Property 2. Given a set of annotation pairs A, for all x0 2 L1 whenever
9J # A with x0	1a1hx;yi2Jx, we have Aðx0Þ
2b2hx;yi2Jy.

Our goal in what follows is to characterise the set of functions
associated with a finite set of pairs, that is fA j A # L1 � L2g, in a
manner such that Property 1 and Property 2 are satisfied.

5.2.2.2. Formalisation. As mentioned before, a compound annota-
tion can be seen as a function that maps values of the first domain
to values of the second domain. In order to get the desired proper-
ties above established, we restrict this function to a particular type
of functions that we call quasihomomorphism because it closely
resembles a semiring homomorphism.
Definition 5.2 (Quasihomomorphism). Let f be a function from
D1 ¼ hL1;�1;�1;?1;>1i to D2 ¼ hL2;�2;�2;?2;>2i. f is a quasiho-
momorphism of domains if and only if for all x; y 2 L1: (i)
f ðx�1yÞ
2f ðxÞ�2f ðyÞ and (ii) f ðx�1yÞ
2f ðxÞ�2f ðyÞ.

We now use quasihomomorphisms to define – on an abstract
level – a compound domain of annotations.

Definition 5.3 (Compound annotation domain). Given two primi-
tive annotation domains D1 and D2, the compound annotation
domain of D1 and D2 is the tuple hL12;�12;�12;?12;>12i defined as
follows:


 L12 is the set of quasihomomorphisms from D1 to D2;

 ?12 is the function defined such that for all x 2 L1;?12ðxÞ ¼ ?2;


 >12 is the function defined such that for all x 2 L1;>12ðxÞ ¼ >2;

 for all k;l 2 L12, for all x 2 L1; ðk�12lÞðxÞ ¼ kðxÞ�2lðxÞ;

 for all k;l 2 L12, for all x 2 L1; ðk�12lÞðxÞ ¼ kðxÞ�2lðxÞ;

This definition yields again a valid RDF annotation domain, as
stated in the following proposition:

Proposition 5.1. hL12;�12;�12;?12;>12i is an idempotent, commu-
tative semiring and �12 is >12-annihilating.
Remark 5.1. It can be noticed that, a priori, the order of the prim-
itive annotations matters to the definition of compound
annotations.

Quasihomomorphisms are abstract values that may not be rep-
resentable syntactially. By analogy with XML datatypes [43], we
can say that they represent the value space of the compound do-
main. In the following, we want to propose a finite representation
of some of these functions. Indeed, as we have seen in the exam-
ples above, we intend to represent compound annotations just as
finite sets of pairs of primitive annotations. Thus, continuing the
analogy, the lexical space is merely containing finite sets of pairs
of primitive annotation values. To complete the definition, we just
have to define a mapping from such finite representation to a cor-
responding quasihomomorphism. That is, we have to define the
lexical-to-value mapping.

Consider again the (primitive) domains D1 and D2 and let
A # L1 � L2 be a finite set of pairs of primitive annotations. We de-
fine the function A : D1 ! D2 as follows15:

8z 2 L1;AðzÞ ¼ lub b2
hx;yi2J

y j J # A and z	1 a1
hx;yi2J

x

( )
:

Theorem 5.2. If A # L1 � L2 is a finite set of pairs of primitive
annotations, then A is a quasihomomorphism.

The proof is mostly a sequence of manipulation of notations
with little subtlety, so we refer the reader to A for details.

Now, we know that we can translate an arbitrary finite set of
pairs of primitive annotations into a compound annotation. How-
ever, using arbitrary sets of pairs is problematic in practice for
two reasons: (1) several sets of pairs have equivalent meaning,16

that is, the function induced by the two sets are identical; (2) the ap-
proach does neither gives a programmatic way of computing the
operations (�12;�12) on compound annotations, nor gives us a tool
to finitely represent the results of these operations.

Thus, we next turn towards how to choose a canonical finite
representative for a finite set annotation pairs. To this end, we need



88 A. Zimmermann et al. / Web Semantics: Science, Services and Agents on the World Wide Web 11 (2012) 72–95
a normalising function N : 2L1�L2 ! 2L1�L2 such that for all
A;A0 # L1 � L2;A ¼ A0 if and only if NðAÞ ¼ NðA0Þ. This will in turn
also allow us to define the operations �12 and �12 over the set of
normalised annotations.

5.2.2.3. Normalisation. We propose a normalisation algorithm
based on two main operations:

Saturate: informally, the saturate function increases the size of a
set of pairs of annotations by adding any redundant
pairs that ‘‘result from the application of � and � to val-
ues existing in the initial pairs’’;

Reduce: takes the output of the saturation step and removes
‘‘subsumed’’ pairs.

In particular, the Saturate algorithm is adding pairs of annota-
tions to the input such that in the end, all primitive annotations
that can be produced by the use of existing values and operators
� and � appear in the output. The algorithm for Saturate, Reduce

and Normalise are given in Algorithms 1–3, respectively.
If the operations �1 and �2 are idempotent, Algorithm 1 en-

sures that given a value x 2 L1 that is the result of using operators
�1 and �1 on any number of primitive annotations of L1 appearing
in A, then there exists y 2 L2 such that hx; yi exists in the output of
Saturate. Similarly, given y 2 L2 that can be obtained from combina-
tions of values of L2 appearing in A and operators �2 and �2, then
there exists x 2 L2 such that hx; yi exists in the output of Saturate.

Algorithm 1. Saturate (A)

Input: A # L1 � L2 finite
Output: Saturate(A)

R :¼ ;;
forall X # 2A do

R :¼ R [ fha1
J2X

b1
hx;yi2J

x;b2
J2X

a2
hx;yi2J

yig;

R :¼ R [ fhb1
J2X

a1
hx;yi2J

x;a2
J2X

b2
hx;yi2J

yig;

return R;
Example 5.2. Consider the following time + fuzzy annotation:

fh½2000;2005�;0:7i; h½2002;2008�;0:5ig

Application of the function saturate gives the following result:

fh½2000;2005�;0:7i; h½2002;2008�;0:5i;
h½2000;2008�;0:35i; h½2002;2005�; 0:7i;
h½2000;2005�;0:49i; h½2002;2005�; 0:49ig:

Now we notice that this can introduce redundant information,
which should be eliminated. This is the goal of the function Reduce

which is defined by Algorithm 2.

Algorithm 2: Reduce(A)

Input: A # L1 � L2 finite and saturated
Output: Reduce(A)

while 9hx; yi 2 A; 9hx0; y0i 2 A n fhx; yig such that
x	1x0 and y	2y0 do

R :¼ R n fhx; yig;
while 9hx; yi 2 A such that x ¼ ?1 or y ¼ ?2 do

R :¼ R n fhx; yig;
return R;
Example 5.3. Considering Example 5.2 the output of the Saturate

algorithm above, the Reduce function gives the following result:

fh½2000;2005�;0:7i; h½2002;2008�;0:5i;
h½2000;2008�;0:35ig

Algorithm 3. Normalise(A)

Input: A # L1 � L2 finite
Output: Normalise(A)

return Reduce(Saturate(A));
Example 5.4. Consider the following time + provenance
annotation:

fh½1998;2006�;wikipediai; h½2001;2011�;wrongig;

which normalises to:

fh½1998;2011�; wikipedia ^ wrongi;
h½1998;2006�; wikipediai; h½2001;2011�;wrongi;
h½2001;2006�; wikipedia _ wrongig

Note that the pair h½2001;2006�;wikipedia _ wrongi is introduced
by Line 6 of Algorithm 1 and is not discarded during the reduction
phase.

The following property can be shown:

Proposition 5.3. If D1 ¼ hL1;�1;�1;?1;>1i is a lattice then, for all
A # L1 � L2 finite, A ¼ NormaliseðAÞ.

Notice that we must impose that the first primitive domain of
annotation is a lattice for the normalisation to work, that is, we
need that z	1x and z	1y iff z	1x�1y. Details of the proof can be
found in A.

The following theorem shows that the normalisation is actually
unique up to equivalence of the corresponding functions.

Theorem 5.4. If D1 ¼ hL1;�1;�1;?1;>1i is a lattice then, for all
A;B # L1 � L2 finite then A ¼ B() NormaliseðAÞ ¼ NormaliseðBÞ.

Again, to improve readability, we put the proof in A.

5.2.2.4. Operations on normalised annotations. We can now present
the operations �12 and �12 on normalised finite sets of pairs.


 A�12B ¼ NormaliseðA [ BÞ;


 A�12B ¼ Normaliseðfhx�1x0; y�2y0i j hx; yi; hx0; y0i 2 A� BgÞ.

Finally, with the proposed representation and operations, we
devised a systematic approach to compute combination of do-
mains using existing primitive domains. This implies that an
implementation would not need to include operators that are spe-
cific to a given combination, as long as programmatic modules ex-
ist for the primitive annotation domains.

5.2.3. Discussion
Our definition of a compound annotation domain is, to the best

of our knowledge, a novelty in settings involving annotations: pre-
vious work on Annotated RDF [15,12], annotated logic programmes
[16] or annotated database relations [17] have not addressed this
issue. We present in this section some considerations with respect
to the chosen approach.
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1. The normalisation algorithm is not optimised and would prove
inefficient if directly implemented ‘‘as is’’. In this part, we have
provided a working solution for normalising compound annota-
tion as a mere proof of existence of such a solution. By observ-
ing the examples that we provide for the time + fuzzy domain, it
seems that the cost of normalising can be reduced significantly
with appropriate strategies.

2. As indicated by Theorem 5.4, we only ensure that the normali-
sation is feasible for a combination of annotation domains
where at least one is a lattice. Whether a normalisation function
exists in the more general case of two commutative, idempo-
tent, >-annihilating semirings is an open question.

3. The method we provide defines a new domain of annotation in
function of existing domains, such that it is possible to reason
and to query triples annotated with pairs of values. This does
not mean that it is possible to reason with a combination of tri-
ples annotated with the values of the first domain, and triples
annotated with values of the second domain. For instance, rea-
soning with a combination of temporally annotated triples and
fuzzy annotated triples does not boil down to reasoning over
time + fuzzy-annotated triples. The next section discusses this
issues and how non-annotated triples can be combined with
annotated triples.

5.3. Integrating differently annotated triples in data and queries

While our approach conservatively extends RDFS, we would
like to be able to seamlessly reason with and query together
annotated triples and non-annotated triples. Since non-annotated
triples can be seen as triples annotated with boolean values, we
can generalise this issue to reasoning and querying graphs anno-
tated with distinct domains. For instinct, let us assume that a
dataset provides temporally annotated triples, another one con-
tains fuzzy-annotated triples and yet another is a standard RDF
dataset. We want to provide a uniform treatment of all these
datasets and even handle the merge of differently annotated tri-
ples. Moreover, we expect to allow multiple annotation domains
in AnQL queries.

5.3.1. Multiple annotation domains in the data
Consider the following example:

chadHurley; type;googleEmpð Þ : ½2006;2010�
chadHurley; type;googleEmpð Þ : 0:7
googleEmp; sc;Personð Þ : 0:97

We can assume that the subclass relation has been determined by
ontology matching algorithms, which typically return confidence
measures in the form of a number between 0 and 1. Consider as
well the following example queries:

Example 5.5.

SELECT ?a WHERE {
(chadHurley type googleEmp):?a

}

Example 5.6.
SELECT ?a WHERE {
(chadHurley type Person):?a

}

We propose two alternative approaches to deal with multiple
annotation domains. The first one simply segregates the domains
of annotations, such that no inferences are made across differently
annotated triples. The second one takes advantage of the com-
pound domain approach defined in Section 5.2.

5.3.2. Segregation of domains
With this approach, distinct domains are not combined during

reasoning, such that the first annotated triple together with the
third one would not produce new results. The query from Example
5.5 would have the following answers: f?a=½2006;2010�g; f?a=0:7g.
The query from Example 5.6 would have the answer f?a=0:679g
(under product t-norm �).

The main advantage is that query answering is kept very
straightforward. Moreover, it is possible to combine different
annotation domains within the query by simply joining results
from the segregated datasets. The drawback is that reasoning
would not complement non-annotated knowledge with annotated
one and vice versa.

5.3.3. Using compound domains
The principle of this approach is to assume that two primitive

annotation values from distinct domains actually represent a pair
with an implicit default value for the second element. The default
value can be domain dependent or generic, such as using > or ?
systematically. An example of domain specific default is found in
[2] where the value ½�1;Now� is used to fill the missing annota-
tions in standard, non-annotated RDF. It can be noticed that using
? as a default would boil down to having segregated datasets, as in
the previous approach. The use of > has the advantage of being
generic and allows one to combine knowledge from differently
annotated sources in inferences. So, the query in Example 5.5 has
answer f?a=fh½2006;2010�;1i; h½�1;þ1�; 0:7igg, while Example
5.6 has the answer f?a=fh½2006;2010�;0:97i; h½�1;þ1�;0:679igg.

The main advantage is the possibility to infer new statements
by combining various annotated or non-annotated triples. The
drawbacks are that (i) our combination approach is, so far, limited
to the case where one domain is a lattice; (ii) if triples with a new
annotation domain are added, then it adds one dimension to the
answers, which obliges to recompute existing answers; (iii) the
combination of more than two domains may be particularly com-
plex and possibly non-commutative.

5.3.4. Multiple annotation domains in the query
When dealing with multiple domains in the query, we face a

similar choice as in the data, but we are also offered the option
to replace the default value with a variable. If segregation of do-
mains has been chosen, then distinct domains in the query are only
used to match the corresponding data, but it is still possible to
combine the results from differently annotated sources. For
instance:

SELECT ?e ?c ?t ?f WHERE {
{(?c sc ebayEmp):?f}

UNION

{(?e type ?c):?t.}
FILTER{?t 	t [2005,2011] OR ?f 	f 0.5}

This query can be executed even on a dataset that does not in-
clude fuzzy value. The fuzzy-annotated triple pattern can be sim-
ply ignored and the temporally annotated pattern evaluated. As
mentioned in Definition 4.9, the comparators 	t and	f return false
whenever at least one of the operands is an unbound variable, so
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that the FILTER is not influenced by a missing type of annotations.
In the case of the second approach using compound domains,

the choices are as follow:

1. add a single fresh annotation variable for all triples in the query
that are missing a value for an annotation domain; or

2. add a different fresh annotation variable for each triple in the
query; or

3. add a constant annotation such as > to all missing annotation
values.

In later discussions, we will use the meta-variable HD to repre-
sent the default value of domain d assigned to annotations in the
query triples.

Example 5.7. For instance, if we again consider the query
(excluding the annotation variables) and input data from Example
4.1, the query would look like:

SELECT ?p ?c WHERE {
(?p type :ebayEmp)

OPTIONAL{(?p :hasCar ?c)}
}

Now, given the above three approaches for transforming this
query we would get the following answers:
Approach 1
 ?p=toivo
 -

?p=toivo
 ?c=peugeot

?p=toivo
 ?c=renault
Approach 2
 ?p=toivo
 ?c=peugeot

?p=toivo
 ?c=renault
Approach 3
 ;
17 http://www.swi-prolog.org/web/ClioPatria/.
5.3.5. Querying multi-dimensional domains
Similarly to the discussion in the previous subsection, we can

encounter mismatches between the Annotated RDF dataset and
the AnQL query. In case the AnQL query contains only variables
for the annotations, the query can be answered on any Annotated
RDF dataset. From a user perspective, the expected answers may
differ from the actual annotation domain in the dataset, e.g., the
user may be expecting temporal intervals in the answers when
the answers actually contain a fuzzy value. For this reason some
built-in predicates to determine the type of annotation should be
introduced, like isTEMPORAL, isFUZZY, etc.

If the AnQL query contains annotation values and the Annotated
RDF dataset contains annotations from a different domain, one op-
tion is to not provide any answers. Alternatively, we can consider
combining the domain of the query with the domain of the anno-
tation into a multi-dimensional domain, as illustrated in the next
example.

Example 5.8. Assuming the following input data:

ðchadHurley; type;youtubeEmpÞ : chad

When performing the following query:

SELECT ?p ?c WHERE {
(?p type ?c):[2009, 2010]

}

we would interpret the data to the form:

ðchadhurley; type;youtubeEmpÞ : hchad;Xtemporali
while the query would be interpreted as:

SELECT ?p ?c WHERE {
(?p type ?c):hHprovenance, [2009, 2010]i

}

where Xtemporal and Hprovenance are annotations corresponding to the
default values of their respective domains, as discussed in Section
5.3.4. The semantics of combining different domains into one
multi-dimensional domain has been discussed in Section 5.2.
6. Implementation notes

Our prototype implementation is split into two distinct mod-
ules: one that implements the Annotated RDFS inferencing and
the second module is an implementation of the AnQL query lan-
guage that relies on the first module to retrieve the data. Our pro-
totype implementation is based on SWI-Prolog’s Semantic Web
library [44] and we present the architecture of the implementation
in Fig. 4.

Our Annotated RDFS module consists of a bottom-up reasoner
used to calculate the closure of a given RDF dataset (1). The vari-
able components comprise (2) the specification of the given anno-
tation domain; and (3) the ruleset describing the inference rules
and the way the annotation values should be propagated. For (1)
we do not suggest a special RDF serialisation for temporal triples
but rely on existing proposals using reification [2]. Annotation do-
mains in (2) are to be specified by appropriate lattice operations
and describing default annotations for non-annotated triples.

The rules in (3) are specified using a high-level language to
specify domain independent rules that abstracts from peculiarities
of the reification syntax. For example the following rule provides
subclass inference in the RDFS ruleset:

rdf(O, rdf:type, C2, V) <==
rdf(O, rdf:type, C1, V1),

rdf(C1, rdfs:subClassOf, C2, V2),

infimum(V1, V2, V).

(2) and (3) are independent of each other: it is possible to com-
bine arbitrary rulesets and domains (see above).

The AnQL module also implemented in Prolog relies on the
SPARQL implementation provided by the ClioPatria Semantic
Web Server.17 For the AnQL implementation, the domain specifica-
tion needs to be extended with the grammar rules to parse an anno-
tation value and any built-in functions specific to the domain.

More information and downloads of the prototype implementa-
tion can be found at http://anql.deri.org/.

http://anql.deri.org/
http://www.swi-prolog.org/web/ClioPatria/
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6.1. Implementation of specific domains

For example, for the fuzzy domain the default value is consid-
ered to be 1 and the � and � operations are, respectively, the
min and max operations. The AnQL grammar rules consist simply
of calling the parser predicate that parses a decimal value.

As for the temporal domain, we are representing triple annota-
tions as ordered list of disjoint time intervals. This implies some
additional care in the construction of the � and � operations. For
the representation of �1 and þ1 we are using the inf and sup

Prolog atoms, respectively. Concrete time points are represented
as integers and we use a standard constraint solver over finite do-
mains (CLPFD) in the � and � operations. The default value for
non-annotated triples is [inf,sup]. The � operation is imple-
mented as the recursive intersection of all the elements of the
annotation values, i.e., temporal intervals. The � operation is han-
dled by constructing CLPFD expressions that evaluate the union of
all the temporal intervals. Again, the AnQL grammar rules take care
of adapting the parser to the specific domain and we have defined
the domain built-in operations described in Section 5.1.

6.2. Use-case example: sensor data

As a use-case for Annotated RDF and AnQL, we present the sce-
nario of exposing sensor readings as RDF data. Representing sensor
data as RDF, more specifically as Annotated RDF, enables not only a
precise and correct representation for sensor data but also the pos-
sibility of interlinking the data with other existing sources on the
Web.

Consider the scenario in which each person is assigned a sensor
tag (mode) to use in a building that is equipped with several sensor
base-stations (that will be responsible for recording the presence
of tags). Whenever sensor modes are detected in the proximity
of a base-station, sensor readings are created. Normally this sensor
reading will contain the time of the reading, the identifier of the
base-station and the tag. For our example we used datasets pub-
licly available, that represent movements of persons in a confer-
ence. For our test purposes we used a subset of the dataset
available at http://people.openpcd.org/meri/openbeacon/sputnik/
data/24c3/ with a 1 h time frame.

For the specific Annotated RDF domain, we can take as starting
point the temporal domain, where each triple is annotated with a
temporal validity. Conceptually, a temporally annotated triple
would look like the following:

ðtag4302 locatedIn room103Þ :

½2010-07-28T16 : 52 : 00Z;2010-07-28T14 : 59 : 00Z�

stating that the tag represented by the URI tag4302 was in the
room identified by room103 during the specified time period. For
the URIs we can define a domain vocabulary or rely on an already
existing vocabulary.

Since a sensor mode can, at any time, be discovered by several
base-stations the issue arrises of how to detect which base-station
it is closer to. This can be viewed as a data cleanup process that can
be achieved as a post-processing step over the stored data. In our
specific experiment, the sensor readings were of the following
format:

2010-10-11 14:57:51 10.254.2.15 4302 83

2010-10-11 14:57:51 10.254.3.1 4302 83

2010-10-11 14:57:51 10.254.2.6 4302 83

where the columns represent respectively: (1) timestamp

when the record was created; (2) ip address of the base station;
(3) tag identifier and; (4) ssi. The ssi represents the signal
strength of the response from the tag. Each base station registers
each tag at the same timestamp with different signal strengths,
which can be interpreted as the lower the signal strength value
is, the closer the tag is to the base station. This value can then
be used in the data cleanup process to discard the base station
records in which the tag is furthest from.

In the data cleanup process we start by grouping all the ips

(with the lowest ssi) for a given timestamp and tag. After this
step we can merge all records that share the tag and ip and have
consecutive timestamp into a single interval.
6.3. Concrete syntax for Annotated RDFS

In this paper, we stay agnostic with respect to the concrete
syntax used to serialise annotated graphs. However, we present
here a suggested syntax based on N-Quads [45]. Other possibil-
ities, for instance using named graphs, could be exploited as
well, but we believe the following proposal is more
straightforward.

We first present how primitive domains are represented, then
extend it to combination of domains. In the format N-Quads, the
data structure is organised in quadruples:

< subject >< predicate >< object >< context > :

where <subject> <predicate> <object>. form a valid N-Triple
[46] statement. The element <context> is an optional context va-
lue that belongs to the set UBL. In the case of Annotated RDFS,
<context> will be a typed literal that denotes the annotated value.
The datatype of the literal represents the domain of annotation.
Consequently, in order to define a concrete representation of an
annotation domain, one must at least define its associated datatype,
which has three components [47]:


 a lexical space, that is, a set of Unicode character strings (e.g.,
the set of finite sequences of digits);

 a value space, that is, the set of values represented by the anno-

tations (e.g., the set of time points);

 a lexical-to-value mapping which maps each member of the

lexical space to a value in the value space.

In addition to these components, which are mandated by the
XML Schema Datatypes specification, the specification of a con-
crete domain must provide the operations � and �, from which
the partial order 	, the upper and lower bounds are also derived.
We give as an example the specification of the fuzzy domain. The
lexical space, value space and lexical-to-value mapping are the
same as the XSD datatype xsd:decimal. However, it is not possible
to simply reuse this datatype, as it does not specify which opera-
tions should be used. Since several t-norms can be used as an �
operation, it is necessary to mint distinct URIs for distinct fuzzy
semi-rings. Let us call ex:fuzzy-min the fuzzy domain with the
min t-norm. A fuzzy-annotated triple would look as follows:18

<ex> <type> <EbayEmp> "0.3"̂ ^ex:fuzzy-min.

With this approach, our framework is made compatible with
RDF stores that understand N-Quads. A typical store would simply
consider distinct annotation values as different contexts. However,
a store implementing Annotated RDFS would be able to easily rec-
ognise the annotation domains of the data and load an appropriate
reasoning engine dynamically. The reasoner could simply reason
separately with different annotation domains.

http://people.openpcd.org/meri/openbeacon/sputnik/data/24c3/
http://people.openpcd.org/meri/openbeacon/sputnik/data/24c3/
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As compound domains are annotation domains as well, it is
possible to use the same approach by providing a distinct lexical/
value space for each pair of domains. As an example, one could
imagine the following triple occurring in an N-Quads document19:

<s> <p> <o> "(0.3,[2001,2003])"̂ ^:fuzzy-time.

Yet, the purpose of Section 5.2 was to define the combination of
domains in function of the primitive domains. Thus, a smart imple-
mentation of Annotated RDFS should be able to deal with arbitrary
combinations dynamically when they occur in the data. However,
this means that there should be a generic syntax for writing com-
pound annotations. To that extent, we propose to extend the N-
Quads syntax to a generic tuple syntax where each element of
the tuple is in UBL. The example above would then look as follows:

<s> <p> <o> "0.3"̂ ^:fuzzy "[2001,2003]"̂ :̂time.

Few RDF stores are able to parse arbitrary tuples with the nota-
ble exception of YARS [48].

7. Conclusion

In this paper we have presented a generalised RDF annotation
framework that conservatively extends the RDFS semantics, along
with an extension of the SPARQL query language to query anno-
tated data. The framework presented here is generic enough to
cover other proposals for RDF annotations and their query lan-
guages. Our approach extends the classical case of RDFS reasoning
with features of different annotation domains, such as temporality,
fuzzyness, trust, etc. and presents a uniform and programatic way
to combine any annotation domains.

Furthermore, we presented a semantics for an extension of the
SPARQL query language, AnQL, that enables querying RDF with
annotations. Queries exemplified in related literature for specific
extensions of SPARQL can be expressed in AnQL. Noticeably, our
semantics goes beyond the expressivity of the current SPARQL
specification and includes some features from SPARQL 1.1 such
as aggregates, variable assignments and sub-queries. We also de-
scribed our implementation of AnQL based on constraint logic pro-
gramming techniques along with a practical experiment for
representing sensor data as Annotated RDF.
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Appendix A. Proofs of theorems and propositions

A.1. Proof of Theorem 5.2

We start by proving that for all z; z0 2 L1;Aðz�1z0Þ
2AðzÞ�2Aðz0Þ.

Proof Appendix A. 1. Let z; z0 2 L1. In order to prove the propo-
sition, we introduce the notation KA

z¼deffJ # A j z	1 a1
hx;yi2J

xg. The
property that we want to prove can be rewritten:
19 This is again a fictitious example for the sake of illustration. A more realistic
syntax for the representation of time would use XSD dateTime literals.
lub b2
hx;yi2J

y j J 2 KA
z�1z0

( )

2

lub b2
hx;yi2J

y j J 2 KA
z

( )
�2lub b2

hx;yi2J0
y j J0 2 KA

z0

( )
:

Let us introduce two intermediary lemmas:
Lemma Appendix A. 1. For all z; z0 2 L1;K
A
z�1z0 ¼ KA

z \ KA
z0 .
Proof Appendix A. 2. We simply prove each inclusion separately:

# : let J 2 KA
z�1z0 , which implies that z�1z0	1 a1

hx;yi2J

x. So, z	1 a1
hx;yi2J

x

and z0 a1
hx;yi2J

x, that is J 2 KA
z and J 2 KA

z0 .

�: let J 2 KA
z \ KA

z0 , which implies that z	1 a1
hx;yi2J

x and z0	1 a1
hx;yi2J

x,

so z�1z0	1 a1
hx;yi2J

x by definition of �1. Consequently, J 2 KA
z�1z0 .
Lemma Appendix A. 2. For all z; z0 2 L1;K
A
z�1z0 ¼ fJ [ J0 j ðJ; J0Þ

2 KA
z � KA

z0 g.
Proof Appendix A. 3. Again, we prove each inclusion separately:

# : trivial since J 2 KA
z�1z0 implies that J 2 KA

z \ KA
z0 and J ¼ J [ J.

�: let J 2 KA
z and J0 2 KA

z0 . Clearly, a1
hx;yi2J

x	1 a1
hx;yi2J[J0

x. Conse-

quently, J [ J0 2 KA
z . Symmetrically, we prove that J [ J0 2 KA

z0 .

This allows us to rewrite the problem into:

lubf b2
hx;yi2J[J0

y j ðJ; J0Þ 2 KA
z � KA

z0 g
2

lubfb2
hx;yi2J

y j J 2 KA
z g�2lubfb2

hx;yi2J0
y j J0 2 KA

z0 g

which is more concisely written:

a2
ðJ;J0 Þ2KA

z�KA
z0

b2
hx;yi2J[J0

y

 !

2 a2

J2KA
z

b2
hx;yi2J

y

 !
�2 a2

J02KA
z0

b2
hx;yi2J0

y

 !
:

This is easily established by distributivity of �2 over �2 in the right
hand side and by remarking that 20

a2
J02KA

z0

a2
J2KA

z

ðb2
hx;yi2J

y�2 b2
hx;yi2J0

yÞ

0@ 1A	2 a2
ðJ;J0 Þ2KA

z�KA
z0

b2
hx;yi2J[J0

y

 !
:

The second part of the proof demonstrates that for all
z; z0 2 L1;Aðz�1z0Þ
2AðzÞ�2Aðz0Þ.
Proof Appendix A. 4. Before giving the main arguments for the
proof, we rewrite the goal as follows: 21

lubfb2
hx;yi2J

y j J 2 KA
z g�2lubfb2

hx;yi2J0
y j J0 2 KA

z0 g

	2lubfb2
hx;yi2J

y j J 2 KA
z�1z0 g;
0 Note that if �2 is idempotent, then the inequality becomes an equality.
1 We here reuse the notation KA

z introduced above.
2

2
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which again can be made more concise with the following notation:

a2
J2KA

z

b2
hx;yi2J

y

 !
�2 a2

J2KA
z0

b2
hx;yi2J0

y

 !
	2 a2

J2KA
z�1z0

b2
hx;yi2J

y

 !
:

Associativity of �2 simplifies the equation further:

a2
J2KA

z [KA
z0

b2
hx;yi2J

y

 !
	2 a2

J2KA
z�1z0

b2
hx;yi2J

y

 !
:

We established the result by first proving the following lemma:
Lemma Appendix A. 3. For all z; z0 2 L1;K
A
z [ KA

z0 # KA
z�1z0 .
Proof Appendix A. 5. Let J 2 KA
z . It holds that z	1 a1

hx;yi2J

x and

z�1z0	1z. So J 2 KA
z�1z0 . Idem for any J 2 KA

z0 . This allows us now to

easily see that

a2
J2KA

z [KA
z0

b2
hx;yi2J

y

 !
	2 a2

J2KA
z�1z0

ðb2
hx;yi2J

yÞ:

Notice that the opposite inequality does not hold in general.
A.2. Proof of Theorem 5.4

In order to prove the theorem, we first demonstrate the follow-
ing proposition:

Proposition Appendix A. 4. If D1 ¼ hL1;�1;�1;?1;>1i is a lattice
then, for all A # L1 � L2 finite, A ¼ NormaliseðAÞ.

Let us assume that D1 is a lattice. We show the proposition by prov-
ing that at each step of the saturation and reduction, the set R is
such that R ¼ A. This is trivially true at the initialisation of Saturate.
Now let us assume that R satisfies this property at a certain step of
the execution. We start by ensuring that

R ¼ R [ fha1
J2X

b1
hx;yi2J

x;b2
J2X

a2
hx;yi2J

yig

and

R ¼ R [ fhb1
J2X

a1
hx;yi2J

x;a2
J2X

b2
hx;yi2J

yig :

We can decompose further the proof by simply showing that, given
ha; bi; hc;di 2 R,

R ¼ R [ fha�1c; b�2dig

and

R ¼ R [ fha�1c; b�2dig:

To structure the proof better, we split the proof into several lemmas
corresponding to each of the aforementioned steps.

Lemma Appendix A. 5. Let z 2 L1. The equality
R [ fha�1c; b�2digðzÞ ¼ RðzÞ holds.
Proof Appendix A. 6. If the pair ha�1c; b�2di already belongs to R,
the equality is trivial. Let us assume ha�1c; b�2di R R so that we can
easily distinguish between sets that include ha�1c; b�2di and sets
that do not. Using the definition of R [ fha�1c; b�2digðzÞ, we can
write:
R [ fha�1c; b�2digðzÞ ¼ RðzÞ �2

lubfðb2
hx;yi2J

yÞ�2ðb�2dÞ j J # R and

z	1ða1
hx;yi2J

xÞ�1ða�1cÞg:

Further, due to distributivity,

ðb2
hx;yi2J

yÞ�2ðb�2dÞ ¼ ððb2
hx;yi2J

yÞ�2bÞ�2ððb2
hx;yi2J

yÞ�2dÞ:

We can therefore rewrite the previous equality to:

R [ fha�1c; b�2digðzÞ ¼ RðzÞ
�2 lubfðb2

hx;yi2J

yÞ�2b j J # R and z	1ða1
hx;yi2J

xÞ�1ða�1cÞg

�2 lubfðb2
hx;yi2J

yÞ�2d j J # R and z	1ða1
hx;yi2J

xÞ�1ða�1cÞg:

Additionally, since D1 is a lattice, we have

ða1
hx;yi2J

xÞ�1ða�1cÞ ¼ ðða1
hx;yi2J

xÞ�1aÞ�1ðða1
hx;yi2J

xÞ�1cÞ:

So z	1ða1
hx;yi2J

xÞ�1ða�1cÞ implies z	1ða1
hx;yi2J

xÞ�1a and z	1ða1
hx;yi2J

xÞ�1c.

This means that J [ fha; big 2 fK # R j z	1 b1
hx;yi2J

xg so necessarily,

ðb2
hx;yi

yÞ�2b	2RðzÞ. Analogically, we conclude that ðb2
hx;yi2J

yÞ�2d	2RðzÞ

and generalising to any suitable J, we conclude, using the equation

above, that R [ fha�1c; b�2digðzÞ ¼ RðzÞ.
Now let us prove this second equality:

Lemma Appendix A. 6. Let z 2 L1. The equality R [ fha�1c; b�2dig
ðzÞ ¼ RðzÞ holds.
Proof Appendix A. 7. We apply a similar method as for Lemma 5
to get to the following equality:

R [ fha�1c; b�2digðzÞ ¼ RðzÞ �2

lubfðb2
hx;yi2J

yÞ�2ðb�2dÞ j J # R and

z	1ða1
hx;yi2J

xÞ�1ða�2cÞg:

This means that J [ fha; bi; hc;dig 2 fK # R j z	1 a1
hx;yi2K

xg, which im-

plies that ðb2
hx;yi2J

yÞ�2ðb�2dÞ	2RðzÞ. Generalising this to any suitable

J, we obtain the equality.
Now, let us prove that the reduce algorithm preserves the quasi

homomorphism.

Lemma Appendix A. 7. A ¼ ReduceðAÞ.

0
Proof Appendix A. 8. Let ha; bi 2 R such that there exists ha0; b i 2 R
such that a 	1 a0 and b 	2 b0. Using the same approach as in Lemma
5, we obtain the following equality:

RðzÞ ¼ R n fha; bigðzÞ �2

lubfðb2
hx;yi2J

yÞ�2b j J # R n fha; big and

z	1ða1
hx;yi2J

xÞ�1ag:

From the hypothesis, we have that z	1ða1
hx;yi2J

xÞ�1a0 for any appropri-

ate J. Moreover, for the same J, we have ðb2
hx;yi2J

yÞ�2b	2b0. Generalis-

ing to all adequate J, we entail that:
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R n fha; bigðzÞ
2lubfðb2
hx;yi2J

yÞ�2b j J # R n fha; bigand

z	1ða1
hx;yi2J

xÞ�1ag

and, thus, RðzÞ ¼ R n fha; bigðzÞ. Similarly, every pair h?1; yi or hx;?2i
does not affect the function R.

Now, the proof of Proposition 4 follows from an inductive appli-
cation of Lemmas 5–7. Therefore, A ¼ NormaliseðAÞ holds.

A.3. Proof of the theorem

The implication ( is a direct consequence of Proposition 4.
Let us prove the other direction. Let A and b two finite sets of

pairs of primitive annotations in L1 � L2 such that A ¼ B. For
A # L1 � L2 and x 2 L1, let KA

x ¼ fJ # A j x	1 a1
ha;bi2J

ag. We also remind
that:

A : L1 ! L2

x # a2
J2KA

x

b2
ha;bi2J

b

Moreover, we introduce the following new notation:

eA : L1 ! L1

x # b1
J2KA

x

a1
ha;bi2J

a

We establish the proof through the support of several intermediary
lemmas.

Lemma Appendix A. 8. If hx; yi 2 A then y	2AðxÞ.
Proof Appendix A. 9. Let hx; yi 2 A. We remark that x	1 a1
ha;bi2fhx;yig

a
and fhx; yig# A, so:

y ¼ b2
ha;bi2fhx;yig

b	2 a2
J2KA

x

b2
ha;bi2J

b ¼ AðxÞ:
Lemma Appendix A. 9. If hx; yi 2 A then x	1
eAðxÞ.
Proof Appendix A. 10. Let hx; yi 2 A. For all J 2 KA
x , x	1 a1

ha;bi2J

a so,
since D1 is a lattice, x	1 b1

J2KA
x

a1
ha;bi2J

a, that is, x	1
eAðxÞ.

Lemma Appendix A. 10. If D1 ¼ hL1;�1;�1;?1;>1i is a lattice, then
a quasihomomorphism is an antitone function, with respect to the
orders induced by �1 and �2.
Proof Appendix A. 11. Assume that D1 is a lattice. Let f be a quasi-
homomorphism. Let x; x0 2 L1 be two annotation values such that
x	1x0. Then f ðxÞ ¼ f ðx� x0Þ
2f ðxÞ�2f ðx0Þ and, thus, f ðxÞ
2f ðx0Þ.

Using the previous lemmas, we can prove two additional lem-
mas that will bring us to the final proof:

Lemma Appendix A. 11. If hx; yi 2 NormaliseðAÞ then x ¼ eAðxÞ and
y ¼ AðxÞ.
Proof Appendix A. 12. Let hx; yi 2 NormaliseðAÞ. Consequently,
hx; yi 2 SaturateðAÞ. Moreover, by definition of Saturate, the pair
heAðxÞ;AðxÞi must exist in Saturate(A). Additionally, from Lemmas
8 and 9, we have that x	1

eAðxÞ and y ¼ AðxÞ, which implies that
hx; yi should be eliminated by the Reduce algorithm during normal-
isation, unless x ¼ eAðxÞ and y ¼ AðxÞ.
Lemma Appendix A. 12. For all x 2 L1, there exists u 2 L1 such that
hu;AðxÞi 2 NormaliseðAÞ and x	1u.
Proof Appendix A. 13. Let x 2 L1. Again, heAðxÞ;AðxÞi 2 SaturateðAÞ.
Then, due to the reduction algorithm, there must exist
hu;vi 2 NormaliseðAÞ such that u
1

eAðxÞ and v
2AðxÞ. We can con-
sider the following assertions:
D1 is a lattice
 (by hypothesis)
 (H1)
eAðxÞ	1u
 (due to Reduce)
 (R1)
AðxÞ	2v
 (due to Reduce)
 (R2)
A is antitone
 (from (H1) and Lemma 10)
 (A1)
x	1
eAðxÞ
 (from Lemma 9)
 (A2)
AðxÞ
2AðeAðxÞÞ
 (from (A1) and (A2))
 (A3)
AðeAðxÞÞ
2AðuÞ
 (from (R1) and (A1))
 (A4)
AðuÞ
2v
 (from Lemma 8)
 (A5)
AðxÞ ¼ v
 (from (A3), (A4), (A5) and (R2))
 (C1)
Assertions (C1) and (C2) establish the lemma.
Proof Appendix A. 14 [Of Theorem 5.4]. Let hx; yi 2 NormaliseðAÞ.
From Lemma 11, we know that x ¼ eAðxÞ and y ¼ AðxÞ. Moreover,
from the hypothesis of the theorem, AðxÞ ¼ BðxÞ. Hence, due to
Lemma 12, there exists u 2 L1 such that hu; yi 2 NormaliseðBÞ and
x	1u. By using the same reasoning, we can infer that there exists
v 2 L1 such that hv ; yi 2 NormaliseðAÞ and u	1v . But due to Lemma
11, we have that y = v and therefore hx; yi 2 NormaliseðBÞ.

The situation is symmetrical with respect to A and b, so finally
Normalise(A) = Normalise(B).
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