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Abstract: Location Based Services to assist travelers in wayfinding are a prime application for expert system 
techniques. The use of public transportation leads nearly always to a combination of different services from 
different providers (multi-modal transportation). Information systems must combine data for the different 
services and produce advice to navigate in space and obtain the right tickets, reservations, etc. This 
information can be seen as two (or more) state-transition diagrams: one for the spatial navigation and one for 
the business (ticketing, validation, reservation) rules. 
A (categorical) product combines two state-transition diagrams. The implementation is immediate using an 
intuitionistic logic reasoner built into the programming language, which infers typing for second order, 
polymorphic functions and allows their safe execution. The shortest path algorithm in this combined network 
produces sound advice and reminds the user to acquire tickets and plans the necessary navigation to ticket 
vending machines, etc. 
The approach combines typical expert system technologies like inference engines with object-oriented 
programing; recent advances increase the level of reasoning possible during compilation. The use of a high-
level programming language with substantial inference power facilitates the formalization of domain 
knowledge and is a viable alternative to the classical expert system architecture.

"(Playing Chopin's etudes) taught me a lifelong lesson: that phenomena
perceived to be magical are always the outcome of complex patterns of 
nonmagical activities taking place at a level below perception. In other 
words, the magic behind magic is pattern." 
Douglas Hofstadter, SCIENTIFIC AMERICAN, April, 1982, p. 17. 

1 Improve the quality of mobility
It is widely accepted that individual car transportation is not a viable solution to increase and improve 

mobility in European cities, but to entice people to use public transportation is notoriously difficult. The 

standard argument is that public transportation is not available when and where it is required, which is 

certainly true for some mobility demands, but investigations show that many potential passengers do not use 

public transportation even when it is available. The simple reason: potential users do not know when and 

where public transportation is available and how they could use it; they lack information about schedule and 

the—often complex—tariff and ticketing rules. Location based services provide the information when and 

where it is necessary.
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Economically speaking, the total cost of using public transportation consists of the cost and time used 

for transportation plus the cost for collecting the information on how to use it; the later cost is high and 

makes the car an unbeatable alternative for all but repeated trips—for example, commuting to work—where 

the information cost is amortized over many trips. Effectively, only regular users are found on public 

transportation, primarily commuters; this gives credibility to studies, which indicate that the number of 

potential users that do not use public transportation for lack of information is about as large as the number 

actually using them; these additional users would use available capacity in off hours!

In most cases, the information is available and can be found on the web; most public transportation 

companies publish their schedules and line maps with stops. Public transportation combines in all but the 

most simple cases several services from different providers. I considered recently a trip from Vienna to 

Tangier and a combination of a direct flight to Malaga, a bus to Algeciras, and the ferry to Tangier seemed 

more attractive than the unreliable multi-stop flight to Tangier. The schedules and line information for the 

different transportation companies involved in a trip are not coordinated and the effort to collect the 

information and patch the trip together is a complicated task. An intelligent method to combine the available 

data and produce the information necessary for the user for the whole trip—door to door—and including 

ticketing rules, reservation system, etc. is a perfect application for artificial intelligence.

 Figure 1: Example of a simplified street-network graph; the circles are states (e.g., bifurcation 
points) and the edges are actions (locomotions); the boxes connect the actions with states in the 
business diagram (Figure 2)

The scientific goal of Pontikakis (2006) was to understand how to combine spatial navigation ( Figure

1) with the “navigation” of the state-transition diagram of the public transportation business rules (Figure 2). 

An agent simulation was constructed and demonstrated clearly the typical problems; e.g., plan navigation 

such that travelers stop at convenient places to buy tickets they need later. Travel agents, railway 

information staff and similar are the experts that know how to paste together the various data pieces found 

in published schedules. Some expert system exists for such applications, for example the widely used web 



pages of European national trains services, which seem to use a common European knowledge base of 

scheduled transportation and comparable rules for extracting relevant information: schedules for train 

transportation across Europe are mostly available, including hints about distances and time necessary to 

change between stations, etc.—lacking are the reservation and ticketing rules in these expert systems.

Figure 2: Simplified graph, which describes actions necessary for a legal ride on Vienna’s 
metro; the boxes indicate the places (from  Figure 1) where actions can be carried out.

shorten above para if needed

To construct an intelligent advisor for multi-modal, public transportation requires data about schedules, 

ticketing, etc. and a method to combine these for use by a shortest path algorithm. The contribution here 

focuses on an abstract description of the combination method and how it is accessed by the shortest path 

algorithm. Descriptions of the form in which the data must be provided, or specifications for routines to 

translate existing data to this form, follow from this high level analysis. 

2 Expert Systems for Geographic Information
An information system to produce advice for potential users of public transportation is an expert system, 

which, in its classical architecture, consists of a knowledge base containing formalized expert knowledge 

and a computerized inference engine to derive conclusions from the stored knowledge, comparable to the 

advice a human expert would deliver. The famous PROSPECTOR (McCammon 1984) expert system was 

built according to this paradigm to imitate human experts prospecting for minerals; commercially successful 

were systems to diagnose or configure technical systems. These systems used logic reasoning based on 

forward or backward chaining, e.g., Prolog (Clocksin et al. 1981). It was expected that expert system shells 

would simplify programming to achieve more 'intelligent' programs than were common at the time 

(accounting, engineering calculations, etc.).

In 1984 we extended our network database (Panda) (Egenhofer 1989) with a Prolog reasoner to 

experiment with expert systems in GIS (Clocksin et al. 1981), but found the limitations of logic-based 

programming too restrictive for most GIS problems. The subset of logic used in Prolog (and similar 

systems) interprets failure to prove as negation—, which is a variant of the closed world assumption: 

everything of the world is known and what is not known is assumed to be false (not unknown), which is not 

an acceptable simplification of reasoning for a GIS.



In the 1980s object-oriented programming emerged as an off-spring from the Abstract Data Type 

research. Programming in a computationally complete language avoids the 'failure as negation' 

simplification and separates false from unknown. Expert knowledge is captured as a lattice of objects with 

operation (e.g., multiple inheritance of C++ (Stroustrup 1991)). This approach focuses on the structure of 

the domain and not so much on the inference. From HOPE (Bailey 1985) over CAML (Fletcher 2008) we 

moved to HUGS (Hugs 2008) and use today Haskell (Peterson 1997) with the customary extensions. 

Experience shows that a second order, polymorphic, lazy, functional language (Backus 1978) is very 

well suited to capture expert knowledge: the differences in operations are mapped to overloaded operations, 

which are selected depending on the type to which the operation is applied. Modeling cognitive agents, 

which decide on actions based on their simulated perception of their simulated environment, is straight 

forward (Frank 2000; Raubal 2001; Krek 2002). 

3 Navigation 
Computerized car navigation systems are probably the most popular application of geographic information 

systems. They go back to one of the first thorough analyses of an algorithm by computer pioneer Edsger 

Dijkstra (1976): the task to find the shortest path in a (street) network. Dijkstra's shortest path, or the faster 

A*, algorithm (Hart et al. 1968) are at the core of the programs running in millions of car navigation 

systems and produce navigation advice for drivers all over the world. 

drop next if not enough space

Car navigation needs, besides the algorithm and the hardware to run it on, a schematic representation of 

the street-network, usually provided by surveyors and cartographers. Car navigation systems became 

feasible with the computerized street-network graphs produced in the 80s by the U.S. administration; 

comparable data became available in Europe not much later. The question how people cognize navigation is 

a special case of how they cognize space in general (Egenhofer 1995). Reports of (1) cars ending in a river 

because the navigation system included a bridge where only a ferry is available (Kuhn 1994), (2) slowly 

narrowing roads were fire brigades regularly unstuck cars and (3) towns complaining about increased truck 

traffic are all the result of incongruences in the representation of reality in the road database and their use by 

navigation systems.

For some regular graphs (e.g., complete graphs) analytical solution for some questions are known; in 

general, however, solutions for applied graph problems cannot be given by analytical methods and require 

some sort of traversal, for which we use the conceptual framework of multi-agent simulation. In a 

computational agent simulation a programmed agent traverses a simulated network (graph) and performs at 

each node and edge some cognitive functions that determine the next action. The behavior of a person 

navigating in a street-network maps naturally to such a computational agent.



4 Generalization: State Transition Diagram
Navigation in a street-network by an agent (human or simulated) consists of a series of actions that each 

leads to a new state; when a bifurcation point is reached, a decision about the next action is taken, following 

some rule incorporated in the agent. The same schema of perception—decision—action is applicable to 

other problems, where a sequence of steps is necessary to achieve a goal. In using a public transportation 

system, a passenger follows the graph in Figure 2, which describes the business rules; realistic rules may 

contain bifurcations, when users have options, e.g., buying different types of tickets.

5 Graph products
A manual integration of the two sets of rules is possible to produce a single state transition diagram, but fails 

automation. Mathematical category theory gives a general solution that allows the integration of two (or 

more) state transition diagrams formally. Given two navigation problems with state spaces W (e.g., 

wayfinding,  Figure 1) and B (e.g., business, Figure 2), and locomotion and business actions V and T 

respective, with state-transition diagrams described by two (partial) functions,

w: W x V → W
b: B x T → B,

where w is a function encoding the city map with streets and public transportation lines, and b encodes the 

“business rules” about tickets, how they are obtained, validated, etc. Needed is a combined state-transition 

diagram with states S and actions P described as function f: S x P → S.

The question is how to construct f from w and b? In mathematical category theory (Asperti et al. 1991; 

Mac Lane 1998) the combined state S is written as a product (pair) of the wayfinding and the business states 

W and B, and the combined actions P as the sum (union) of the locomotion V and business actions T:

S = W x B
P = V + T

Then the desired function

f: S x P → S
becomes

f: (W x B) x (V + T) → (W x B).
To construct f, we need two isomorphic functions h and k, which change the pairing, such that

h: (W x B) x V → (W x V) x B
k: (W xB) x T → W x (B x T).  

From the given functions w and b we construct functions w’ and b’

w’: (W x V) x B → W x B
w’ = w x id · h
b’: (W x B) x T → W x B
b’ = id x b · k

and a function l, 

l: (W x B) x (V + T) → (W x B) x V) + (W x B) x T).



The function l is isomorphic in the distributive category of sets (Cockett 1992), which we operate in. 

Combined this gives for f  = [w’ , b’] · l = [(w x id) · h, (id x b) · k] · l.

The second order functions used here are: 

id: A → A denotes the function that does nothing: id a = a;

(f x g) is the function, which applies f to the first part of a pair and g to the second part of the 

pair: (f x g) (a,b) = (f a, g b); and 

[f,g] means the application of f or g to the two parts: [f,g] (a+b) = f (a)  + g (b).

Two or more navigation problems in real space and “business logic” space can be directly combined 

with this formula and we produce a state transition function that can be used for shortest path and similar 

algorithms. 

A modern, high-level, functional language realizes very closely such expressions. The implementation 

of the above described solution for combining the two state-transition diagrams translates directly to an 

executable computer program (cross stands for x and either for []):

h ((w,b),v) = ((w,v), b)
k :: ((W,B), T) -> (W, (B,T))
k ((w,b),t) = (w, (b,t))
w' = cross (w, id) . h
b' = cross (id, b) . k 
f = either w' b' . l

The representation of the problem of merging two state-transition diagrams must be extended by a, the 

set of rules, which connects the two diagrams: for example the restriction that tickets can only be purchased 

at the ticket office, or that the turnstile cannot be passed without having a ticket, etc. Such rules are a 

restriction on the function f constructed and represented as a Boolean function c: (W x B) x (V + T) -> Bool. 

6 Shortest Path
Advice for travelers is produced by an algorithm to find the shortest (optimal) path through the combined 

graph. An optimal path algorithm requires functions ([V] means here a list of V)

a: given a state find possible actions:  a : W -> [V]

w: get next state for given state and action:  w : (W,V) -> W

c: get cost for action given a state: c : (W, V) -> C

The functions a and w can be derived from f (costs is ignored for simplicity). With these functions in 

place, a shortest path (e.g., with minimal number of locomotions) is computed by Dijkstra's shortest path 

algorithm.

An advice to travelers must plan ahead and have the agent add a detour to acquire a token before the 

necessity is discovered when standing in front of the turnstile and the agent has to backtrack to a place 

passed before without acquiring the token. A path 1, 2, 4, 3, 4, 5, 6, 7 (in  Figure 1 and 2) is not desirable, 



but how to identify at point 2 the need for a ticket, which becomes only noticeable to the traveler at point 4? 

The optimal path in the combined (product) graph is, of course, 1, 2, 3, 4, 5, 6, and 7—produced by 

Dijkstra's shortest path algorithm automatically! The “intelligent” combination achieved the magic.

7 Conclusions
Artificial intelligence is here included in the powerful type checker, which makes programming at this high 

level of abstraction possible. The development from early Prolog and similar reasoners to the type reasoning 

system, which is behind the type inference in the code shown (note: not all constructs have programmer 

written types—most are inferred!). The type system, an extension of the Hindley-Millner (1978) type 

system based on an intuitionistic (Martin-Löf) type theory (Nordström 1990). These theories were first 

influential in AI and lead to construction of automatic proof systems, but are now built into the 

programming languages.

cut next para if space is tight

With such powerful type system in a programming language, new opportunities to write programs 

capturing more of the semantics of the application domain (i.e., the expert knowledge) appear. The compiler 

of a language like Haskell can be used by the programmer to do some simple logic, e.g., counting, during 

compilation (not during execution!). This is useful to write type save programs of matrix operations, where 

the dimensions of the matrices are fixed at run time and type checking for dimensions is carried out 

statically—but without writing separate operations for any possible matrix dimension: the compiler can 

increase or decrease the dimension of a matrix as it may be demanded by the operation (Lämmel 2005). The 

following fragment of code for defining two types for zero and successor demonstrates how numbers are 

represented following Peano's axiomatization of natural numbers—and the compiler (not at run time) is 

carrying this out! 

data HZero; instance HNat HZero
data HSucc n; instance HNat n => HNat (HSucc n)

Such inferences can be used in database programming such that the application program and the 

database engine use the same language. The gap in current practice, where SQL statements are written as 

strings and included in programs, can thus be overcome by “artificial intelligence” included in the 

programming language. 

The goal to construct portable navigation aid devices for pedestrians using public transportation 

systems requires the integration of navigation in space with “navigation in business logic”. Our approach to 

include “artificial intelligence” in the form of a very powerful type theory and reasoning system and write 

the application domain (expert) knowledge in an object-oriented style in a functional programming language 

was useful to clarify step by step notions related to spatial behavior, in particular wayfinding, based on 

cognitive agent simulation (Frank 2000; Raubal 2001; Krek 2002), but also in other investigations of spatial 

cognition (Twaroch 2007). Kuhn has used the same type theory to construct ontologies which are not only 



is_a taxonomies but define taxa through applicable affordances, represented as operations (functions) in the 

class (Kuhn 2007).

The use of a mathematically sound theory (category theory) has produced a method to combine 

relatively simple pieces and to achieve “intelligent” behavior; confirming Hofstadter's motto.
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