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Abstract—Face recognition algorithms commonly assume
that face images are well aligned and have a similar pose
– yet in many practical applications it is impossible to meet
these conditions. Therefore extending face recognition to un-
constrained face images has become an active area of research.

To this end, histograms of Local Binary Patterns (LBP)
have proven to be highly discriminative descriptors for face
recognition. Nonetheless, most LBP-based algorithms use a
rigid descriptor matching strategy that is not robust against
pose variation and misalignment.

We propose two algorithms for face recognition that are de-
signed to deal with pose variations and misalignment. We also
incorporate an illumination normalization step that increases
robustness against lighting variations. The proposed algorithms
use descriptors based on histograms of LBP and perform
descriptor matching with spatial pyramid matching (SPM) and
Naive Bayes Nearest Neighbor (NBNN), respectively. Our con-
tribution is the inclusion of flexible spatial matching schemes
that use an image-to-class relation to provide an improved
robustness with respect to intra-class variations.

We compare the accuracy of the proposed algorithms against
Ahonen’s original LBP-based face recognition system and two
baseline holistic classifiers on four standard datasets. Our
results indicate that the algorithm based on NBNN outperforms
the other solutions, and does so more markedly in presence of
pose variations.

Keywords-face recognition; local binary patterns; naive
Bayes; nearest neighbor; spatial pyramid.

I. INTRODUCTION

Most face recognition algorithms are designed to work
best with well aligned, well illuminated, and frontal pose
face images. In many possible applications, however, it is
not possible to meet these conditions. Some examples are
surveillance, automatic tagging, and human robot interac-
tion. Therefore, there have been many recent efforts to
develop algorithms that perform well with unconstrained
face images [1]–[4].

In this context, the of use local appearance descriptors
such as Gabor jets [5], [6], SURF [7], SIFT [8], [9], HOG
[10] and histograms of Local Binary Patterns [11] have
become increasingly common. Algorithms that use local
appearance descriptors are more robust against occlusion,
expression variation, pose variation and small sample sizes
than traditional holistic algorithms [4], [5].

In this work we will focus on descriptors based on Local
Binary Patterns (LBP), as they are simple, computationally
efficient and have proved to be highly effective features
for face recognition [3], [4], [12], [13]. Nonetheless, the
methods described in this paper can be readily adapted to
operate with alternative local descriptors.

Within LBP-based algorithms, most of the face recogni-
tion algorithms using LBP follow the approach proposed
by Ahonen et al in [12]. In this approach the face image
is divided into a grid of small of non overlapping regions,
where a histogram of the LBP for each region is constructed.
The similarity of two images is then computed by summing
the similarity of histograms from corresponding regions.

One drawback of the previous method is that it assumes
that a given image region corresponds to the same part of the
face in all the faces in the dataset. This is only possible if the
face images are fully frontal, scaled, and aligned properly. In
addition, while LBP are invariant against monotonic gray-
scale transformations, they are still affected by illumination
changes that induce non monotonic gray-scale changes such
as self shadowing [17].

In this paper, we propose and compare two algorithms
for face recognition that are specially designed to deal
with moderate pose variations and misaligned faces. These
algorithms are based on previous techniques from the object
recognition literature: spatial pyramid matching [14], [15]
and Naive Bayes Nearest Neighbors (NBNN) [16]. Our
main contribution is the inclusion of flexible spatial match-
ing schemes based on an “image-to-class” relation which
provides an improved robustness with respect to intra-class
variations. These matching schemes use spatially dependent
variations of the “bag of words” models with LBP histogram
descriptors. As a further refinement, we also incorporate
a state of the art illumination compensation algorithm to
improve robustness against illumination changes [17].

This paper is organized as follows. Section II discusses
the details of our approach. Section III-C shows the results
of applying our methodology to standard datasets. Finally,
section IV presents the main conclusions of this work.



II. ALGORITHMS

We start by summarizing the main common steps of the
algorithms used in this work. Then we describe each step
in detail. The proposed face recognition process consists of
four main parts:

1) Preprocessing: We begin by applying the Tan and
Triggs’ illumination normalization algorithm [17] to
compensate for illumination variation in the face im-
age. No further preprocessing, such as face alignment,
is performed.

2) LBP operator application: In the second stage LBP are
computed for each pixel, creating a fine scale textural
description of the image.

3) Local feature extraction: Local features are created
by computing histograms of LBP over local image
regions.

4) Classification: Each face image in test set is classified
by comparing it against the face images in the training
set. The comparison is performed using the local
features obtained in the previous step.

The first two steps are shared by all the algorithms. The
algorithms we explore in this work vary in how they perform
the last two steps, as we detail in section II-C.

A. Preprocessing

Illumination accounts for a large part of the variation
in appearance of face images [18]. Various preprocessing
methods have been created to compensate for this variation
[19]. We have chosen to use the method proposed by Tan
and Triggs [17] since it is simple, efficient, and has been
shown to work well with local binary patterns.

The algorithm consists of four steps:

1) Gamma correction to enhance the dynamic range of
dark regions and compress light areas and highlights.
We use γ = 0.2.

2) Difference of Gaussians (DoG) filtering that acts as
a “band pass”, partially suppressing high frequency
noise and low frequency illumination variation. For
the width of the Gaussian kernels we use σ0 = 1.0
and σ1 = 2.0.

3) Contrast equalization to rescale image intensities in
order to standardize intensity variations. The equal-
ization is performed in two steps:

I(x, y)← I(x′, y′)
(mean(| I(x′, y′)|a))1/a

I(x, y)← I(x′, y′)
(mean(min(τ, | I(x′, y′)|)a))1/a

where I(x, y) refers to the pixel in position (x, y) of
the image I and τ and a are parameters. We use a =
0.1 and τ = 10.

Figure 1. The upper row shows three images of a subject from the Yale B
dataset under different lighting conditions. The bottom row shows the same
images after processing with Tan and Triggs’ illumination normalization
algorithm. Appearance variation due to lighting is drastically reduced.

Figure 2. The LBP operator thresholds each pixel against its neighboring
pixels and interprets the result as a binary number. In the bottom image
each gray-level value corresponds to a different local binary pattern.

4) Compress all values into the range (0, 1) with a
hyperbolic tangent function:

I(x, y)← 0.5 tanh(I(x′, y′)/τ) + 0.5

The values of the parameters γ, σ0, σ1, a and τ are those
suggested by Tan and Triggs. Figure 1 illustrates the effects
of the illumination compensation.

B. Local Binary Patterns

Local binary patterns were introduced by Ojala et al [20]
as a fine scale texture descriptor. In its simplest form, an
LBP description of a pixel is created by thresholding the
values of the 3 × 3 neighborhood of the pixel against the
central pixel and interpreting the result as a binary number.
The process is illustrated in figure 2.

In [11] the LBP operator is generalized by allowing larger
neighborhood radii r and different number of sampling
points s. These parameters are indicated by the notation
LBPs,r. For example, the original LBP operator with radius
of 1 pixel and 8 sampling points is LBP8,1. Another



Figure 3. LBP descriptors are built by partitioning the LBP face image into
a grid and computing LBP histograms over each grid cell. These histograms
may then be concatenated into a vector or treated as individual descriptors.

important extension is the definition of “uniform patterns”.
An LBP is defined as uniform if it contains at most two
0-1 or 1-0 transitions when viewed as a circular bit
string. Thus the 8-bit strings 01100000 and 00000000
are uniform, while 01010000 and 00011010 are not.
Ojala observed that when using 8 sampling points, uniform
patterns accounted for nearly 90% of the patterns in their
image datasets. Therefore, little information is lost by as-
signing all non uniform patterns to a single arbitrary number.
Since only 58 of the 256 possible 8 bit patterns are uniform,
this enables significant space savings when building LBP
histograms. To indicate the usage of two-transition uniform
patterns, the superscript u2 is added to the LBP operator
notation. Hence the LBP operator with a 2 pixel radius, 8
sampling points and uniform patterns is known as LBPu2

8,2.
The success of LBP has inspired several variations. These

include local ternary patterns [17], elongated local binary
patterns [21], multi scale LBP [22], centralized binary pat-
terns [23] and patch based LBP [3], among others.

In this work we use LBPu2
8,2, which was chosen by

Ahonen et al [12] in their pioneering work applying LBP
to face recognition. This descriptor has been used, by itself
or in combination with other features, by most methods that
use LBP for face recognition (e.g. [3], [6], [24], [25]).

C. Face description and recognition

In order to build the description of a face image we follow
the basic methodology proposed by Ahonen [12]. Once the
LBP operator is applied to the face image, the face image
is divided into regions and a histogram of LBP is computed
for each region. The final description of each face is a set
of local histograms. This process is illustrated in 3.

Given the face description, different recognition schemes
are possible. As mentioned in the introduction, Ahonen’s
original method is not very robust to pose variations and face
misalignment. Here, we explore two additional approaches
to counter this problem, which are based on spatial pyramid
matching [14] and the Naive Bayes Nearest Neighbor [16]
schemes.

In the following sections we present more details on
the face description and recognition systems used by each

method.
1) Ahonen system: In Ahonen’s system, each face image

is partitioned into a grid of non-overlapping square regions.
An LBP histogram is computed independently for each
region. Then, all the resulting histograms are concatenated
together into a large vector. Ahonen et al call this vector
a “spatially enhanced histogram”, since the order of his-
tograms that compose it implicitly encode spatial informa-
tion.

This method tends to produce fairly high dimensional
vectors. For example, if an image is divided into an 8 × 8
grid and the LBPu2

8,2 operator is used (so the histograms
have length 59) the spatially enhanced histogram has length
8 ∗ 8 ∗ 59 = 3776.

In order to perform face recognition under this scheme,
each face image in the training and test sets is converted
to a spatially enhanced histogram via the process described
above. Then ordinary nearest neighbor classification is per-
formed with a histogram distance measure such as χ2 or
histogram intersection [26]. In this work we use the χ2 to
measure distance between histograms:

χ2(x, y) =
D∑
i=1

(xi − yi)2

(xi + yi)

where D is the dimensionality of the spatially enhanced
histograms. In our preliminary tests this measure performed
slightly better than histogram intersection. We have not
tested the weighted variations of this distance that Ahonen
et al also explore in their work.

2) Spatial Pyramid Match: One of the parameters for
Ahonen’s system is the size of the regions. Though Ahonen
et al report that their algorithm is relatively robust to small
variations of this parameter, the election of a region size
is somewhat arbitrary and is subject to aliasing effects.
Furthermore, Ruiz del Solar et al [4] report that while using
larger regions is more robust against face misalignment,
it has less discriminative power. This has motivated us to
explore the combination of multiple LBP histograms at
various resolutions as an alternative to the Ahonen grid
representation.

In order to create the multi-resolution LBP histogram
we use the spatial pyramid histogram approach introduced
by Lazebnik et al [14], which is based on the pyramid
histogram of Grauman [27]. Lazebnik successfully used
spatial pyramid histograms to match sets of quantized SIFT
descriptors for the task of object recognition. In a similar
task, Bosch et al [28], use spatial pyramid histogram of
intensity gradients to compute shape similarity.

The process of building the spatial pyramid histogram is
similar to building Ahonen’s spatially enhanced histograms
at various resolutions and concatenating the results. More
precisely, a spatial pyramid histogram with L levels is built
by first creating the level 0 histogram with the LBP over the



entire image. Next, the image is divided in four equal sized
regions and a level 1 LBP histogram is computed for each
region. The process is repeated by recursively subdividing
each region and computing level l histograms in each region
until the desired level L is reached. A simple calculation
shows that there will 22l level l histograms and that by
summing this number over l = 0, . . . , L a spatial pyramid
histogram with L levels will have a total of (22L+2 − 1)/3
histograms. As in Ahonen’s method all these histograms are
concatenated together into a large vector 1. For example,
if we describe a face image with a three level spatial
pyramid (L = 3) and LBPu2

8,1, the resulting vector has length
((22∗3+2 − 1)/3) ∗ 59 = 5015.

For classification a nearest neighbor classifier is used, as
in the Ahonen system. However, to compare histograms we
use a distance based on the Pyramid Match Kernel [27] with
some of the modifications used by Bosch [28] instead of
plain χ2. The motivation behind this distance is that matches
among histograms at coarser resolutions should be given
less weight, because it is less likely than they come from
corresponding face parts. Specifically, if we have two spatial
pyramids x and y, and we denote by δl the sum of the
distance between all the histograms at level l (we use χ2,
as in [28]) then the distance is calculated as

d(x, y) =
δ0
2L

+
L∑
l=1

δl
2L−l+1

3) Naive Bayes Nearest Neighbor: While we expect
spatial pyramid histograms to be more robust to face
misalignment and pose variation than Ahonen’s spatially
enhanced histograms, they still have a rigid approach to
spatial matching. As in Ahonen’s method, when two face
images are compared each local feature in one image is
compared against the local feature found at the same position
in the other image. This suggests a more flexible spatial
matching approach, wherein local features from one image
are allowed to be matched to local features found in different
positions from other images.

This idea evokes the “bag of visual words” approach
that has proved successful in object recognition and scene
classification (e.g. [15], [29]). However, it seems unwise to
discard all spatial information given that it clearly is useful
for visual recognition, as shown by work incorporating
spatial information into the bag of words model [14], [30].
Another disadvantage of the bag of words model is that
it requires a codebook creation stage which tends to lose
discriminative information, as shown in [16].

In this paper we test an intermediate approach, introduced
by Boiman et al [16] in the context of visual object recog-

1We modify slightly the construction process of the pyramid used by
Lazebnik in order to emphasize the similarities with Ahonen’s grid spatially
enhanced histogram, but by modifying the kernel function appropriately the
results are equivalent. In particular, instead of treating the LBP “channels”
separately we interleave them.

nition using local descriptors. Since the method is based on
the Nearest Neighbor classifier and makes a naive Bayes
assumption, it is named “Naive Bayes Nearest Neighbor”
(NBNN).

NBNN assumes images are represented by sets of local
features. Boiman’s work uses a combination of various
visual descriptors, including SIFT [8] and Shape Contexts
[32]. In this paper we use the aforementioned LBP his-
tograms over local regions as descriptors. To make the
algorithms comparable we use the same grid-based regions
as the Ahonen method. Nonetheless, instead of concate-
nating the histograms of each region into a single vector,
each histogram is kept separate. To keep track of spatial
information the histograms are augmented with the (x, y)
coordinates of the center of its region. Therefore under this
scheme each face is not described by a single vector, as in
the previous two approaches, but by a set of vectors.

Supposing the LBP descriptors have been extracted for all
face images in the training set, the NBNN classification pro-
cedure for a test face image P is summarized in algorithm
1.

Algorithm 1 NBNN algorithm
{Input: probe face image P}
{Output: gallery subject Ĝ}
Extract descriptors d1, . . . dn from test image P
for i = 1 to n do

for each training subject G do
NNG(di) ← NN of di among images of G

end for
end for
Ĝ← arg minG

∑n
i=1 ‖di −NNG(di)‖2

One of the intuitions behind this algorithm is that instead
of minimizing an “image-to-image” distance (as the other
nearest neighbor classifiers in this paper) it minimizes an
“image-to-class” distance by aggregating the descriptors
from all the images of each subject. This intuition is justified
by the following reasoning, presented in [16]. Suppose we
have a probe image P and we wish to find gallery subject
Ĝ it belongs to with the maximum a posteriori (MAP)
criterion. If we assume the priors p(G) to be uniform, we
have

Ĝ = arg max
G

p(G|P ) = arg max
G

p(P |G)

We assume the image descriptors to be independent given
the subject g they belong to (Naive Bayes assumption):

p(P |G) = p(d1, . . . , dn) =
n∏
i=1

p(di|G)

Applying log,

Ĝ = arg max
G

n∑
i=1

log p(di|G) (1)



Rewriting the right hand side using the law of total proba-
bility,

Ĝ = arg max
G

∑
d

p(d|P ) log p(d|G)

where we sum over the space of all possible descriptors d.
By subtracting the constant term

∑
d p(d|P ) log p(d|P ) on

the right side (which does not affect Ĝ) and rearranging,

Ĝ = arg max
G

(∑
d

p(d|P ) log
p(d|G)
p(d|P )

)
= arg min

G
KL (p(d|P )‖p(d|G))

where KL(·‖·) is the Kullback-Leibler divergence between
two distributions. Thus in this case the MAP criterion is
equivalent to minimizing the KL divergence between the
descriptor distributions of P and the descriptor distribution
of the subject Ĝ (i.e. the “image-to-class” distance).

We have not specified how to calculate (1), and in
particular p(d|G). The NBNN approach is to approximate
the Parzen likelihood estimator for p(d|G) with the r nearest
neighbors NNj , j = 1 . . . r of d belonging to G:

pNN (d|G) =
1
L

r∑
j

K(d− dGNNj
) (2)

where K is the Gaussian Parzen kernel function: K(d −
dGj = exp( 1

2σ2 ‖d − dGj ‖2). If r = 1, corresponding to a
single nearest neighbor approximation, (2) becomes a simple
expression and the constant factors such as σ2 may be
ignored. Then (1) becomes:

Ĝ = arg min
G

n∑
i=1

‖di −NNG(di)‖2

which is the expression used in algorithm 1.
Boiman et al incorporate spatial information into this

scheme by appending (x, y) pixel coordinates to each de-
scriptor, scaled by a factor α. Thus the squared euclidean
distance between two descriptors d1 and d2 at positions
(x1, y1) and (x2, y2) becomes∑

i

(d1i − d2i)2 + α
(
(x1 − x2)2 + (y1 − y2)2

)
The value of α determines the weight given to spatial
information when matching descriptors. If the value is set to
0 spatial information is completely disregarded. This may be
beneficial when dealing with very large pose variations but
probably increases the chances of mismatches. In the other
extreme, setting α to a very large value forces descriptors
to be matched exclusively with descriptors from the same
spatial location, as in Ahonen’s method.

We set this parameter by cross-validating in a small in-
house face dataset. We found α = 1 to be a good choice
and used this value with all the datasets. Since not all
datasets use the same image size, to make the influence of

α commensurate across datasets we linearly scale all (x, y)
coordinates so the upper left corner of the image is at (0, 0)
and the lower right corner is at (1, 1).

The flexible spatial matches used by NBNN are advanta-
geous in datasets with misalignment and pose variations, as
we show in section III-C. However, this flexibility comes at
a computational cost. If we denote the number of descriptors
per image by nD, the number of training images per subject
by ns and the number of subjects in the training set by nG,
it is clear that each query takes O(ns · n2

D · nG) time using
linear nearest neighbor search 2.

This lead us to test a slight variation of NBNN, which we
dub Restricted Naive Bayes Nearest Neighbor (RNBNN). In
RNBNN we restrict descriptor matches to be from the same
position in the image. This is equivalent to using a very large
value for α and reduces the computational cost to O(ns ·nD ·
nG), the same as Ahonen’s method. While RNBNN should
perform worse than NBNN in unconstrained face images, it
still reaps the benefits of aggregating the descriptors from
the same subject, which allows it to use the training data
more fully than Ahonen’s method. Moreover, when images
are well aligned it may actually perform better than NBNN
by avoiding descriptor mismatches (i.e. matching descriptors
from different facial regions).

An intermediate approach between ordinary NBNN and
RNBNN is to restrict descriptor matches to be from a
predefined spatial neighborhood in the image, thus reducing
computational cost by making less distance comparisons.
Our tests suggest this method has a very similar accuracy
to ordinary NBNN. Since it can be considered as a simple
speed optimization with respect to NBNN we do not present
further results on this approach.

III. EXPERIMENTS AND RESULTS

A. Datasets

We perform experiments on four datasets: AT&T-ORL
[34], Yale [18], Georgia Tech [35] and Extended Yale B
[36].

These datasets differ in the degree of variation of pose,
illumination, and expression present in their face images.
The main characteristics of each dataset are summarized in
table I.

Regarding the image size, cropping, and alignment of the
datasets:
• For AT&T-ORL we used the original images at 112×

92.
• For Yale the face area was extracted with Viola Jones

detector implementation from OpenCV and resized to
128× 128.

• The cropped version of the Georgia Tech dataset was
used and the images were resized to 156× 111.

2Using spatial index data structures such as cover trees [33] the com-
plexity can be reduced to O(nD log(ns · nD) · nG).



Table I
SUMMARY OF FACE DATASETS

Dataset No. sub-
jects

Total
images

Variation Ref.

AT&T-ORL 40 400 pose, expression,
eye glasses

[34]

Yale 15 165 expression, eye
glasses, lighting

[18]

Georgia
Tech

50 750 pose, expression,
scale, orientation

[35]

Ext. Yale B
(frontal)

38 2414 lighting [36]

• For Extended Yale B, the manually cropped and aligned
subset from [36] was used at the original size of 192×
168.

B. Evaluation methodology

We compare the three algorithms we have described in
this paper and add the results of two classic holistic algo-
rithms, Eigenfaces [37] and Fisherfaces [18] as a baseline.
For each algorithm we show results with and without the
DoG illumination normalization.

For each dataset we use approximately half of the subjects
per class as training set and the rest as test. Specifically,
5, 5, 7 and 31 training images were used for the AT&T-
ORL, Yale, Georgia Tech and Extended Yale B datasets
respectively.

The reported accuracy is the average over 10 runs, with
a different training and test set partition used in each run.

1) Algorithm parameters: The major parameter for the
LBP-based algorithms is the the size of regions used for
LBP histograms, i.e. the characteristics of the grid used to
partition the images. We tested 6×6, 7×7 and 8×8 grids in
a small in-house face dataset. We found 8×8 to give slightly
better results for the Ahonen and NBNN algorithms, so we
use this grid size for all the datasets.

For the spatial pyramid algorithm we chose a three level
pyramid (L = 3), because this gives an 8 × 8 grid at the
finest level. This makes the results for this algorithm more
comparable to the results on the other two.

For the holistic algorithms the major parameter is the di-
mensionality of the subspace on which the data is projected.
For the Eigenfaces algorithm we varied the dimensionality
D from 10 to 150 in increments of 10 and report the best
accuracy. This was obtained with D = 50 for AT&T-ORL,
D = 30 for Yale, D = 50 for Georgia Tech and D = 120
for Extended Yale B. In the Fisherface algorithm we varied
dimensionality from 5 to the maximum dimensionality sup-
ported by the algorithm, which is one less than the number
of classes in the dataset. In all the datasets the best results
were obtained by setting D to the largest value possible.

Table II
RESULTS FOR AT&T-ORL DATASET

Method With TT (%) Without TT (%)

AH 95 95.45
SPM 96.7 97.16
NBNN 98.4 99.35
RNBNN 96.82 95.6
Eig 50.95 93.3
Fish 64.32 92.58

Table III
RESULTS FOR YALE DATASET

Method With TT (%) Without TT (%)

AH 97.91 84.05
SPM 96.96 82.65
NBNN 98.18 86.81
RNBNN 97.39 88.45
Eig 57.72 74.94
Fish 67.84 91.25

Table IV
RESULTS FOR GEORGIA TECH DATASET

Method With TT (%) Without TT (%)

AH 72.9 75.1
SPM 76.07 77.67
NBNN 87.97 92.67
RNBNN 76.52 81.2
Eig 6.5 71.3
Fish 16.4 53.05

Table V
RESULTS FOR EXTENDED YALE B DATASET

Method With TT (%) Without TT (%)

AH 95.7 73.72
SPM 93.8 72.97
NBNN 97.15 93.2
RNBNN 99.31 94.79
Eig 99.88 60.11
Fish 99.98 92.23

C. Results and discussion

Tables II, III, IV and V summarize accuracy of each
classifier on the four datasets. For economy of space we
use the abbreviations “AH” for Ahonen’s system, “SPM”
to refer to spatial pyramid matching, “NBNN” for Naive
Bayes Nearest Neighbor, “RNBNN” for Restricted Naive
Bayes Nearest Neighbor, “Eig” for Eigenfaces, “Fish” for
Fisherfaces and “TT” for Tan and Triggs’ illumination
normalization.

Regarding these experiments we make a few observations:
• NBNN is the clear winner in the less constrained

datasets such as Georgia Tech. It also has the best



performance in Yale and AT&T-ORL. However, in
Extended Yale B with illumination normalization it
falls behind the holistic algorithms (though it performs
better than them with no illumination normalization).
This is explained by the fact that Extended Yale B
subset is a very well aligned dataset which only varies
illumination, a situation where holistic algorithms, and
Fisherfaces in particular, work well.

• RNBNN performed somewhat better than the Ahonen
algorithm, specially when illumination normalization
is not used. As expected, the performance of RBNN
suffers in less constrained datasets. On the other hand,
in the well aligned Yale B dataset it actually worked
better than ordinary NBNN and was the best algorithm
with no illumination normalization.

• Spatial pyramid histograms perform slightly better than
Ahonen’s method in the less constrained datasets. How-
ever, it performed slightly worse in the well aligned
Extended Yale B dataset as well as the Yale dataset.
This suggests that most of the discriminative power of
the pyramids is in the highest level.

• In face datasets with large illumination variations (Yale
and Extended Yale B) Tan and Triggs’ illumination
normalization algorithm boosts the accuracy of LBP-
based classifiers significantly. Holistic classifiers only
benefited in Extended Yale B. In the rest the illumina-
tion normalization lowers their accuracy to a surprising
degree. We found that in these cases the decrease was
inversely proportional to the width of the DoG bandpass
filter.
In face datasets with little or no lighting variation, LBP-
based perform slightly worse with Tan and Triggs’
algorithm, while the holistic algorithms still perform
significantly worse.

• The behavior of RNBNN and NBNN in the Extended
Yale B dataset with no illumination normalization is
interesting; they outperform the other LBP-based al-
gorithms by a 20% margin. This is a consequence of
aggregating the descriptors for each class, because it
allows each face region to be matched to a similarly
illuminated face region from the training set, in a cer-
tain sense inferring a new face by “composing pieces”
from various face images.

IV. CONCLUSIONS AND FUTURE WORK

Our main result is that the NBNN algorithm improves
performance substantially with respect to the original LBP-
based algorithm when used in relatively unconstrained face
datasets. NBNN also outperforms the original LBP algo-
rithm even when faces are frontal and well aligned, though
by a smaller margin. This improvements may be attributed
to the flexible spatial matching scheme and the use of the
“image-to-class” distance, which makes a better use of the
training data than the “image-to-image” distance.

A. Future work

One of the drawbacks of NBNN is the increase in com-
putational cost relative to the original LBP based algorithm.
Since this cost is caused by the large amount of nearest
neighbor queries it would be beneficial to speed up nearest
neighbor queries with spatial index data structures such as
cover trees [33] or locality sensitive hashing [38].

Another interesting avenue of research is to complement
or replace the LBPu2

8,2 histogram descriptors with other local
descriptors, such as SIFT [8], SURF [7] or one of the many
LBP variations. Furthermore, we are currently exploring
strategies to learn a discriminative LBP-like descriptor from
the data itself.

It would also be of interest to find a better alternative
to the grid-based regions used in this paper. The grid
partition has no natural relation to the shape of the face and
suffers from quantization effects. One possibility is to detect
“interesting” facial regions (such as the eyebrows, nose and
mouth) and extract descriptors in these selected regions.

ACKNOWLEDGMENT

This work was partially funded by FONDECYT
grant 1095140 and LACCIR Virtual Institute grant No.
R1208LAC005 (http://www.laccir.org).

REFERENCES

[1] J. Wright and G. Hua, “Implicit elastic matching with random
projections for Pose-Variant face recognition,” in Proc. CVPR,
2009.

[2] P. Dreuw, P. Steingrube, H. Hanselmann, and H. Ney, “SURF-
Face: face recognition under viewpoint consistency con-
straints,” in British Machine Vision Conference, London, UK,
Sep. 2009.

[3] L. Wolf, T. Hassner, and Y. Taigman, “Descriptor based
methods in the wild,” in Proc. ECCV, 2008.

[4] J. Ruiz-del-Solar, R. Verschae, and M. Correa, “Recogni-
tion of faces in unconstrained environments: A comparative
study,” EURASIP Journal on Advances in Signal Processing,
vol. 2009, pp. 1–20, 2009.

[5] J. Zou, Q. Ji, and G. Nagy, “A comparative study of local
matching approach for face recognition,” Image Processing,
IEEE Transactions on, vol. 16, no. 10, pp. 2617–2628, 2007.

[6] X. Tan and B. Triggs, “Fusing gabor and LBP feature sets for
Kernel-Based face recognition,” in Analysis and Modeling of
Faces and Gestures, 2007, pp. 235–249.

[7] H. Bay, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up
robust features,” Lecture notes in computer science, vol. 3951,
p. 404, 2006.

[8] D. G. Lowe, “Distinctive image features from Scale-Invariant
keypoints,” Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110,
2004.



[9] M. Bicego, A. Lagorio, E. Grosso, and M. Tistarelli, “On the
use of SIFT features for face authentication,” in Proceedings
of the 2006 Conference on Computer Vision and Pattern
Recognition Workshop. IEEE Computer Society, 2006, p. 35.

[10] A. Albiol, D. Monzo, A. Martin, J. Sastre, and A. Albiol,
“Face recognition using HOG-EBGM,” Pattern Recogn. Lett.,
vol. 29, no. 10, pp. 1537–1543, 2008.

[11] T. Ojala, M. Pietikainen, and T. Maenpaa, “Gray scale and
rotation invariant texture classification with local binary pat-
terns,” Lecture Notes in Computer Science, vol. 1842, p.
404420, 2000.

[12] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description
with local binary patterns: Application to face recognition,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 28, no. 12, pp. 2037–2041, 2006.

[13] Y. Rodriguez and S. Marcel, “Face authentication using
adapted local binary pattern histograms,” Lecture Notes in
Computer Science, vol. 3954, p. 321, 2006.

[14] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of
features: Spatial pyramid matching for recognizing natural
scene categories,” in Proceedings of the 2006 IEEE Com-
puter Society Conference on Computer Vision and Pattern
Recognition - Volume 2. IEEE Computer Society, 2006, pp.
2169–2178.

[15] A. Bosch, A. Zisserman, and X. Muoz, “Scene classification
via pLSA,” in Computer Vision ECCV 2006, 2006, pp. 517–
530.

[16] O. Boiman, E. Shechtman, and M. Irani, “In defense of
Nearest-Neighbor based image classification,” in Computer
Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, 2008, pp. 1–8.

[17] X. Tan and B. Triggs, “Enhanced local texture feature sets for
face recognition under difficult lighting conditions,” Lecture
Notes in Computer Science, vol. 4778, p. 168, 2007.

[18] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman,
“Eigenfaces vs. fisherfaces: recognition using class specific
linearprojection,” IEEE Transactions on pattern analysis and
machine intelligence, vol. 19, no. 7, pp. 711–720, 1997.

[19] J. Ruiz-del-Solar and J. Quinteros, “Illumination compensa-
tion and normalization in eigenspace-based face recognition:
A comparative study of different pre-processing approaches,”
Pattern Recognition Letters, 2008.

[20] T. Ojala, M. Pietikinen, and D. Harwood, “A comparative
study of texture measures with classification based on featured
distributions,” Pattern Recognition, vol. 29, no. 1, pp. 51–59,
1996.

[21] S. Liao and A. Chung, “Face recognition by using elongated
local binary patterns with average maximum distance gradient
magnitude,” in Computer Vision ACCV 2007, 2007, pp. 672–
679.

[22] S. Liao, X. Zhu, Z. Lei, L. Zhang, and S. Li, “Learning
multi-scale block local binary patterns for face recognition,”
in Advances in Biometrics, 2007, pp. 828–837.

[23] X. Fu and W. Wei, “Centralized binary patterns embedded
with image euclidean distance for facial expression recogni-
tion,” in International Conference on Natural Computation,
vol. 4. Los Alamitos, CA, USA: IEEE Computer Society,
2008, pp. 115–119.

[24] S. Marcel, Y. Rodriguez, and G. Heusch, “On the recent use
of local binary patterns for face authentication,” International
Journal on Image and Video Processing Special Issue on
Facial Image Processing, 2007.

[25] G. Zhang, X. Huang, S. Li, Y. Wang, and X. Wu, “Boosting
local binary pattern (LBP)-Based face recognition,” in Ad-
vances in Biometric Person Authentication, 2005, pp. 179–
186.

[26] M. Swain and D. Ballard, “Indexing via color histograms,”
in Computer Vision, 1990. Proceedings, Third International
Conference on, 1990, pp. 390–393.

[27] K. Grauman and T. Darrell, “The pyramid match kernel:
Discriminative classification with sets of image features,” in
Proceedings of the Tenth IEEE International Conference on
Computer Vision - Volume 2. IEEE Computer Society, 2005,
pp. 1458–1465.

[28] A. Bosch, A. Zisserman, and X. Munoz, “Representing shape
with a spatial pyramid kernel,” in Proceedings of the 6th
ACM international conference on Image and video retrieval.
Amsterdam, The Netherlands: ACM, 2007, pp. 401–408.

[29] J. Sivic, B. C. Russell, A. Efros, A. Zisserman, and W. T.
Freeman, “Discovering object categories in image collec-
tions,” in Proc. ICCV, vol. 2, 2005.

[30] E. B. Sudderth, A. Torralba, W. T. Freeman, and A. S.
Willsky, “Describing visual scenes using transformed dirich-
let processes,” Advances in Neural Information Processing
Systems 18, pp. 1299—1306, 2005.

[31] ——, “Learning hierarchical models of scenes, objects, and
parts,” in Proceedings of the Tenth IEEE International Con-
ference on Computer Vision - Volume 2. IEEE Computer
Society, 2005, pp. 1331–1338.

[32] S. Belongie and J. Malik, “Matching with shape contexts,”
in Content-based Access of Image and Video Libraries, 2000.
Proceedings. IEEE Workshop on, 2000, pp. 20–26.

[33] A. Beygelzimer, S. Kakade, and J. Langford, “Cover trees for
nearest neighbor,” in Proceedings of the 23rd international
conference on Machine learning. Pittsburgh, Pennsylvania:
ACM, 2006, pp. 97–104.

[34] F. Samaria and A. Harter, “Parameterisation of a stochastic
model for human face identification,” in Applications of
Computer Vision, 1994., Proceedings of the Second IEEE
Workshop on, 1994, pp. 138–142.

[35] A. V. Nefian, M. Khosravi, and M. H. Hayes, “Real-Time
detection of human faces in uncontrolled environments,”
Proceedings of SPIE Conference on Visual Communications
and Image Processing, vol. 3024, pp. 211—219, 1997.



[36] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman,
“From few to many: Illumination cone models for face
recognition under variable lighting and pose,” IEEE Trans.
Pattern Anal. Mach. Intelligence, vol. 23, no. 6, pp. 643–660,
2001.

[37] M. Turk and A. Pentland, “Eigenfaces for recognition,” Jour-
nal of cognitive neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[38] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions,” Commun.
ACM, vol. 51, no. 1, pp. 117–122, 2008.


