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relevant views and features that can facilitate the recognition of
relevant objects, scenes, or situations. These active visual behaviors
are highly pervasive in the biological world, where fromhumans to
bees perceptual actions drive visual inference [10,11].

In terms of semantic understanding of an environment, scene
recognition appears as one of the most fundamental perceptual
abilities, being a key contextual cue for scene understanding. Con-
sequently, there is an extensive literature about scene recogni-
tion [12–14,4,15], mainly for outdoor environments. Traditionally,
the main source of controversy has been between achieving scene
recognition using low-level features to directly capture the gist of
a scene [13] versus using higher level structures to capture inter-
mediate semantic representations [14]. This intermediate repre-
sentation can be obtained by using unsupervised learningmethods
[16,17] or more elaborated techniques, such as region segmenta-
tion [18,19]. In terms of robotics, as noticed before [12], identifying
indoor scenes, such as an Office or a Kitchen, is a highly valuable
perceptual ability that can facilitate the execution of high-level
tasks by a mobile robot.

Following the motivations above, in this paper we propose a
new technique for visual indoor scene recognition using a mobile
robot. As distinguishing features, our approach is based on three
main features. First, a probabilistic hierarchical representation that
uses common indoor objects, such as Doors or furniture, as an
intermediate semantic representation. Using this representation,
we associate low-level visual features to objects by training ob-
ject classifiers, and we associate objects to scenes by learning con-
textual relations among them. Second, we exploit the embedded
nature of a mobile robot by using 3D information to implement a
focus of attention mechanism. Using this mechanism, we can use
3D information to discard unlikely object locations and sizes. Third,
we also exploit the embedded nature of a mobile robot and ideas
from information theory to implement an adaptive strategy to
search for relevant objects. Under this strategy, we use sequences
of images captured during robot navigation to build a partial be-
lief about the current scene that allow us to execute only the most
informative object classifiers.

In terms of our hierarchical probabilistic approach, previous
works for scene recognition do not perform well in the type of
scenes usually visited by an indoor mobile robot. As we demon-
strate in this paper, and has also been recently demonstrated
by [15],most previous techniques for scene recognition showa sig-
nificant drop in performance for the case of indoor scenes. This can
be explained by the fact that, as opposed to outdoor scenes, indoor
scenes usually lack distinctive local or global visual textural pat-
terns. We believe that the use of objects as an explicit intermedi-
ate representation can help to improve this situation. Furthermore,
in terms of a machine learning approach to scene recognition, the
use of an intermediate representation based on common objects,
with a clear semantic meaning, facilitates the acquisition of train-
ing data from public web sources, such as the Flickr website [20].

In terms of our focus of attention mechanism, previous works
on scene recognition are based on a passive operation,where scene
recognition is usually based on the independent analysis of single
images. In contrast, in our case as our robot navigates through an
environment, it can constantly provide new views of objects that
enrich acquired information. In particular, we are able to dramati-
cally reduce image processing time by incorporating structural and
geometrical 3D information using a range sensor. This sensor helps
us to filter spurious or false positive detections and to implement a
focus of attention mechanism that can identify suitable scales and
image areas to search for relevant objects. This strategy, in combi-
nation with an efficient feature extraction procedure such as inte-
gral channel features [21], brings overall robot operation closer to
real time performance.

Finally, in terms of our adaptive method to search for rele-
vant objects, there have been a few recent methods that also use

objects in the scene recognition process [22–25], however, besides
the fact that they are based on a different mathematical represen-
tation, they only apply a fix scheme to search for relevant objects
in the scene. Clearly, a fix policy to search for a relevant object does
not scale properly in terms of the number of potential objects. In
our case, we use concepts from information theory to add to our
method a planning strategy to search for likely objects. This allows
us to adaptively search for objects according to our partial belief
about the current scene. The key idea is to execute only the most
informative object classifiers, based on the intuition that it is often
enough to find a subset of the available objects to recognize a scene
with high confidence. This helps our approach to scale efficiently in
terms of the number of potential objects in indoor environments.

Accordingly, the main contributions of this work are: (i) A new
hierarchical probabilisticmodel for indoor scene recognition based
on the detection of relevant common objects, (ii) A new focus of
attention mechanism based on a 3D range sensor that fully ex-
ploits the embedded nature of a mobile robot by directly measur-
ing physical properties of objects such as size, height, and range
disparity, (iii) A new adaptive methodology that allows us to exe-
cute at each time only the most informative object classifiers, and
(iv) An empirical evaluation of the proposed method, showing sig-
nificant advantages with respect to several alternative techniques.
As an additional contribution, we facilitate further research based
on visual and depth information by making available online the
codes and datasets used in our experiments.

The rest of this paper is organized as follows. Section 2 dis-
cusses relevant previous work on visual scene recognition. Sec-
tion 3 presents main details of our hierarchical probabilistic model
for indoor scene recognition. Section 4 provides implementation
details about main probability terms involved in our model. Sec-
tion 5 presents ourmain results and a comparison with alternative
approaches. Finally, Section 6 presents themain conclusions of this
work and future avenues of research.

2. Related work

Scene recognition, also known as scene classification or scene
categorization, has been extensively studied in areas such as cog-
nitive psychology and computer vision [26,27]. In terms of cog-
nitive psychology, previous studies have shown that humans are
extremely efficient in capturing the overall gist of natural images,
suggesting that intermediate representations are not needed [26].
Consequently, early methods for scene recognition are mostly
based on holistic models. These approaches extract low-level fea-
tures from the complete image, such as color or texture, and use
those features to classify different scene categories. Vailaya et al.
use this approach to classify city vs. landscape images [28]. Later,
they extend the method using a hierarchical classification scheme,
where images are first classified as indoor or outdoor scenes [29].
Also using low-level global features, Chang et al. estimate a belief
or confidence function over the available scene labels [30]. Dur-
ing training, one classifier is built for each available scene category,
then, all classifiers are applied to each test image, computing a con-
fidence score with respect to each possible scene. Ulrich and Nour-
bakhsh use color histograms as the image signature and a k-nearest
neighbors scheme for classification [12]. They apply their method
to topological localization of an indoor mobile robot, but retrain-
ing is needed for each specific indoor environment. In this sense, an
important disadvantage of holistic methods based on global image
features is a poor generalization beyond training sets.

More robust holistic approaches use semantic representations
or extract low-level global image signatures from selective parts
of the input image. Oliva and Torralba use an image representation
based on features such as naturalness or openness, that represent
dimensions in a space that they call spatial envelope [13]. These
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features are computed using coarsely localized spectral informa-
tion. Siagian and Itti build image signatures by using orientation,
color, and image intensity visual saliencymaps [4]. Thesemaps are
also shared by a focus of attention mechanism [31]. They test their
approach by recognizing scenes using an outdoor mobile robot.

In terms of methods based on local image features, early ap-
proaches use a straightforward extension of global models, where
the input image is broken into local blocks or patches. Features
and classifiers are applied to each of the blocks and then combined
through a voting strategy [32], or a mixture of probabilistic classi-
fiers [33]. As in the case of global features, these local methods also
suffer from poor generalization capabilities.

As an alternative, some works base the scene detection on the
identification of local image regions such as sky, grass, or moun-
tains [18,19]. To obtain the relevant semantic regions, these meth-
ods rely on image segmentation techniques. Individual classifiers
are then applied to label each segmented region. Unfortunately,
these approaches inherit the poor performance of segmentation
algorithms, a still open problem for the computer vision commu-
nity. The segmentation problem is particularly relevant for the case
of indoor scenes, where the presence of a large number of objects
usually produces scenes with significant clutter that are difficult to
segment.

In general, themain problemwith themethods described above
has been their inability to generalize from training data to new
scenes [27]. As discussed in [15], this problemhas been particularly
relevant for the case of indoor scenes. Additionally, in some
cases, the use of elaborated manual strategies to identify relevant
intermediate scene properties [13,34] limits the scalability of such
techniques.

Recent approaches have achieved good results in scene classi-
fication by using intermediate representations and bag-of-words
schemes. Fei-Fei and Perona recognize scenes using an interme-
diate representation that is provided by an adapted version of
the Latent Dirichlet Allocation (LDA) model [14]. Bosch et al. [35]
and Sivic et al. [36] achieve scene classification by combining
probabilistic Latent Semantic Analysis (pLSA) with local invariant
features. Lazebnik et al. modify bag-of-words representations by
using a spatial pyramid that divides the image into increasingly
fine sub-regions with the idea of capturing spatial relations among
different image parts [37]. As we mentioned before, these tech-
niques show a significant drop in performance for the case of in-
door scenes [15].

Recently, there has been significant effort in improving scene
recognition for the case of indoor scenes. The growing industry
of service robotics, where high-level human–robot interaction is a
key fact, has motivated several works that seek to obtain relevant
high-level information about the contents of an image. Quattoni
and Torralba propose an indoor scene recognition algorithm based
on combining local and global information [15]. They test their
approach using 67 indoor image categories with results that out-
perform current approaches for the case of indoor scenes. Interest-
ingly, although they do not explicitly use objects in their approach,
they remark that some indoor scenesmight be better characterized
by the objects they contain, indicating that object detection might
be relevant to improve scene recognition for the case of indoor
environments. Following this idea, recent work has incorporated
objects as a key element to improve scene recognition in indoor en-
vironments [22–24]. Li et al. represent an image as a scale-invariant
response map of a large number of pre-trained generic object de-
tectors [25]. This representation is suitable for several visual tasks.
Pronobis et al. build an approach for scene recognition with appli-
cations tomobile robot localization. This is based on the extraction
of spatial semantic concepts fromgeneral place appearance andge-
ometry. They use their approach to obtain relevant high-level in-
formation for mobile robot navigation, such as a semantic map

[38,39]. In contrast to our approach, these previousmethods do not
benefit from the embedded nature of a mobile robot, for example
by using 3D structural information or a sequential adaptive object
detection scheme.

In terms of object recognition, Viola and Jones show that it
is possible to achieve real time category-level object recognition
without relying on image segmentation. Instead, they use a sliding-
window approach in conjunction with a focus of attention mech-
anism [8]. Dalal and Triggs introduce a histogram of oriented
gradient (HOG) features to represent object categories. Also they
use a sliding-window approach to detect object instances [40].
Felzenszwalb et al. develop an approach based on mixtures of
multiscale deformable part models that uses a new method for
discriminative training with partially labeled data, achieving out-
standing results [9]. Recently, they enhance their approach by us-
ing cascade object detection [41]. Furthermore, Helmer and Lowe
show the benefits of using 3D information to improve object recog-
nition [42].

In terms of robotics, besides the fact that some of the meth-
ods described above are applied to this field, extensive work has
been done in the case of topological localization using visual land-
marks [5,43]. The main limitation of these approaches is that land-
marks are usually environment specific, thus, generalization to
different places produces poor results. In terms of object recogni-
tion, there has been work related to detecting relevant structures
and objects in outdoor urban scenes [44,45].

Finally, it is worth mentioning that Bosch et al. [27] provide a
full bibliographic review about the topic of scene recognition (up
to 2007), including a deeper description of some of the methods
mentioned above.

3. Problem formulation

In this sectionwe present themathematical formulation behind
our method to use objects as an intermediate semantic represen-
tation between low-level features and high level scene concepts.
First, we present the core of our method considering only visual
features and leaving aside 3D properties. Then, we show how 3D
geometrical properties can be incorporated to enhance our formu-
lation. Afterwards, we provide amathematical approximation that
makes our method computationally feasible. Finally, we use infor-
mation theory to build an adaptive scheme to guide the search for
informative objects.

3.1. Scene recognition using visual features

In order to model our scene recognition approach, we include
the following terms:

• Let ξ be a scene type, ξ ∈ Ξ .
• Let s ∈ {1, . . . , S} be an object class.
• Let os ∈ [0, 1] indicate the presence/absence of instances of
objects of class s in a given scene.

• Let p(ξ |os) be the probability that ξ is the underlying scene,
given that an object of class os is present in the scene.

• Let I be an image.
• Let wi, i ∈ {1, . . . , L} be a rectangular window that covers a
specific part of image I and defines an object location.

• Let cwi
∈ {0, . . . , S} be the output of an object classifier c when

applied to image location wi. Output 0 indicates that no object
is found.

• Let c1:wL
be a vector describing the outputs of L classifiers

calculated over a set of Lwindows.
• Let f jwi

be visual feature j extracted from image windowwi.

• Let 
fwi
be a vector describing the complete set of visual features

extracted from image window wi.
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• Let 
f1:wL
be the complete set of visual features calculated over L

windows.

Given these terms, the probability of a place ξ given a set of features

f1:wL

is:

p(ξ |
f1:wL
) =

∑

o1:S

∑

c1:wL

p(ξ |o1:S, c1:wL
, 
f1:wL

)p(o1:S, c1:wL
|
f1:wL

)

=
∑

o1:S

∑

c1:wL

p(ξ |o1:S)p(o1:S |c1:wL
)p(c1:wL

|
f1:wL
). (1)

Let us now consider p(o1:S |c1:wL
) in Eq. (1). Using a Naive Bayes

approximation such that objects are independent given the classi-
fier outputs, we have:

p(o1:S |c1:wL
) =

∏

s

p(os|c1:wL
). (2)

Also, let us assume that we have detector models relating the
presence of an object of class s to the output of a classifier c in any
possible window, such that:

p(os = 1|cw(·)
= ok) = pos,cok = 1 − pōs,cok . (3)

Then, considering that p(os|c1:wL
) = p(os,w1

∪ · · · ∪ os,wL
|c1:wL

)
and assuming that windows are independent, we have:

p(o1:S |c1:wL
) =

∏

s

[

1 −
∏

k

(pōs,cok )
nk

]os

×

[

∏

k

(pōs,cok )
nk

]1−os

, (4)

where k ∈ {0, . . . , S} ranges over the possible classifier outputs
and nk is the number of classifications in c1:wL

with an output
value ok. k = 0 represents the case that no object is present
in the respective image window. The assumption of independent
windows is very strong and leads to overconfident posteriors,
however, in practice we have not observed significant failures due
to this approximation.

As an alternative to Eq. (4), when particular error models are
not available for each possible classifier output, one can establish
general error terms, such as:

p(os = 1|c(·) = os) = pos,cos

p(os = 1|c(·) �= os) = pos,cōs . (5)

In this case, Eq. (4) is given by:

p(o1:S |c1:wL
) =

∏

s

[1 − (pōs,cos )
ns(pōs,cōs )

(L−ns)]os

. . . [(pōs,cos )
ns(pōs,cōs )

(L−ns)]1−os . (6)

Let us now consider p(c1:wL
|
f1:wL

) in Eq. (1), assuming indepen-
dence among the visual information provided by eachwindow, we
have:

p(c1:wL
|
f1:wL

) =
∏

i

p(cwi
|
fwi

). (7)

Therefore, using Eq. (4), we can finally express Eq. (1) as:

p(ξ |
f1:wL
) =

∑

o1:S

∑

c1:wL

p(ξ |o1:S)
∏

s

[

1 −
∏

k

(pōs,cok )
nk

]os

. . .

[

∏

k

(pōs,cok )
nk

]1−os
∏

i

p(cwi
|
fwi

). (8)

Note that this formulation can operate with any object detector
able to classify objects from low-level visual features.

3.2. Adding 3D geometric information

In order to include 3D geometric information, we add the fol-

lowing terms to our model:

• Let D be a set of routines that calculate 3D geometric properties

of an image.

• Let djwi
be the output of property j on window wi.

• Let 
dwi
be a vector describing the outputs of all the 3D geometric

properties calculated over wi.

• Let 
d1:wL
be the complete set of geometric properties calculated

over a set of Lwindows.

Given this information, our original problem in Eq. (1) becomes

p(ξ |
f1:wL
, 
d1:wL

) =
∑

o1:S

∑

c1:wL

p(ξ |o1:S, c1:wL
, 
f1:wL

, 
d1:wL
)

. . . p(o1:S, c1:wL
|
f1:wL

, 
d1:wL
)

=
∑

o1:S

∑

c1:wL

p(ξ |o1:S)

× p(o1:S |c1:wL
)p(c1:wL

|
f1:wL
, 
d1:wL

). (9)

In this case, p(ξ |o1:S) and p(o1:S |c1:wL
) are as before. In terms of

p(c1:wL
|
f1:wL

, 
d1:wL
), we have:

p(c1:wL
|
f1:wL

, 
d1:wL
) =

∏

i

p(cwi
|
fwi

, 
dwi
). (10)

Applying Bayes rule and a conditional independence assump-

tion, we can transform Eq. (10) into

p(c1:wL
|
f1:wL

, 
d1:wL
) ∝

∏

i

p(
dwi
|cwi

)p(cwi
|
fwi

). (11)

In our case, we use depth information to calculate three geo-

metric properties: object size, object height, and object depth dis-

persion.We respectively denote these properties as: dswi
, dhwi

, and

ddwi
. Then, 
dwi

= {dswi
, dhwi

, ddwi
}, so Eq. (11) becomes:

p(c1:wL
|
f1:wL

, 
d1:wL
) ∝

∏

i

p(dswi
, dhwi

, ddwi
|cwi

)p(cwi
|
fwi

). (12)

Assuming conditional independence among the different geo-

metric properties,

p(c1:wL
|
f1:wL

, 
d1:wL
) ∝

∏

i

p(dswi
|cwi

)p(dhwi
|cwi

)

. . . p(ddwi
|cwi

)p(cwi
|
fwi

). (13)

Finally, Eq. (8) becomes

p(ξ |
f1:wL
, 
d1:wL

) = α
∑

o1:S

∑

c1:wL

p(ξ |o1:S)

×
∏

s

[

1 − · · ·
∏

k

(pōs,cok )
nk

]os
[

∏

k

(pōs,cok )
nk

]1−os

×
∏

i

αp(dswi
|cwi

) . . . p(dhwi
|cwi

) . . . p(ddwi
|cwi

)p(cwi
|
fwi

) (14)

whereα is a constant that does not depend on the scene class. Also,

the geometric properties are independent from visual information,

thus, they can be used in combination with any chosen object

classifier to enhance detection performance.
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3.3. Reducing dimensionality

We can see that our mathematical formulation depends on two
nested summations over combinations of objects and windows.
In computational terms, we can estimate the complexity of our
method as follows:

• The inner summation considers the presence of all possible ob-
jects in all possible windows, thus, its complexity is O(Nobj

Nwin),
where Nobj is the number of objects being used, and Nwin is the
number of windows.

• The outer summation considers the presence of all possible ob-
jects in the scene, thus, its complexity is 2Nobj .

• Considering both summations, the complexity of the method is
2Nobj × Nobj

Nwin .

A complexity of 2Nobj × Nobj
Nwin is intractable, particularly when

Nobj may grow to the order of tens or hundreds and Nwin is in the
order of thousands. Fortunately, many of the cases considered in
these summations are highly unlikely. For example, some of the
cases may include non-realistic object combinations, or may con-
sider objects that according to the classifiers are not present in the
current image. Furthermore, we can use 3D information to discard
unlikely object locations and sizes. Considering this, we can effec-
tively reduce the computational complexity by discarding highly
unlikely cases. To achieve this goal, we use a Monte Carlo tech-
nique to approximate the relevant summations in Eq. (14) using a
sampling scheme based on a focus-of-attentionmechanism. In this
way, we focus processing only on likely hypothesis for each of the
summations. In practice, as we will describe in our results, we ob-
serve that this approximation does not degrade the performance
of the inference procedure.

For the outer summation we have

p(ξ |
f1:wL
, 
d1:wL

) =
∑

o1:S

∑

c1:L

p(ξ |o1:S)p(o1:S |c1:wL
)

. . . p(c1:wL
|
f1:wL

, 
d1:wL
). (15)

We can take the first termout of the inner summation and using
Bayes rule we obtain:

p(ξ |
f1:wL
, 
d1:wL

) =
∑

o1:S

p(o1:S |ξ)p(ξ)

p(o1:S)

∑

c1:wL

p(o1:S |c1:wL
)

. . . p(c1:wL
|
f1:wL

, 
d1:wL
). (16)

This is equivalent to:
∑

o1:S

p(o1:S |ξ)F(o1:S), (17)

where

F(o1:S) =
p(ξ)

p(o1:S)

∑

c1:wL

p(o1:S |c1:wL
)p(c1:wL

|
f1:wL
, 
d1:wL

). (18)

We solve the summation by sampling from p(o1:S |ξ) and evaluat-
ing the samples in F(o1:S). In the evaluation, we need to solve the
inner summation.

For the inner summation we have
∑

c1:wL

p(o1:S |c1:wL
)p(c1:wL

|
f1:wL
, 
d1:wL

). (19)

Again, we approximate the summation using a Monte Carlo

scheme by sampling from p(c1:wL
|
f1:wL

, 
d1:wL
) and evaluating the

samples in p(o1:S |c1:wL
). Here, we use the combination o1:S that

comes from the current sample of the outer summation. In order

to sample from p(c1:wL
|
f1:wL

, 
d1:wL
), we use our assumption of inde-

pendence among windows:

• A combination x ∈ c1:wL
can be seen as a binary array of length

L, where each element in the array represents the object that is
present in one particular window (zero if nothing is present).

• A sample xk can be obtained by getting a sample for each
of the windows, xk = {x1k, x

2
k, . . . , x

L
k}, where each element

xik is obtained according to the probability distribution of the
presence of objects in the corresponding window.

• For each window wi, we build a multi-class probability distri-
bution for the presence of objects in the window by joining a
set of two-class object classifiers and normalizing afterwards.

3.4. Adaptive object search

So far, the presented formulation determines the scene type
using S objects, thus, the multi-class window classifier cwi

would
have to run S binary object classifiers and normalize the outputs.
Clearly, this approach does not scale properly with the number
of object classes, as we need to execute a different classifier for
each potential object category. Next, we show thatwe can estimate
the current scene type with high confidence by running only a
subset of the available classifiers. In particular, we use concepts
from information theory to propose an adaptive scheme to guide
the search for informative objects. Under this scheme, we use
the current scene estimate to adaptively decide which object
classifier to run next in order to maximize the reduction of current
ambiguities. Formally,we slightlymodify Eq. (1) by considering the
case of running only a subset of n object classifiers (n ≤ S):

p(ξ |
f1:wL
, 
d1:wL

, c11:wL
. . . cn1:wL

)

=
∑

o1:n

∑

c1:n
1:wL

p(ξ |o1:n)p(o1:n|c
1:n
1:wL

)p(c1:n1:wL
|
f1:wL

, 
d1:wL
), (20)

where c1:n1:wL
represents the set of n classifiers associated to the

detection of n different objects o1 . . . on in L image windows wi.
Therefore, the formulation in Eq. (1) is equivalent to the casewhere
n = S. To simplify our notation, from now on we refer to the
classifiers as c i dropping the subindex wi.

Let us assume that we have an estimate of a scene probability

distribution using n − 1 objects: p(ξ |
f1:wL
, 
d1:wL

, c1 . . . cn−1). We
would like to improve this estimate by using the most useful extra
binary object classifier cn. To do this, we could search for the
classifier c i that, when used, provides information that maximizes
the information gain with respect to the current scene estimate.
This is given by:

I[c i] = [H(p(ξ |
f1:wL
, 
d1:wL

, c1 . . . cn−1))

−H(p(ξ |
f1:wL
, 
d1:wL

, c1 . . . cn−1, c i))] (21)

cn = argmax
ci

I[ci], (22)

where I[c i] denotes the information gain provided by classifier c i,
which corresponds to the change of entropy H of the scene prob-
ability distribution given that we run classifier c i. Unfortunately,
computing this maximization involves running each possible ob-
ject classifier, in which case we would rather prefer to run the full
estimation using all the classifiers. To avoid this problem,wemaxi-
mize the expected information gain of running each extra classifier.
This is given by:

E{I[c i]} =
∑

ci

p(c i)I[c i] (23)

cn = argmax
ci

E{I[c i]}. (24)
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Here each binary classifier c i can output either 0 or 1, and there

is a confidence for that detection encapsulated in the term p(c i). As

a consequence, we can calculate the expected values in Eq. (23) by

estimating p(c i) without running the classifier by:

p(c i) =
∑

ξ∈Ξ

∑

oi∈(0,1)

p(c i|ξ, oi)p(ξ , oi)

=
∑

ξ∈Ξ

∑

oi∈(0,1)

p(c i|ξ, oi)p(oi|ξ)p(ξ). (25)

Next section presents details about how these terms are esti-

mated.

4. Building the scene detector

In this section, we show how we compute each of the terms in

the previous probabilistic model.

4.1. Category-level object detection

In this sub-section, we present our approach to category-level

object detection and show how we compute p(c1:wL
|
f1:wL

, 
d1:wL
)

in Eq. (11). As shown before, this term can be expressed as

αp(
dwi
|cwi

)p(cwi
|
fwi

), therefore, we focus on these two sub-terms.

4.1.1. Computing p(cwi
|
fwi

)

First, we apply an offline training procedure to obtain classifiers

for each object category. We collect a representative dataset using

selected images from 3 main sources: Label Me [46], Caltech

101 [47], and Google Images. Then, we extract a group of features

for each training instance. We explore a large set of potentially

relevant features to increase the hypothesis space, and rely on

learning to prune the search for relevant features. Specifically,

we use a pyramidal decomposition, similar to the approach

in [48]. This decomposition computes the same bank of features

at different image patches within a single image. This allows us

to extract global and local information from each object instance.

In our approach we use a 3-level pyramid, obtaining a total of 21

image patches per object instance.

In order to extract features that can be efficiently computed, we

use histograms based on Integral Channel Features [21]. These are

calculated using integral images from several image channels built

from linear and non-linear transformations of the input image.

Each of the resulting histograms is considered as one feature for

our method.

In our implementation, we first compute 2 image maps: gray-

scale and fine-grained saliency [49]. We call these the base maps.

Afterwards, we use the basemaps to apply several transformations

obtaining the following image channels:

• Base channels: these correspond directly to the initial base

maps (2 channels total).

• Gabor channels: we apply Gabor filters to the base maps, given

by 2-D Gaussian-shaped bandpass filters with dyadic treatment

of the radial spatial frequency range and multiple orientations.

We use 4 different orientations for each base map (8 channels

total).

• Gradients channels: implemented in a similar way to HOG

features but for each base channel we separate magnitude and

orientation information (4 channels total).

• LBPs channels: a measure of texture that uses local appearance

descriptors. We use 2 different radial distances for each base

image (4 channels total).

The above processing produces a total of 18 integral histograms,

one for each computed channel. The procedure to obtain the

integral histograms consists of building one integral image for

each possible gray value (256 for one byte depth channels), that

summarizes the information of the corresponding gray value in the

channel. For base maps, Gabor filters, and gradients, we build 6

different histograms, that differ in the number of bins, obtaining

a total of 12 histograms for plane images, 48 histograms for Gabor

filters, and 24 histograms for gradients. In the case of LBPs, we use

the standard 256 bins LBP histogram and a uniform LBP histogram

for each image, obtaining 8 LBP histograms, for an overall total of

92 histograms for each of the 21 image patches.

The integral histograms allow us to quickly compute an im-

age histogram for any of the 21 image patches and for any re-

quired number of bins, thus, we can build features based on fine

histograms (many bins) and coarse histograms (few bins). Our ex-

periments show that both coarse and fine histograms can be useful

under different situations. As we explain later, a feature selection

procedure chooses the best histograms for classification.

With the previous feature extraction procedure, we obtain a to-

tal of 1932 features for each object instance. It is important to note

that after building an integral histogram, the computational cost of

computing an associated image histogram for any image patch and

fixed number of bins is O(1), as it only requires arithmetic opera-

tions over the integral histogram values. Therefore, if the features

selected for a single object classifier or for several different object

classifiers share the same base integral histogram, those features

can be quickly computed in constant computational time after the

initial integral histogram computation. This is very important for

our implementation as it provides an important speed-up when

running a group of object classifiers.

Using the available features, we train category-level object clas-

sifiers using the AdaBoost algorithm [50]. For each object classifier,

our implementation builds one weak classifier for each computed

histogram, each of them based on a random forest [51] that con-

siders the histogram bins as inputs for classification. In this sense,

we use the building feature selection properties of AdaBoost to se-

lect just a reduced subset of the potential 1932 weak classifiers.

At execution time, we apply the classifiers using a sliding window

procedure that allows us to compute p(cwi
|
fwi

), where we use the

normalized output of the AdaBoost classifier as an estimate of this

probability.

4.1.2. Computing p(
dwi
|cwi

)

To obtain this term we use a 3D Swiss Ranger that provides a

pixel level estimate of the distance from the camera to the objects

in the environment (depth map). Given an image and its corre-

sponding depth map, we use the camera parameters and standard

projective geometry to calculate features 
d = {ds, dh, dd} for each
candidate window containing a potential object, where ds refers

to object size given by width and height, dh is the object altitude

given by its distance from the floor plane, and dd is the object in-

ternal disparity given by the standard deviation of the depth values

corresponding to the pixels inside the candidate window. Each of
these individual properties has its associated term in our equations

and their probabilities take the formof aGaussian distributionwith

mean and covariance that are learned from training data,

dsi|cwi
∼ N(µds, Σds)

dhi|cwi
∼ N(µdh, σ

2
dh)

ddi|cwi
∼ N(µdd, σ

2
dd).

Note that ds includes the height and width of the detection win-
dow, therefore is estimated using a 2-D Gaussian.



Author's personal copy

938 P. Espinace et al. / Robotics and Autonomous Systems 61 (2013) 932–947

In order to take full advantage of 3D information, we use the ge-
ometric properties described before as a focus of attention mecha-
nism. As seen in Eq. (12), the probability of the presence of an object
in a window is a multiplication of a term that depends on 3D geo-
metric features and a term that depends on visual features.We take
advantage of this fact by using geometric properties as an initial
classification step, quickly discarding image windows that contain
inconsistent 3D information, such as a Door floating in the air. In
our experiments, we find that by using geometric properties as an
initial filtering step,we are able to reduce processing time by an av-
erage of 51.9% with respect to the case using just visual attributes.

4.2. Classifiers confidence

Given that an object has been detected at a specific window,
we require an estimate of the confidence of that detection. These
confidence values correspond to the term p(o1:S |c1:wL

) in Eq. (1).
We estimate this term by counting the number of true-positives
and false-positives provided by our classifiers on test datasets.

4.3. Prior of objects present in a scene

It is well known that some object configurations aremore likely
to appear in certain scene types than in others. As we show in [20],
contextual prior information can be inferred from huge datasets,
such as the Flickr website. In our method, we follow this approach
by using representative images from this dataset, computing the
frequency of each object configuration in these images according to
their tags, and normalizing to obtain the probability distributions
included in the term p(ξ |o1:S) of our model. See [20] for more
details.

4.4. Adaptive objects search terms

In order to implement our adaptive objects search strategy
we need to estimate each of the terms on the right hand side of
Eq. (25). The idea is to obtain an estimate for each term using an
offline procedure, in order to avoid running all classifiers at execu-
tion time. Next, we provide details about how each of these terms
are obtained.

To estimate the term p(c i|ξ, oi), we need to obtain test data to
evaluate each object classifier performance in images of each of the
scene types.We use Flickr to obtain this test data, by collecting one
test set for each object–scene couple using a group of images with
the corresponding scene label that contain the object, and another
group of images with the same scene label that do not contain the
object. As an example, for the couple Lamp–Bedroom, we collect a
large group of images that contain the Bedroom label and split it in
a group that contains Lamp label and a group that does not contain
Lamp label. Then, we execute the classifiers associated to each
of the objects in these sets and evaluate their performance. This
offline process provides a set of probability estimates p′(c i|ξ, oi)

for every classifier, object, and scene combination.

To estimate the term p(oi|ξ), we use a frequentist approach that
counts the occurrence of each object in a group of images of each
of the scene types. Once again, we use data from Flickr to obtain
this term, by using one set of images for each scene type that con-
tain the corresponding scene label and analyzing the frequency of
appearance of each of the objects in these sets. As an example,
for the same couple Lamp–Bedroommentioned before, we use the
samegroup of images that contain the Bedroom label and count the
number of those images that contain the Lamp label. Thus, p(oi|ξ)

for this couple would be the obtained count number divided by the
total number of images with the Bedroom label.

Finally, to estimate the term p(ξ), we need to obtain a prior of
each scene probability. Here, we use the current scene estimate
obtained by running previous n−1 object classifiers as these priors.

Results shown in the next section show that the approximation
of p(c i) obtained by building the previous terms provides an
efficient way to avoid running every object classifier. Furthermore,
this reduction in processing timedoes notmake an impact on scene
recognition performance.

5. Results

In this section we present the results of our method performing
several tests in different environments.

We first test our method using two different indoor Office envi-
ronments: (i) Computer Science Department at Pontificia Univer-
sidad Catolica de Chile (DCC-PUC), and (ii) Computer Science and
Artificial Intelligence Lab at Massachusetts Institute of Technology
(CSAIL-MIT). In both environments, we select 4 different scenes
or places where the method should compute a probability distri-
bution given an input image: Office, Hall, Conference Room, and
Bathroom. We use 7 different types of objects to estimate place
probabilities: PC-Monitor, Door, Railing, Clock, Screen, Soap dis-
penser, and Urinal. Clearly, the objects in this set are more or
less related to different places. These relationships are reflected in
the corresponding priors that we estimate using training data. We
train each object classifier using a set of 120 images manually se-
lected from Google Images. To estimate the detection rates of each
classifier, we use independent sets of 200 images, also manually
selected from Google Images. We divide the experiments into two
groups: (i) Single image tests, where we run our method using in-
formation from single images, and (ii) Sequence of images tests,
where we run our method using sequences of images captured by
a mobile robot while it navigates through the environment.

To further study the performance of our method, we also test
the approach in an indoor home environment using a larger list
of object classifiers that includes 12 different types of object cate-
gories: Bed, Chair, Sofa, Door, Dining Table, Lamp, Potted Plant, TV
Monitor, Fridge, Microwave, Sink, and Toilet. In this case, we con-
sider 5 different scene types: Living Room, Dining Room, Bedroom,
Kitchen, and Bathroom.

In all our tests we use QVGA images (320 × 240 pixels) and
a sliding window procedure that considers five different window
shapes: square windows, tall rectangular windows (height bigger
than width in two different proportions), and wide rectangular
windows (width bigger than height in two different proportions).
All these window shapes are applied using different window sizes,
starting from small windows (12 pixels for the smaller window
side) and making them grow by a constant number of pixels (half
of the initial side sizes) until the bigger window side is bigger
than the corresponding image size. The total number of windows,
considering all shapes and scales, is≈90 000.

We limit our tests to data collected in the previous environ-
ments because there is currently a lack of public data sources
that contain visual and 3D range information from indoor environ-
ments. Thus, as an additional contribution of our paper, we make
available a website that contains the code and datasets used in our
experiments, we expect this can help further research in the area.
This website can be accessed at http://web.ing.puc.cl/∼pespinac/
ISR.

5.1. Tests using single images

In this sub-section, we run the scene recognition procedure
using single images, reporting the most likely scene type where
each imagewas acquired. First, we provide a qualitative evaluation
of the proposedmethod. Then, we compare the performance of our
method against 3 alternative approaches. Finally, we provide an
evaluation of the improvements produced by using our adaptive
object search strategy.
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(a) DCC-PUC. (b) CSAIL-MIT.

(c) Focus of attention for CSAIL-MIT.

Fig. 1. (a)–(b) Executions at two different Office scenes. (c) Focus of attention mechanism applied to image in (b).

(a) Execution 1. (b) Execution 2.

Fig. 2. Two different executions for the same image in a Conference Room scene. Both executions provide slightly different results with respect to the confidence in place

recognition. This is due to the Monte Carlo sampling process.

5.1.1. Qualitative evaluation of scene recognition

Fig. 1 shows two different cases where PC-Monitors are
detected, at DCC-PUC (Fig. 1(a)) and CSAIL-MIT (Fig. 1(b)). Given
that Monitors are more related to Offices than to the rest of the
places, Office is the most likely label for the corresponding scenes.
We can see that the method makes a good decision when it finds
a single object instance (Fig. 1(a)) as well as when it finds more
than one instance (Fig. 1(b)). Due to our slidingwindow procedure,
some of the instances are found inside square windows, while
others are found inside wide rectangular windows. Additionally,
Fig. 1(c) provides a view of the focus of attention mechanism
applied to the case of Fig. 1(b). We can see that the method

efficiently discards unlikely places, focusing processing in image
areas that are highly likely to contain Monitors.

Fig. 2 shows an example image where different executions pro-
duce slightly different results. This is due to the sampling proce-
dure. In order to estimate a suitable number of samples, we test
our approach using different numbers of samples and we evaluate
the variance over identical executions. As expected, increasing the
number of samples reduces variance. In our tests, we found that
good results can be achieved by using a number of samples in the
order of hundreds for each summation in Eq. (14). In particular, in
our final implementation we use ≈1000 samples for the external
summation and ≈100 for the internal summation in Eq. (14).
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(a) Hall is the most likely place. (b) Office is the most likely place.

Fig. 3. Two different executions where Doors are detected.

Fig. 4. Example image where no objects are detected.

Fig. 5. Detection of a Screen allows our method to correctly label this image as a

Conference Room. OT-G and LA-SP methods confuse this scene with an Office due

to appearance similarities between Offices and Conference Rooms.

Fig. 3 shows that some objects, such as Doors, cannot discrim-
inate between different places. In this example, both images are
taken in Hall scenes. Fig. 3(a) shows an image where a Door is
detected and Hall becomes the most likely place, while Fig. 3(b)
shows a casewhere aDoor is detected andOffice becomes themost
likely place. In our experiments, we have found that when only
Doors are detected, Hall is slightly more likely than other places,
which is consistent with our object–scene priors, p(Hall|Door) =
0.47 and p(Office|Door) = 0.27. Fig. 4 shows a scenario where no
objects are detected, thus, the resulting posterior distribution for
place recognition depends only on the scene priors. Here, we as-
sume flat priors for the distribution of scene class, where the pos-
terior probabilities in Fig. 4 show small variations around these
priors due to the effect of sampling.

5.1.2. Comparison against alternative approaches

Next, we provide an experimental comparison of our method
with respect to 3 alternative approaches: (i) Oliva and Torralba
Gist approach (OT-G) [13], which is the same approach used as
a baseline in [15], (ii) Lazebnik et al. spatial pyramid approach
(LA-SP) [37], and (iii) Sivic et al. pLSA approach applied to scene
recognition [36]. We train these models using 100 images for each
of the possible scenes. We manually select these images from
Google Images with the goal of obtaining a representative set for
each scene. In (i) and (ii), we use a SVM classifier with Gaussian ra-
dial basis functions as kernels. In (iii), SIFT points are used to build
a visual vocabulary and pLSA is used for classification. For all input
images, we report the most likely place as the scene detected.

For testing, we mix examples from the 2 Office environments
(DCC-PUC and CSAIL-MIT), we use a total number of ≈100 images
per class where at least one object is detected. Table 1 shows
detection rates (confusion matrices) for our method (OM) and the
alternative methods in each of the available scenes. We can see
that ourmethod outperforms the alternative approaches by a large
margin. In particular, we can see that alternative methods tend to
confuseOffice and Conference Room, as both places look very alike.
Our approach presents good performance for these scenarios, as
it can solve ambiguities by detecting discriminative objects, such
as a Screen. To support this statement, Fig. 5 shows an example
where our methodmakes a good decision by assigning Conference
Room to the underlying scene, despite partial occlusion of the only
detected object. In this case, all alternative methods detect the
place as Office.

As an additional test, we also trained alternative methods with
data coming from the testing environments, this is, images coming
from CSAIL-MIT and DCC-PUC, instead of Google Images. We use
100 images for each of the 4 possible scenes, different from the
images used for testing. Table 2 shows detection rates for our
method and each of the alternative methods in this case.

The previous results indicate that when we train the models
with similar amounts of generic data taken from the web, and af-
terwards, we test each model using images from an independent
indoor environment, the proposed method achieves an average
recognition rate of 90% while the accuracy of alternative meth-
ods ranges around 60%. In a second experiment, when we train the
alternative models with images coming from the same Office en-
vironment used for testing, we observe more competitive results.
In this case, the best performing alternative model is pLSA which
reaches an average accuracy of 88% that is closer but still lower
than the proposedmethod trained with generic data. These results
demonstrate suitable generalization capabilities of the proposed
method and also support previous claims indicating that current
state-of-the-art methods for scene recognition present poor per-
formance and low generalization capabilities for the case of indoor
scenes.
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Table 1

Confusion matrices for compared methods.

Scene Off. (%) Hall (%) Conf. (%) Bath. (%) Off. (%) Hall (%) Conf. (%) Bath. (%)

OM OT-G

Office 91 7 2 0 56 12 26 6

Hall 7 89 4 0 13 52 15 20

Conference 7 7 86 0 72 7 14 7

Bathroom 0 6 0 94 0 9 15 76

LA-SP pLSA

Office 44 14 31 11 64 11 23 2

Hall 19 51 17 13 14 59 15 12

Conference 38 16 41 5 27 12 51 10

Bathroom 2 7 13 78 4 9 5 82

Table 2

Confusion matrices for compared methods (second test).

Scene Off. (%) Hall (%) Conf. (%) Bath. (%) Off. (%) Hall (%) Conf. (%) Bath. (%)

OM OT-G

Office 91 7 2 0 83 4 13 0

Hall 7 89 4 0 7 86 5 2

Conference 7 7 86 0 17 3 79 1

Bathroom 0 6 0 94 3 5 3 89

LA-SP pLSA

Office 72 6 22 0 88 4 7 1

Hall 19 71 9 1 4 87 5 4

Conference 24 6 67 3 11 2 85 2

Bathroom 2 4 3 91 1 4 3 92

5.1.3. Tests using adaptive object search

Fig. 6 shows executions of ourmethod in an Office environment
at CSAIL-MIT. Fig. 6(a) shows a case without using adaptive object
search, while Fig. 6(b) shows a case where we include adaptive
object search. In the adaptive case, we add classifiers until the
value of the respective information gain is lower than a predefined
threshold. We can see that in both cases detections are almost
identical, and results differ slightly due to the sampling effect.
The main difference between both executions is that in the first
case all object detectors are executed, while in the second case
the method runs only 5 object detectors: Screen, Urinal, Railing,
Soap Dispenser, and Monitor. The reason for this behavior is that
at the beginning of the inference process, when no objects are
still detected, the adaptive object search scheme chooses to run
classifiers associated with objects that are highly discriminative
with respect to a specific scene type, such as a Screen or a
Urinal, because the eventual detection of those objects maximizes
information gain. This is an expected result becausewe initially use
a flat prior for the scene distribution and therefore the detection of
informative objects produces peaked posteriors.

In the previous case, by avoiding to run 2 object classifiers, the
computational time for the object recognition task is reduced by a
factor of≈1.41. It is important to notice that using adaptive object
search also produces an overhead, as the estimation of information
gain needs to simulate the scene recognition process for every
potential new object type. As we show later, our tests indicate that
this overhead is not significant.

Fig. 7 shows executions in a Conference Room environment
at DCC-PUC, without using adaptive object search (Fig. 7(a)), and
using adaptive object search (Fig. 7(b)). We can see that when
adaptive object search is not used, a Screen and a Monitor are
detected, while when it is used only the Screen is detected. The
reason for this behavior is that at the beginning of the inference
process, when no objects are still detected, the object classifiers are
executed in the sameorder as in the previous example, thus, Screen
detector is the first classifier to be executed. Given that a Screen is
detected with high confidence, the detection of any of the other
objects is considered not useful by the information gain metric,

Table 3

Average speed-up using adaptive object search.

Scene Speed-up

Office 1.92

Hall 1.47

Conference 3.71

Bathroom 2.94

Average 2.51

thus, the Monitor detector is not executed. In both cases, the
final scene recognition is correct and provides a similar posterior
distribution. This confirms our intuition that high confidence
detections of only a subset of the objects present in the scene
is usually sufficient to achieve a correct inference. In this case,
by avoiding to run 6 object classifiers, the computational time
speed-up for the object recognition task is ≈4.7, where speed-up
is defined as the quotient between execution times of the original
implementation and the adaptive implementation.

Fig. 8 shows executions in a Hall environment at CSAIL-MIT,
without using adaptive object search (Fig. 8(a)), and using adaptive
object search (Fig. 8(b)). We can see that in both cases detections
are similar. In the adaptive case after finding instances of Railings
no further detections are considered, obtaining processing speed-
up of ≈2.12.

Fig. 9 shows a worst-case scenario, where no object is detected,
without using adaptive object search (Fig. 4(a)), and using adaptive
object search (Fig. 9(b)). When no objects are found, all object
detectors are executed, thus, execution time increases instead of
being reduced, because of the overhead produced by the adaptive
object search procedure. Nevertheless, this example is interesting
to analyze, as it shows two additional facts about our adaptive
object search scheme: (i) The computational time speed-up is
≈0.94, which confirms that the overheadmentioned earlier is low,
(ii) Doors are the last object type to be searched for, which is an
expected result because they are the least distinguishing object for
the scenes considered in this study.

Table 3 shows the average speed-ups produced by using adap-
tive object search with respect to the case where it is not used, in
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(a) Without adaptive object search. (b) With adaptive object search.

Fig. 6. Executions in an Office environment at CSAIL-MIT.

(a) Without adaptive object search. (b) With adaptive object search.

Fig. 7. Executions in a Conference Room environment at DCC-PUC.

(a) Without adaptive object search. (b) With adaptive object search.

Fig. 8. Executions in a Hall environment at CSAIL-MIT.

images where objects are found. We can see that these speed-ups
differ in the different scene types. While this gain in performance
might be considered marginal, the advantage of using an adaptive
object search growswith the number of object classifiers available.
Therefore, in a large scale case an efficient object search will be-
come a critical tool to avoid the execution of hundreds of object
detectors.

5.2. Tests using sequence of images

As we mentioned before, scene recognition is facilitated by the
embedded nature of a mobile robot. In this section, we run our
scene recognition procedure using sequences of images acquired

by a mobile robot during its navigation through Office and home
environments. In all tests, we assume that while no objects are
detected the scene probability distribution is flat. Also, we consider
that an object is present if it is detected at least 8 times over the
last 10 frames. This is very useful to avoid false positives that may
appear due to noise in some frames.

5.2.1. Office environment

In general, in our test with Office environments the robot is able
to correctly recognize the different places using the adaptive and
non-adaptive object search. Fig. 10 shows amapof part of DCC-PUC
Office environment, displaying the trajectory followed by the robot
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(a) Without adaptive object search. (b) With adaptive object search.

Fig. 9. Executions where no object is detected.

Fig. 10. Map of part of DCC-PUC Office environment, displaying the trajectory followed by the robot during one of its runs. The map also shows the labels assigned by the

robot to the visited places, as well as the ground truth label for each place (ground truth/estimation).

during one of its runs. This figure also shows the label estimated

by the robot for each of the visited places together with the correct

label (ground truth/estimation). We can see that the robot is able

to correctly label most of the visited places, with the exception of

one of the times when it crosses the Hall, where the place remains

undefined. This is due to the fact that during the brief moment

when the robot crosses the Hall, it does not detect any object.

In particular, the DCC-PUC environment does not have Railings,

therefore the only objects detected at Halls are Doors, which are

just slightly more related to Halls than to the other places. In this

example, the overall average speed-up using an adaptive object

search is 2.77, influenced by a relatively fast finding of objects

in most of the places, especially in the Conference Room and the

Bathroom.

5.2.2. Home environment

In this last experiment, we test the performance of our indoor

scene recognition approach using a larger set of object classifiers

for the case of a robot wandering in a home environment. As

described earlier, we consider 12 object classifiers and 5 types of

scenes. Fig. 11 shows a map of this Home environment. The figure

also displays the trajectory followed by the robot and the labels

of the places visited (ground truth/estimation). Next, we provide

insights about the evolution of these scene detections.

First the robot enters a Living Room where a Sofa is detected

(Fig. 12(a)). This detection triggers the execution of the scene

recognition procedure that increases the likelihood of being in a

Living Room. After detecting the Sofawith high confidence, several

Fig. 11. Map of part of a home environment where the robot navigates, showing

the trajectory followed by the robot and the labels of visited places (ground

truth/estimation).

object classifiers are not executed in the following frames, includ-
ing the Lamp detector. This explains the missed detection of the
Lamp in Fig. 12(b). At this point the robot only runs object detectors
corresponding to objects that are highly associated to alternative
explanations of the current scene, such as Bed, Toilet, Fridge, and
Microwave. It is interesting to note that humans are usually also
not aware of all the objects present in a scene. This phenomenon
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(a) A Sofa is detected. (b) A Lamp is not detected.

Fig. 12. Proposed approach operating inside a Living Room in a home environment.

knows as change-blindness has been extensively studied in the lit-
erature [52].

Afterwards, the robot enters a Dining Room, which shares a
common spacewith the Living Room (one big room only separated
by furniture). This fact is represented by a dotted line on the map
in Fig. 11. Here, the robot detects a Chair, and then a Dining Table,
recognizing the Dining Room with high confidence.

After leaving the Dining Room, the robot enters a Kitchen.
Here, it first finds a Microwave (Fig. 13(a)), which increases the
probability of being in a Kitchen. Afterwards, it detects a Fridge
(Fig. 13(b)). At this point the robots are highly confident of being
in a Kitchen, so a third object is present in the scene, a Sink, is not
detected because the corresponding classifier is no longer executed
(Fig. 13(c)).

After the Kitchen, the robot crosses the Dining Room in the di-
rection of the Bedroom. Here the robotmakes amistake, as it labels
the Dining Room as a Living Room. This is due to the correct detec-
tion of a Sofa located in the Living Room that shares a common
space with the Dining Room (Fig. 14). In Fig. 14, note also that in
the scene there is a Lamp, a Potted Plant, and a second Sofa. These
objects are not detected possible due to problemswith the lighting
conditions and robot pose. This suggests that there are still open re-
search issues to improve the performance of the object detectors.

When the robot enters the Bedroom, it almost immediately
finds a Bed, increasing the probability of being in a Bedroom scene
(Fig. 15(a)). However, as the Bed detection does not have high
confidence, the robot still looks for other objects, such as the TV
Monitor that is found afterwards (Fig. 15(b)). Note that in this case
the Bedroom probability actually decreases after finding the TV
Monitor. The reason for this is that, as the detection of the TV
Monitor has high confidence, the probability of being in a scene
that also usually has TVMonitors like a Living Room also increases.

After the Bedroom, the robot briefly crosses the Dining Room.
In this occasion no object is detected and the scene recognition
remains undefined. Finally, the robot enters the Bathroom that is
correctly recognized after detecting a Toilet with high confidence.

6. Conclusions and future work

In this work, we present a new hierarchical probabilistic model
for indoor scene recognition based on a semantic intermediate rep-
resentation given by the explicit detection of common objects. As
a major finding, we confirm our hypothesis about the advantages
of using this type of intermediate representation. In particular, our
results indicate that this representation boosts recognition perfor-
mance, allowing us to overcome some of the limitations of pre-
vious methods for the case of indoor scenes. Furthermore, this

representation facilitates the acquisition of training data frompub-
lic websites and also provides a straightforward interpretation of
results, for example by identifying failure cases where some rel-
evant objects are not detected. This is in contrast to alternative
methods based on generative unsupervised latent models, such
as pLSA and DLA, where the intermediate representation does not
provide a direct interpretation.

A comparison with alternative methods using images coming
from two indoor Office environments indicates that our approach
achieves a significant increase in recognition performance. This is
true even when the proposed approach is trained using generic
data from the web, while the alternative approaches are trained
with images coming from the same testing environment. This
verifies our initial claim that currentmethods for scene recognition
present poor performance and low generalization capabilities for
the case of indoor environments.

It is important to note that our method is only able to make in-
ferenceswhen objects are detected. This assumption is not realistic
for the general case of indoor scene recognition, such as the type of
algorithms needed for applications like image retrieval, however,
we believe that is a valid assumption for the case of an indoor mo-
bile robot that has the chance to explore the environment, captur-
ing a large set of images from a particular place. In fact, in our test
using sequences of images, we observe that most of the places are
correctly labeled, despite the fact that objects are detected at dif-
ferent times inside each scene.

In terms of object detection, we show the relevance of using
reliable 3D information, such as the one provided by 3D range
sensors. In our case, the focus of attention mechanism provided
by the use of 3D geometrical properties becomes a key element to
achieve an efficient sampling scheme to process relevant bounding
boxes.

With respect to the use of an adaptive strategy for object search,
our tests illustrate the advantages of an efficient on-line selection
of object classifiers. In particular, the proposed approach based
on maximizing expected information gain presents a desirable
behavior. Highly informative objects, such as Screens, are searched
first, while uninformative objects, such as Doors, are the last to be
searched for.We believe that the relevance of this adaptive scheme
can be improved by usingmore effective priors. This is particularly
useful for the case of mobile robotics, where the robot can obtain
useful contextual information from its mapping and localization
modules. A deeper study of topics related to relevance, use, and
sources of more informative priors, is part of our future work.

The processing speed-up provided by our adaptive object
search depends on the underlying scene. Some scenes with more
distinguishing objects, such as Screen or Urinal, display higher av-
erage speed-ups when these objects are quickly detected. Scenes
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(a) A microwave is detected. (b) A fridge is detected.

(c) A sink is not detected.

Fig. 13. Proposed approach operating inside a Kitchen in a home environment.

with less distinguishing objects, such as Doors, display lower av-
erage speed-ups. As we mentioned, the advantage of using an
adaptive object search grows with the number of object classifiers
available, therefore, we believe that this scheme is a fundamental
element for a large scale implementation of the proposed method,
where an efficient object search can avoid the execution of hun-
dreds of object detectors.

In terms of processing time, depending on the number of
windows that are discarded at early stages of the object detection,
our (non-optimized) implementation running on a regular laptop
computer currently takes in the order of 20 s to process each
image. Results show that by using adaptive object search we can
reduce this execution time by a factor or 2 or 4, but we still do not
have a real time implementation. Given that our method is highly
parallelizable, we believe that an efficient implementation can run
in real time, for example using GPU hardware. A real time version
of the proposed method is part of our current efforts.

Among failure cases, the proposed approach is not able to la-
bel scenes where objects are not detected or are detected with low
confidence. Also, we observe detection problems in cases where
rare object combinations are found. As an example, in one of our
tests a Monitor is detected in a Hall environment, and only Doors
are detected next to it. As a result the place is labeled as an Office.
These previous failure cases highlight two limitations of our cur-
rent approach. First, images where no objects are detected cannot
be identified. In this sense, we are currently providing our robot
with active perceptual behaviors [53] that can guide its motions
in order to find suitable views of key objects. A second and re-
lated limitation arises from the assumption that contextual rela-
tions among object combinations and places can be inferred from
databases such as Flickr. For single images this assumption is rea-
sonable, however, it becomes problematic when many objects are

Fig. 14. A Sofa detected in a Living Room, but seeing when the robot is actually in

a Dining Room. This produces an error in the scene recognition.

detected inside a particular place, as single images extracted from

Flickr usually do not have all these objects together. This results

in long object combinations receiving an almost null probability.

In this work, this was not a relevant issue because we did not use

many object detectors, however, a more extensive implementa-

tion with a large amount of object detectors will need to consider

this case. A straightforward solution is to use training data to build

probabilistic factorizations of long joint combinations of objects.

This idea is also part of our future work.
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(a) A Bed is detected. (b) A TV Monitor is detected.

Fig. 15. Method operating inside a Kitchen.
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