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Learning Shared, Discriminative, and Compact
Representations for Visual Recognition

Hans Lobel, René Vidal, and Alvaro Soto

Abstract—Dictionary-based and part-based methods are among the most popular approaches to visual recognition. In both methods,
a mid-level representation is built on top of low-level image descriptors and high-level classifiers are trained on top of the mid-level
representation. While earlier methods built the mid-level representation without supervision, there is currently great interest in learning
both representations jointly to make the mid-level representation more discriminative. In this work we propose a new approach to visual
recognition that jointly learns a shared, discriminative, and compact mid-level representation and a compact high-level representation.
By using a structured output learning framework, our approach directly handles the multiclass case at both levels of abstraction.
Moreover, by using a group-sparse prior in the structured output learning framework, our approach encourages sharing of visual words
and thus reduces the number of words used to represent each class. We test our proposed method on several popular benchmarks. Our
results show that, by jointly learning mid- and high-level representations, and fostering the sharing of discriminative visual words among
target classes, we are able to achieve state-of-the-art recognition performance using far less visual words than previous approaches.

Index Terms—Image Categorization, Dictionary Learning, Max-margin Learning, Structural SVMs, Group Sparsity.

1 INTRODUCTION

HE success of recognition methods based on visual
descriptors and off-the-shelf machine learning tech-
niques [1], [2] is one of the main reasons for the new en-
thusiasm in computer vision technologies. These meth-
ods have shown robustness against visual complexities,
such as changes in illumination, scale, affine distortions,
and mild intraclass and pose variations. Unfortunately,
more sophisticated visual complexities such as object
deformations, partial occlusions, and severe intra-class
and pose variations, require more elaborate solutions.
Many of these difficulties have been successfully over-
come by methods that use a mid-level representation,
such as parts [3] or dictionaries of visual words [4]. These
representations model local areas of objects/scenes and
exploit their spatial relations, which allows them to
deal with deformations and occlusions. While it is still
not clear what level of abstraction these representations
should have and how such representations should be
built, in this paper we advocate for three relevant prop-
erties that a mid-level representation should have.
First, the mid-level representation should be shared
among class-level classifiers [5]. In fact, mid-level repre-
sentations should serve as a shared and flexible set of
building blocks that allow us to model a large variety of
visual classes. This compositional view of visual percep-
tion is prevalent in several domains, such as language
or our own visual system, and has been already noticed
by early attempts in computer vision [6]. Furthermore,
it is a key aspect to the scalability of a visual system.
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Second, the mid-level representation should facilitate
discriminative inference. In particular, dictionary words
should favor the representation of discriminative visual
patterns, like a wheel or a window, that are common
only to some categories [7] so that high-level classifiers
can more easily discriminate among the target classes.

Third, the mid-level representation should be compact,
i.e., it should avoid including redundant, misleading, or
uninformative words. A mid-level representation with
an overestimated budget size increases representational
power by modeling fine-scale details. However, it also
increases computational load, the risk of overfitting, and
the rate of spurious responses, which can potentially im-
pair classification. In contrast, a mid-level representation
that is too small might be insufficient to represent large
class variations. While preserving representational flexi-
bility and discrimination capabilities, a suitable compact
representation must provide computational efficiency by
adapting its size to the complexity of the target problem.

However, it is difficult to learn compact dictionaries
that are, at the same time, discriminative of each class
and shared across classes, as these are conflicting goals.
Indeed, without a mechanism that ensures a meaningful
balance, we could easily fall in one of the following cases:

o A word/part that is shared by most of the cat-
egories: In this case, it is very likely that the
word/part is not discriminative at all.

o A word/part that is too specific and appears in
only one category: This case might seem desirable
at first, but this specificity becomes a problem as the
number of categories increases.

Paper Contributions. In this paper we propose a new
approach to visual recognition that aims to learn shared,
discriminative, and compact representations to boost not
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only recognition performance but also efficiency. Our
method is based on a mid-level dictionary of shared dis-
criminative words that is learned jointly with high-level
classifiers for each visual category. By learning a com-
mon mid-level representation among visual classifiers,
we foster shared representations. By using a max-margin
approach to jointly learn dictionary words and high-
level classifiers, we obtain discriminative representa-
tions. Finally, by using a regularization that fosters group
sparsity, we obtain compact representations at the mid
and top-level layers. At the mid-level layer compactness
is provided by the use of short size dictionaries, while
at the top-level layer compactness is provided by word
specialization where each category classifier uses only a
subset of the available visual words. Consequently, the
proposed method is able to adaptively balance classifi-
cation complexity among the target classes, assigning a
higher number of visual words to represent patterns in
complex categories, leading naturally to compact repre-
sentations for mid and top-level layers.

In terms of dictionary learning, we depart from the
usual vector quantization [8] or sparse coding schemes
[9] commonly used in Bag-of-Visual-Word (BoVW) mod-
els. Instead, we use linear SVMs to characterize each
word, similar to [3], [10], [11], [12]. Moreover, we com-
plement dictionary learning with a max-pooling strategy,
as suggested in [9], [13]. In terms of classifier learning,
we depart from the max-margin framework in [14], [15],
which uses an />-regularizer on the classifier weights.
Instead, we use a group-sparse regularizer, which en-
courages choosing very few words to represent each
class, and very few classes to utilize each visual word.

Our experiments show that the proposed method
learns visual words that are shared among classes ac-
cording to the classification complexity of each class,
where larger proportions of the visual words are used
by categories displaying challenging visual variabilities.
Moreover, the obtained visual words are highly discrimi-
native in the sense that they are specialized to specific
appearance patterns. Furthermore, we show that the
proposed model leads to state-of-the-art performance in
categorization tasks on many standard benchmarks, us-
ing an order of magnitude less words than previous ap-
proaches, thus leading to compact representations, which
are critical for the scalability of recognition algorithms.

While prior work has highlighted the relevance of
learning shared representations [5] and there is a vast
literature about methods to obtain discriminative rep-
resentations [16], the problem of learning compact rep-
resentations has attracted less attention [15]. As far as
we know, this is the first attempt to develop an explicit
approach to jointly target these goals. Consequently, this
work makes the following main contributions:

1) A group-sparse structured output learning method
for jointly learning shared, discriminative, compact,
mid-level dictionaries and high-level classifiers.

2) State-of-the-art categorization performance with a
significant reduction in dictionary size and word

usage with respect to previous approaches.

Paper Outline. The remainder of this paper is organized
as follows: Section 2 reviews related work; Section 3
describes the proposed model; Section 4 describes our
method for learning the model parameters; Section 5
presents qualitative and quantitative experiments on
standard benchmarks; and Section 6 presents concluding
remarks and possible future research directions.

2 RELATED WORK

The proposed method is most closely related to
two popular approaches to visual recognition, namely
dictionary-based models and part-based models.

Dictionary-based models build a mid-level representa-
tion that corresponds to the output of a pooling scheme
acting on a visual dictionary that encodes appearance
information from small local image patches. Early ap-
proaches, such as BoVW, were based on vector quantiza-
tion, generally using K-Means to cluster low-level local
descriptors [8], [17]. Afterwards, several variations have
been proposed using alternative quantization methods,
discriminative dictionaries, or different pooling strate-
gies [18], [19], [20], [21]. Additionally, spatial informa-
tion has also been incorporated by concatenating BoVW
representations from different local image areas and
different scales [4]. Sparse coding schemes have also
emerged as a powerful alternative to vector quantization,
providing dictionaries that achieve lower reconstruction
errors and attractive computational properties. In par-
ticular, [9] shows that a combination of sparse coding,
spatial pyramidal decomposition, max-polling, and high
dimensional linear SVM classifiers provide a powerful
scheme to perform object and scene recognition.

One drawback of the aforementioned approaches is
that the dictionary of visual words is learnt in an un-
supervised manner and independently from the clas-
sifier parameters for each visual category. To address
this problem, discriminative representations that jointly
learn mid-level representations and class-level classifiers
have also been proposed. In [16], the authors propose a
discriminative joint learning procedure, based on sparse
coding and linear or bilinear classifiers. While this work
effectively addressed the problem of joint dictionary
learning and classifier training, they use a completely
different model and evaluation setting compared to ours.
In [13], a dictionary is learnt also by means of discrimina-
tive sparse coding, using a joint max-margin formulation
that explicitly includes a linear classifier. Unlike our
work, this classifier is not used then for the final catego-
rization of images, limiting the discriminative power of
the approach. More similar to ours, [22] also presents a
joint max-margin learning problem, where the classifier
and the dictionary are effectively trained and then used
in the final categorization. Despite the clear resemblance
to our work, they model images using the standard
BoVW formulation with a spatial pyramid, leading to a
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completely different problem formulation, with a differ-
ent cost and a different optimization problem. In [23], the
authors take advantage of inter-object visual correlation,
using a joint discriminative optimization framework
based on the Fisher criterion, to learn a common dictio-
nary for each group of visually similar categories and a
set of category-specific dictionaries. A critical difference
with our work is that they use a clustering step previous
to dictionary learning, to generate the class groupings.
On the other hand, by using a group-sparse regularizer,
we are also able to capture visual correlations between
classes, using only one common dictionary. In particular,
none of the above mentioned work has targeted the
problem of learning compact representations or using
group sparse regularizers to adaptively handle model
complexity in terms of the dictionary.

Joint learning has also been explored in other visual
recognition scenarios. In terms of attribute discovery, [24]
proposes a method where visual attributes and low-level
features are integrated to learn a common feature space.
We share some similarities with this work, namely the
use of a joint loss function and the use of a group-sparse
regularizer. In [25], the authors used joint learning in
the context of grouping categories that share similarity
metrics. This context is very different from ours and
is not directly comparable in terms of joint dictionary
learning.

In the case of part-based models, the mid-level rep-
resentation corresponds to basic semantic visual struc-
tures that can usually be mapped to relevant object
components. Common strategies to obtain these parts
are manual selection [26], greedy latent models [3], or
the output of a large set of part-based classifiers trained
using a costly labeling process [27]. Spatial information
is also incorporated into the models by learning common
spatial configurations among parts [3]. After the seminal
work in [3], latent models have been used to jointly learn
parts and object classifiers under a common optimization
scheme that maximizes object classification performance.
Lately, [10] proposed an extension to [3] that directly
considers the multiclass classification case, but in the
context of an action recognition application.

Recently, there has been an increasing interest to
develop semi-supervised methods for part/word dis-
covery that avoid the part-labeling restrictions in [27].
[12] proposes an automatic method to discover relevant
parts/words under the assumption that only the image
category label is known. Each part detector is modeled
using a linear SVM and an iterative process refines
these detectors using a heuristic approach. Performance
evaluation shows state-of-the-art results for a scene clas-
sification task, however, the training process has to be
conducted carefully to avoid convergence to a poor so-
lution. To alleviate this problem, [7] generates the initial
set of parts using exemplar SVMs [28]. Afterwards, an
efficient retraining procedure allows them to outperform
the results in [12]. In [29], a Latent SVM model and
a group sparse regularizer are used to discover and

train the parts in a more principled way. Finally [30]
improves upon [12] by posing the discovery of parts
as a discriminative mode seeking problem using the
mean-shift algorithm. In contrast to our approach, these
methods do not learn parts and class level classifiers
jointly. As we show in this work, joint learning leads
to more efficient mid-level representations.

In terms of hierarchical compositional models, our
work is related to recent recognition approaches based
on deep belief networks (DBNs) [31], [32], [33]. In
general, DBNs consist of a hierarchical compositional
model that incorporates spatial pooling schemes and
intermediate representations based on linear filters, that
are similar to our work. DBNs are usually applied
over a raw image representation using several layers of
generic structures. As a consequence, DBNs have many
parameters and they are usually difficult to train. In
contrast, we embed semantic knowledge in our model
by explicitly exploiting compositional relations among
low-level visual features, visual words, and high-level
classifiers. This leads to simpler architectures that are
less complex to train and do not operate as a black
box. We use this last feature to easily and explicitly
add suitable regularization terms to our main objective
function that foster shared, discriminative and compact
representations. Furthermore, our objective function is
based on a max-margin approach using a hinge loss and
an /; /{;-norm group regularizer, and not a quadratic or a
logistic function commonly used to train DBNs, leading
to a very different optimization setup.

Our optimization framework shares some similarities
with [34], [35] and [36]. In [34], the authors use a multiple
kernel learning framework, while we use a max-margin
framework which captures a structured representation,
while in [35], a joint learning of regions and classifiers is
performed, but not of the dictionary. In [36], a structured
group-sparse regularizer is used to control the number of
components of a DPM model, while we use it to control
the number of words used per category.

Finally, the three main components of our method,
i) a structured max-margin energy representation [11],
ii) a group-sparse regularizer [36] and iii) max-pooling
operator and latent representations [37], have been used
before in the context of visual recognition. However,
to the best of our knowledge, these components have
never been used together in a joint formulation applied
to image categorization, as we do. It is worth to mention
that the combination of these components is not trivial,
posing challenging modeling and optimization issues.
Addressing these challenges is the core contribution of
our work.

3 PROPOSED MODEL

This section describes our proposed model for visual
recognition. Given a set of feature descriptors extracted
from multiple image regions, we propose a mid-level
representation based on a dictionary of linear classifiers,
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each one representing a visual word. These classifiers
are applied to each feature descriptor and a max-pooling
strategy is used to obtain the response for each region.
The high-level representation is then obtained by apply-
ing linear classifiers to these responses.

3.1 Low-Level Image Representation

We use a simple low-level representation that consists
of a set of feature descriptors extracted from a diverse
set of local regions. This representation is motivated by
previous work, which showed the relevance of including
spatial information and a max-pooling scheme in the
image coding stage. For instance, in the case of image
classification, [4] improves the performance of the regu-
lar BoVW model (average pooling) by adding a coding
scheme based on a spatial pyramid decomposition. This
decomposition is generated by dividing the image into
fixed rectangular regions at multiple spatial resolutions.
Similarly, [9] shows that using a max-pooling scheme
instead of average-pooling yields a substantial increase
in performance on several image recognition tasks.
Recently, [35] shows that a random region selection
generally boosts performance compared to pre-defined
schemes, such as a spatial pyramid, when the dimen-
sionality is the same. In our work, we follow this scheme
and we depart from the restrictions of the regular spatial
pyramid regarding its structure and amount of over-
lapping between regions. Following [35], we randomly
define L rectangular regions of any aspect ratio, allowing
them to overlap with each other. Once defined, these
regions are shared among all images. Then, given an
image ¢ and a set of L pooling regions, we extract
multiple local visual features from each region, either
centered at interest points or by using a dense sampling
scheme. In particular, we use visual features given by a
combination HOG and LBP descriptors [38].

3.2 Mid-Level Dictionary of Visual Word Classifiers

Our mid-level representation is obtained by encoding
each feature descriptor with respect to a visual dictio-
nary O. Inspired by [11], we define this dictionary as

o= [91 0y 03 ... 9[{] c R(T+1)><K7 (1)

where T is the dimension of the feature descriptor and
each word 6, represents a linear classifier with bias:

Ok = [0k.1,0k.2, -, 01, bx] T € RTTL, ()

We encode a set of NV;, feature vectors v = [v}', ... ,vf\l,i ]
extracted from a local region [ in image ¢ using a linear
classification score (dot product) with each one of the
visual words 6;, in O, i.e.,

Coy, (Uil) = [<vil’9k>7 ) <U§\LTIL ’ 9k>] e RV, 3)
We then code image region [ by applying a max-pooling
operator that selects for each visual word 6y, its highest
response among all codes ¢y, (v'!) in region I, i.e.:

I@(il) = [HlE}X Co, (’Uil)v -e., INAX CQK(U”)}T € RK? (4)
JEN;, JEN;,

where we have used the notation N = {1,...,N}.
Finally, we build a low-level image descriptor for image
i by concatenating the descriptors of its L regions, i.e.:

ro(i) = [ro(i1), ze(iz),...,zo(ir)] € REL.  (5)

A natural question that arises is what this encod-
ing scheme provides. Intuitively, if the resulting visual
words are discriminative and different from each other,
descriptor v should be similar to very few words in the
dictionary. Furthermore, as we only keep the maximum
response for each word inside each region, descriptor
ze(i) is effectively providing some level of robustness
to local image translations of salient visual features.

It is important to note that in Equation (3), we assume
that dictionary words 6y, act as linear SVM classifiers, i.e.,
a response is given by the dot product between the clas-
sifier and a feature vector. High positive responses indi-
cate high similarity, while low negative scores indicate
low similarity. As we encode each region by applying a
max-pooling operator, a negative value within the region
code means that none of the local features are similar
to the word associated to that dimension. Similarly to
[9], we avoid negative scores for words that do not
participate in the feature reconstruction. We achieve this
by adding to each region a null feature vector 0, whose
dot product with any of the dictionary words is zero.

3.3 Top-Level Object Classifiers

Given a descriptor for image i, re(i), we define the
classification score, or energy function, for image i as:

E(i,y,W,0) = wy ze(i). (6)

Here, w, € REL represents the parameters of a classifier
learnt for object class y € {1,2,...,Y} and

W = [w1 wg - U}y] S RKLXY (7)

represents all the object classifier parameters.

If w, is divided into L sub-vectors of size K, each one
assigned to a different region, we can rewrite the energy
function in the following form:

K

L
E(i,y,W,0)= >
=1k

Wy, 1,k MaAX <'U;'l 3 0k>7 (8)
—1 JEN;;
where w, ;  refers to the k-th element of the I-th sub-
vector of w,. This formulation makes explicit the fact
that the total energy of an image is a linear combination
of max functions. It can also be seen that the energy func-
tion shows a nonlinear dependence between the weights
wy and the dictionary words 0. Given the parameters of
the classifiers for the different object categories, W, and
the parameters of the classifiers for the different visual
words, ©, we classify an image ¢ by:

y* = argmax E(i,y, W, 9). )
y
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4 PROPOSED LEARNING ALGORITHM

4.1 Shared, Compact, and Discriminative Represen-
tations via Structured Norm Regularization

The model described in the previous section depends on
two sets of parameters: visual words classifiers © and ob-
ject classifiers W. In this section we propose an algorithm
for learning both sets of parameters jointly. Specifically,
given a set of training examples {i,y’}",, where i refers
to the i-th image and y* to its corresponding object class,
we propose to find © and W by solving the following
regularized max-margin learning problem:

(10)

N
1 .
min Cy QW) + Cel'(O) + — !
il Cw (W) ol'(©) N;S

Vie NAVyeY,

where 2 and I' are convex regularizers and Cy,Co > 0
are regularization constants. The objective function in
(10) fosters the construction of visual words that behave
like linear SVMs, i.e., classifiers that jointly maximize
the margin and minimize the loss. Moreover, the set
of constraints fosters image classification according to
ground truth labels. Specifically, the value of the energy
function E(i,y’, W, ©) for the ground true label y; should
be higher than that for alternative classification labels
y # y; by a margin given by the loss function A(y",y):

0 ify =
A(y1,y2) = { e (1)

1 otherwise

Additionally, slack variables £ P> provide a mechanism
for a soft violation of these constraints.

To fully specify the formulation in (10), we need to
select suitable regularizers for the parameters W and ©
that lead to shared, discriminative, compact mid-level
representations, and compact high-level representations.

In terms of the regularizer for parameter O, as in [15],
we use the squared {;-norm: I'(©) = 1||0|2. Following
[15], this regularizer does not discard words a priori,
increases discriminative power and reduces overfitting.

In terms of the regularizer for parameter W, we notice
that the squared ¢>-norm regularizer used in [15],

() = W, (12)
penalizes all dictionary words equally. As will be shown
in Fig 2, this encourages all the words to be shared across
all classes. However, the resulting words may not be
fully discriminative because they may not be specialized
to recognize patterns appearing in a subset of the classes.
Moreover, the representation may be compact with re-
spect to the total number of words used, but not with
respect to the number of words used by each class.

To obtain a representation that is both discriminative
and compact, we propose to use a regularizer Q(W) that
penalizes the number of words used by each class inde-
pendently. In this way, each class can select adaptively

the words needed to perform categorization: simple
classes can select few words and complex classes can
select more words. To estimate the number of words
used by class y, observe that if word & contributes to
the classification of instances from class y, then we must
have wyx # 0 for some I, hence Y, w;,, # 0. Thus,
the total number of words used by all classes is given
by sz/ Z,[f 1(3",w?, x # 0). Since this is a non-convex
function of W, we define the contribution of word k to
the classification of instances from class y as:

Cly, k) = Zw;l,k
\/ l

and use it to approximate the total number of words
used by the ¢ /¢5/¢1-norm regularizer on W defined as:

Y K Y K
QW) => > Clyk)=>>" DN w2, 14
Yy k Yy k l

Since our goal is to obtain a mid-level representation
that is shared, discriminative and compact, we combine
the ¢, and ¢, /¢5/¢; norms into the following regularizer:

(13)

Y K
1
QW) =(1 _04)§||W||% +0<ZZ sz,l,k , (15)
vk 1

where the constant o > 0 indicates the relative impor-
tance of the regularizers 2; and 2. This regularization
strategy, which resembles the elastic net regularizer [39],
brings three important benefits. First, it produces a com-
pact representation, as it adaptively reduces the dimen-
sionality of each category, something that is helpful to
reduce the risk of overfitting. Second, words can focus
only on some of the categories, generating a meaningful
sharing and increasing their discriminability. Third, most
of the words are not discarded by the model, keeping
high the representational power of the dictionary.

4.2 Alternating Minimization with Latent Variables

Although the learning problem in (10) is similar to that
for Structural SVMs (SSVMs) [40], existing techniques to
train SSVMs are not applicable because the constraints in
(10) are non-linear in the parameters (1, ©). Moreover,
block-coordinate optimization strategies that alternate
between solving for W and © can not be directly applied
because, when fixing W and solving for O, the resulting
constraints are still not linear in the parameters.

To tackle this issue, we reformulate the learning prob-
lem in (10) using latent variables to avoid the non-
linearity introduced by the max-pooling operator. If we
recall, the descriptor of a region / in image 7 is given
by (4). We modify this expression by removing the max
operator and adding a set of latent variables z = {2 1)},
forl € LAk € K. Here, 2, ;, is the index of the descrip-
tor extracted from region ! in image ¢ with maximum
response to the application of word 6, i.e.:

i i
21 k) = argggax(@m v ).
J i

(16)
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As it can be seen, the latent variables serve as proxies for
the max- pooling operation. To simplify the notation, we

will denote o7, = vl and v}, = vZ . Using these,
) ’

Eq. (8) becomes:
L K
E(i,y,W,0) Z Zw%l k(O 0] 1) 17)
Ik

Based on this energy formulation, we can now state the
problem in a form similar to Eq. (10):

1L
+N;£l
L K )
DN wy Ok, 1) —

l k

L K . 4 4
SN wyanOnvf ) = Ay y) - €,
l k

Vie NAYy €Y AVz € Ni.

min Cy QW

wn )+ Col'(0)

(18)

This new problem is now similar to a Latent Structural
SVM (LS-SVM) [41], but the constraints are still non-
linear in (W, ©). Nonetheless, if we fix W, the constraints
become linear in © and vice versa. Thus, we can solve
it efficiently using alternating minimization.

More specifically, notice that Eq. (18) can be rewritten
as two different unconstrained problems. Fixing ©, we
obtain the following optimization problem over W:

Hl}li/n Cw QW)+ (19)
L L K
N Zmazxz Zwy 1k Ok, v ) + AW, Y)
im1 U7 S k=t
L L K 4
- Z msz Z Wy 1 1Ok D) 1) -
i=1 =1 k=1

Likewise, fixing W, we obtain the following optimization
problem over ©:

(20)

N
— % Z rnz%X Z<9k, Z wyi7l7k@f7k>.
i=1 k=1 =1

The structure of the above optimization problems is
very similar to that of the LS-SVM problem, which
can be solved using the CCCP algorithm [42]. This
algorithm is designed for problems whose objective can
be decomposed as the sum of a convex and a concave
term. It proceeds by iterating between the optimization
of the concave and the convex parts leading to a local
minimum or saddle point. In our case, if we follow the
steps of the CCCP algorithm, the estimation of the latent

variables reduces to the following problem:

2" fargmaxzz:w ik Gk,vl L)

=1 k=1

2D

Eq. (21) shows that the local feature vector selected
for region [, image ¢, and dictionary word 6y, depends
on the sign of wy: ; , and the value of the inner product
{0k, 0} ;). Now, since one of the purposes of the latent
variable z is to induce the max-pooling behavior on dic-
tionary word responses inside each region, the value of
each 2 should not depend on the sign of Wy 1 - To avoid
this problem, we enforce the non-negativity constraints:

Wy 1,k > O,Vy, l, k. (22)
In this way, the value of the inner product (0, v} ;) will
only be scaled by w1, thus preserving the semantics
of max-pooling. With this assumption, z* depends only
on O, thus making it unnecessary to update the latent
variables after recomputing W.

In summary, we propose to solve the learning problem
in (18) by alternating between the following two steps
until the energy defined by (18) stops decreasing:

Estimation of W. Given fixed values of © and {z'},
solve the following convex minimization problem

N
(ZmanZZwy,zk Or, 07 1) + Ay, y))
L lKlk 1 |
N Zzzwylkwkv@fﬁ
=1 1=1 k=1

st wy k> 0,Vy, Lk

This is a max-margin multiclass learning problem with
a structured norm and non-negativity constraints on
W. To solve this problem, we need a procedure that
can handle large visual dictionaries. Thus the optimiza-
tion algorithm must be fast and with low memory
requirements. Given these constraints, the L-BFGS quasi-
Newton method [43] is an attractive option. This algo-
rithm has been successfully used in visual recognition
problems [44], and it is able to handle non-convex and
non-smooth optimization problems [45]. To obtain a
suitable search direction, the L-BFGS algorithm estimates
the inverse of the Hessian matrix by means of an implicit
reconstruction. This is based on the values of the solution
and its gradient during the last iterations, allowing it to
work with a very limited amount of memory.

Estimation of ©. Repeat the following two steps until
objective function defined in (20) stops decreasing:

« Given fixed values of W and {z'}, solve the follow-



ACCEPTED: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

ing convex minimization problem:

m@in Col'(©)+

(Zmaxz Hk,zwyzwm ) + Ay, ))
N K B L

) D

=1 k=1 =1

(24)

‘lkvlk

« Given a fixed value of ©, compute for each example
the optimum value for its latent variables 2* as:

2t = argmaxzz Gk,vl &
1=1 k=1
This is a LS-SVM, which we solve using the CCCP
algorithm [41], as described in [15].

Although the convergence to a local minimum or
saddle point of the block coordinate descent method can-
not be guaranteed theoretically [46], experimentally we
found that for a suitable selection of the regularization
constants Cyy, Ce and «, our procedure does converge.
In practice, we repeat the three steps of the proposed
algorithm until the ratio of energy reduction between
iterations is lower than a fixed threshold.

(25

5 EXPERIMENTAL EVALUATION

This section presents a qualitative and quantitative eval-
uation of our method with respect to three aspects. First,
we evaluate the effect of the group-sparse regularizer
by analyzing the word contributions, the effective num-
ber of words used after training and the amount of word
sharing. Second, we visually analyze the effect of jointly
training the dictionary and classifiers by inspecting the
activations of the dictionary words. We evaluate them
with respect to discriminability, specialization and shar-
ing. Finally, we analyze the categorization performance
of our method on 4 different datasets. We evaluate the
relation between performance and dictionary size and
end with a comparison between our method and other
alternative state-of-the art techniques.

5.1 Implementation Details

Pooling Regions and Feature Extraction. We downsize
each image to no more than 300 pixels in each direction,
keeping the aspect ratio untouched. Then, we normalize
image coordinates to be in the range [0-1] and randomly
define L, possibly overlapping, rectangular regions with
width and height in the range [0.25-1.0]. For each evalu-
ation performed, we use 30 regions, based on the results
of [15]. Finally, we extract local HOG+LBP features [38]
from each image over a dense grid of cells of 16 x 16
pixels, with a stride of 8 pixels in each direction.

Initial Dictionary. We sample between 70 and 100 local
feature vectors per training image, and cluster them
using the K-Means algorithm. A linear SVM is trained

for each cluster, using as positive examples the ones
belonging to that cluster, and as negative examples a
random sample of features from other clusters.

Dataset Details.

o 15 scene categories [4]: This dataset contains images of
15 natural scene categories. We use 5 random splits
of the data, using 100 images per class for training
and the rest for testing.

o Caltech101 [47]: This dataset contains 102 object
categories (101 objects and background). We use 5
random splits of the data, using 30 images per class
for training and the rest for testing.

o UIUC-Sports [48]: This dataset contains scenes of 8
sport events. We use 5 random splits of the data,
using 70 images per class for training and 60 for
testing.

e MIT67 Indoor [49]: This dataset contains 67 indoor
scene categories. We use the standard evaluation
procedure, using 80 images per class for training
and 20 for testing.

5.2 Effect of the Structured Norm Regularizer

Effect of the Structured Norm Regularizer. We start
this analysis, by measuring the word contribution per
category, C(y, k). Figure 1 shows the word contributions
for the MlITcoast category of the 15 Scene Categories
dataset using two different regularization configurations,
a = 0 and o = 0.1. In both cases we use the same
initial dictionary composed of 1000 words and sort the
contributions in decreasing order. As it can be seen in
Figure 1b, the distribution of word contributions shows
a more abrupt slope compared with Figure 1a. Moreover,
it clearly shows that fewer words are used.

Effective Dictionary Size. As discussed in Section 4.1,
the structured norm regularizer should encourage the
use of fewer visual words to describe each category. To
assess this numerically, we need a criterion to count
the number of words used by the categories. We as-
sume that, for a given category y, words are sorted
in a descending order based on its contribution, i.e.,
C(y, k1) > Oy, ko),V k1 < ky € K. Given this, we define
the effective number of words used by a category y as:

Zl 1C(y, i) > 7‘}
Sicy Cly, i) ’

where 7 € [0, 1]. Given a fixed value of 7, we define the
effective number of words used by a model as:

(26)

K; :min{

K

Y
227
y=1

To select a suitable value for 7, we look for the small-
est value 7* such that the performance in the training
set does not decrease. We measure performance as the
average hit rate, i.e., the mean of the diagonal of the con-
fusion matrix. In practice, starting from 7 = 1, we reduce

=

27)
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Fig. 1: Contribution of word k to the categorization of
class y = MITcoast as measured by C(y, k) in (13). When
a = 0, the /5 regularizer encourages most of the words to
be used. On the contrary, when o = 0.1, the group sparse
term encourages the use only a few words. This trend
repeats for every category in every analyzed dataset.

the value in steps of 0.005, until we see a performance
drop larger than or equal to 0.1 in the training set.
Table 1 presents, the effective number of visual words
K used by the method, the minimum and maximum
number of words used per class y, and the number of
discarded words, i.e., not used by any class, as a function
of the dictionary size K. Results are presented for each
of the four datasets and are the average of the different
training /testing splits runs, except for MIT 67, which
has a fixed training/testing split. As it can be observed,
the effective number of dictionary words, as well as the
minimum and the maximum, stabilize in each of the four
datasets, when using dictionaries larger than 1000-1100
words. This indicates that there is a limit, after which
there is no more information to be extracted from a
dictionary. Also, as expected, the number of discarded
words keeps increasing with the size of the dictionary.
Although a stable point is achieved for each dataset,
the effective number of words used is different in each
case. As expected, datasets with fewer categories, such
as UIUC-Sports and 15 scene categories, need less words
than datasets with more categories, such as MIT 67 and
Caltech 101. This makes sense as, intuitively, the dimen-

UIUC-Sports
K 50 | 200 400 600 800 1000 | 1200

K 40+1|121£11|169+12| 20548 |223+11| 236+8 235110

min f(y 32+2| 9249 | 12749 | 15149 |169+11| 171£5 |173+26
max f(y 43+1|141£15|196£17|254+27|285+16|316+25(3071+40
Discarded | 0£0 | 11+7 | 54+4 |117+11|188+21|286+11|437+19

Caltech 101
K 50 200 400 600 800

K 39+0( 106+1 | 179£2 |218+10| 248+8

1000
27245

1200
277+£8

min f(y 25+2| 5645 | 98+5 | 9144 | 11448 [1224+19(114+14
max f(y 45+1| 13643 (2334+11|2994+13|3704+36 (431420 (442432

Discarded | 040 | 00 441 1543 | 3244 | 5144 | 9145

15 Scene Categories

K 50 200 400 600 800 1000 1200
K 35+1| 9348 [1404+10| 17947 | 19249 | 206+9 (207410
min I?y 2242| 4542 | 6749 | 98+5 | 10145 | 110+7 [100+£15
max f(y 434+1(1214+10{199+13|257+17|288+20(328+50(323+36
Discarded | 0+0 | 442 1944 | 54+7 | 98+13 [160421|2594+26

MIT 67
K 50 200 400 600 800 1000 1200
K 43 | 116 | 208 | 241 | 286 | 326 | 328

minKy, | 30 | 68 134 | 148 | 156 | 168 | 171
maxKy, | 49 | 151 | 281 | 343 | 390 | 515 | 521
Discarded| 0 0 0 9 20 30 56

TABLE 1: Effective number of visual words K, minimum
and maximum number of words used per class y, and
number of discarded words as a function of the dictio-
nary size K for four different datasets.

sionality needed to discriminate has a direct relationship
with the complexity of data.

Word Sharing. While the numbers presented in Table 1
clearly indicate that each category uses a small fraction
of the visual words, they do not give information about
how the words are being used, i.e., how many categories
use a specific word for classification. To analyze this,
we use again the word contribution, C(y, k). Here, we
assume that, for a given word k, categories are sorted
in descending order, based on their contribution, i.e.,
C(y1, k) > C(y2,k),V y1 < y2 € Y. Given this, we define
the number of categories that use word k as:

- 4 ;
Y, = min{y : M > T}.
> iz Ci k)

We select the value of 7 as 7 = 7* as described before.

Figure 2 shows an example of the number of categories
that use a given visual word on the 15 scene categories
dataset, with a dictionary of 1000 words, using oo = 0 and
a = 0.1. Words are sorted in descending order, based on
the number of categories in which they participate.

As it can be seen in Figure 2, when the group-sparse
term is not present, approximately 80% of the words
are used by ten or more classes, representing a very
low specialization level (on average, each word is used

(28)
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Fig. 2: Number of classes of dataset 15 scene categories

in which word k participates. When « = 0 (blue), most

words are used by many classes. When a = 0.1 (red),

each word is used by very few classes.

on 11.8 classes). On the contrary, if the group-sparse
term is present, we observe that around 55% of the
words are used on 1-3 categories, while around 15%
are discarded. If we restrict only to the non discarded
ones, then each word is used, on average, in 3.2 classes.
This supports the fact that our method tends to select a
small group of more specialized words, thus increasing
the discriminative power of the words.

5.3 Visualization of Dictionary Word Activations

Discriminative Words. One of the expected effects of the
estimation of ©, is the increase of discriminative power
of the dictionary. In practice, this means that, after the
training process, the top activations of words should be
more precise, consistent and get higher scores in areas
similar to the visual pattern represented by the word.
Figure 3 shows the evolution of the top activations of
a visual word, in an image of the class MIThighway of
the 15 scene categories dataset. In this case, we observe a
clear increase in the activation score (circles with larger
radii). Moreover, top activations appear in places that
seem to be more discriminative and consistent (clouds).
As it will be shown later, this increase in discriminative
power is one of the factors that allows our method
to improve categorization performance and reduce the
effective dictionary size, when compared to the case
where classifiers and dictionary are not jointly trained.

Specialized and Shared Words. We will now show
activations of both specialized and shared words and
analyze them in terms of the visual patterns they cap-
ture. To measure the level of specialization of a word,
we compute the specialization ratio, S(k), defined as:

v

S(k) = =k,
)= 3+

(29)

where 7* is the optimal value for Y7, as described before.
Intuitively, if 7 is sufficiently small, the numerator of

(a) Using the initial dic-
tionary.

(b) After the training
process.

Fig. 3: Activations of the word are marked with red
circles, with the radii being proportional to the activation
score. Using the initial dictionary, activations tend to
appear on the clouds, but also on some trees. After the
training process, the same word shows higher activation
scores and appears only on the clouds.

(a) Initial dictionary (b) After training

(c) Initial dictionary (d) After training

Fig. 4: Activations of a word specialized in the bedroom
category. Figures 4a and 4b show activations for category
bedroom before and after training, respectively. Figures 4c
and 4d show activations for category MITcoast before and
after training, respectively. Red circles indicate a positive
response, while blue circles indicate a negative response.

S(k) will count the number of categories for which word
k is highly important. Thus, by computing the ratio
between this value and the number of times word £ is
used by a class, we obtain a measure on how specialized
the word is. This allows us to focus only on words
that are highly discriminative and representative of the
classes in which they participate. In practice, we found
that 7 = 0.4 gives satisfactory results on the experiments.

We first focus on words that are highly specialized
in only one category. Figure 4 shows the activations of a
word that is highly specialized in the bedroom category of
the 15 scene categories dataset. For the images in Figures
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(c) (d)

Fig. 5: Activations of a word specialized in multiple
categories. This word seems associated to horizontal
edge patterns such as the horizon, a pattern shared by
categories MITcoast (5a,5b) and MITopencountry (5c,5d).

4a and 4b, which correspond to the bedroom category,
the word initially shows consistent responses to vertical
patterns. As this seems to be highly characteristic of
this category, after updating the dictionary our algorithm
increases the contribution of the word to that category.
On the other hand, for the images in Figures 4c and
4d, which correspond to the MITcoast category, the same
word shows initially very low responses. In this case,
our method reduces the contribution of the word to this
category. In summary, our algorithm is able to learn
visual words that are specialized to a single class.

The second case we analyze is very interesting from a
visual point of view, as it presents a word that is highly
specialized in more than one category. This allows us to
observe highly discriminative and characteristic visual
patterns, that are shared only by some of the categories.
Figure 5 gives an example of a word that shows strong
activations on horizontal edge patterns, like the ones
visible on scenes containing the horizon. By analyzing
the specialization ratio of this word, we find that it is
highly specialized in 2 categories, MIIcoast and MITopen-
country. These two categories contain multiple images
where the horizon is a main element of the scene. Besides
showing strong activations on the horizon, there are very
few activations outside that region. This shows that the
specialization of the word, is able to discriminate very
specific visual patterns without many false activations.

Discarded Words. There are cases were the contribution
of a visual word to all image categories is very low,
due to bad quality cluster generated by k-Means. When
this happens, the word get progressively shrank to zero,
which means that it is completely discarded from the

Fig. 6: A word with low activation for all classes. The
strongest activations of the word show no clear pattern.

model. In Figure 6, we present a case where a dictio-
nary word shows poor discriminative power from the
beginning, activating everywhere on images, without a
clear pattern. In that case, the contribution for each class
will be near to zero, eventually leading the algorithm to
discard the word completely, i.e., zeroing the word.

5.4 Performance Evaluation

Regularization Constants. The regularization constants,
Cw and Ceg, are obtained by performing 5-fold cross-
validation on all four datasets. For each value of Cyy, we
restrict the search for the value of Cg based on the norm
of the first estimation obtained for W. We found that a
suitable rule to set the initial value of Cg is given by:

Cw - QW) ~ Ce - T(0) (30)

Eq. (30) seeks to balance between the two regularizers,
as both estimations, W and ©, are linked by the same
loss. If one of the regularizers is more aggressive than
the other by a large margin, the reduction of the norm
of that parameter will be more important than learning,
thus harming the performance of the whole system.

Regarding the constant o, we test values in the range
[0,1], with a step size of 0.1. Empirically, we found that
for a = 1, the regularizer 2 is dominated by the group
sparse term, resulting in overfitting problems, probably
due to the non-smoothness of the objective function and
the lack of generalization power of the group sparse
norm alone. A similar problem is appreciated in stan-
dard /;-norm SVMs, where the common solution is to
use the elastic net regularizer [39]. Again, we empirically
observe that a balance is reached between the two terms
of Q(W), when the value of « is around 0.1.

Classifier post-processing. As shown before, the group-
sparse regularizer provides a high degree of word spe-
cialization. However, this restriction over the energy
function implies that the top-level classifier is forced to
operate over a limited number of words. To improve
this situation, after the training procedure is finished,
we perform a retraining of the top-level classifier, using
only the /-norm regularizer, and keeping the mid-level
dictionary fixed. Our intuition is that, during the joint
training step, the group-sparsity constraint plays its role
to foster class specialization among the mid-level words.
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Fig. 7: Performance of the proposed approach as a
function of dictionary size for different datasets. Near
1000-1100 words, our method achieves a stability point,
where performance remains almost constant and sees no
benefit from adding more words.

Afterwards, by removing this regularizer, the top-level
classifier can capture new relations that were not pos-
sible before. In the following sections, we make explicit
when the results use the post-processing step.

Dictionary Size and Performance. Following the exper-
iments presented in Table 1, we explore categorization
performance as we increase dictionary size from 50 to
1200 words. Figure 7 shows the average hit rate in the
four datasets. As expected, there is a gradual improve-
ment in performance as the dictionary size increases and
performance eventually stabilizes. This marks a clear
difference with the method of [15], where performance
drops after the maximum is achieved due to the overfit-
ting effect introduced by using more dictionary words.
Although the highest performance of that method is
reached with a smaller dictionary, the effective number
of words used here is comparable to that number in
all four cases. This indicates that the dictionary words
obtained here are more discriminative.

Impact of increasing the Problem Complexity. The
higher discriminativity and specificity of the mid-level
words provided by our method should positively af-
fect its capability to handle the complexity of a target
problem. To quantify this issue, we compare in terms of
recognition accuracy, the effect of increasing the number
of categories in the MIT67 dataset. We consider in our
evaluation our method and two baselines: the method
in [15] and a variant of [15] that does not perform
joint optimization. Results are presented in Figure 8,
using post-processing after training. As expected, as the
number of categories increases, the recognition accuracy
of the proposed method is far less affected than the
two baselines. This result shows a relevant advantage
of the proposed model, in particular the effect of the
group sparsity constraint to manage the complexity of
the target problem.

0.75

T
Baseline

07 No group-sparse||
Group-sparse

0.651

061

0.551

Hit-rate

051

0.451

0.4r

0.35 . . .
10 20 30 40 50 60 70

Number of categories

Fig. 8: Performance of the proposed approach (a = 0.1),
the method of [15] (o = 0) and a baseline method with
no joint optimization (o = 0.1, Ce = 0), as a function of
the number of categories of the MIT67 dataset.

Class complexity and dictionary size. As each category
adaptively selects the amount of words it uses, it is
possible to study, for each of them, the relation between
performance and number of words used. Intuitively, one
would expect a negative correlation, i.e., the easier it is
to classify a category, the fewer words are needed, and
vice versa. To analyze this, we define for each class y,
the normalized number of words used as follows:

~ K, — min, K

K} = y " y iy

max, K, —min, K,

€ [0,1]. (31)

Notice that the class that uses the fewest words receives
a 0, and the one that uses the most words receives a 1.
Given this, for each possible dictionary size K, we
have Y pairs (p,, f(; ), where p, is the hit-rate for class
y. In practice, we generate pairs by increasing total
dictionary size from 50 to 1200 words. To visualize
this information in a meaningful way, for each of the
four datasets, we divide the interval of the normalized
amount of words, [0,1], in 10 regular segments. For
each segment, we plot in Figure 9 the average hit rate
and the standard deviation of points lying in the seg-
ment. Although the standard deviation is large in some
cases, we can clearly see that categories with higher
performance tend to use less words than categories with
lower performance, which is the intuitive behavior we
expected. Although this behavior is less clear on 15
scene categories and UIUC-Sports, this is something to be
expected, as those datasets have very few categories.

Categorization Performance Comparison. The next ex-
periment compares our results against alternative meth-
ods based on intermediate representations. We divide
these methods in two different types:

o Small patches: These methods use as visual words
features extracted from patches of small size, e.g.,
16 x 16 pixels. Words are generally described by only
one cell of local feature descriptors, like HOG [2] or
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Fig. 9: Class performance (hit rate) as a function of
the effective number of words used. Classes with lower
complexity (higher hit rate), tend to use less visual words
than classes with higher complexity (lower hit rate)

SIFT [50], thus they are low-dimensional.

o Large patches (Parts): These methods use features
from patches of different sizes as visual words,
generally ranging from 40 x 40 to 80 x 80. These
larger patches allow for more complex visual words
that capture higher levels concepts, like object parts
or even full objects, but at the expense of an increase
in dimensionality, as each is generally described by
multiple cells of local feature descriptors.

Table 2 shows the results of methods that use small
patches. We also include a baseline method in the com-
parison, which corresponds to the approach described in
this paper, but without performing the dictionary update
step (estimation of ©). By analyzing the results, we
observe that our method achieves state-of-the-art perfor-
mance on almost all datasets. As previously stated, even
though the total dictionary size is comparable to other
methods and is larger than the one in [15], this direct
comparison is not meaningful, as the effective dictionary
size is adaptively chosen by each category. Thus, the
correct way is to compare against the effective number
of words used, K. This number is significantly smaller
than the dictionary size of the rest of the methods, and
is similar to [15]. In both cases, the difference is that our
method allows the specialization of words for certain
categories, giving a clear performance advantage. We
also report the results of our method using the post-
processing step, under the name Proposed?2.

Notice also that our best results outperform the base-
line by 5% to 9% depending on the dataset used. This
difference allows us to confirm our hypothesis joint
learning of visual words and object classifiers increases
the discriminative power of the dictionary. It is also

Dataset
Method |# Words |UIUC-Sports|Caltech101| 15 Scenes |MIT67
Baseline 500-600 | 82.3 £ 1.2 [66.8 £ 0.6|81.2 £ 0.4| 35.1
[4] 400 - 64.6 +0.8(81.4 £ 05| -
[9] 1024 - 732 + 05 80.3 -
[49] 200 . . . 265
[51] 2048 - 73.4 80.5 + 0.6 -
[22] 5250 - - 827 + 05| -
[52] 300 71.7 . . 28
[53] 1024 872+ 1.1 |732 +£0.8(82.7 + 0.5 -
[54] 200 - - 78.6 &+ 0.7| 379
[15] 200-300 | 85.6 £ 1.1 [72.9 £+ 0.6 |84.6 £ 0.4| 39.5
Proposed | 200-330 | 86.4 £ 1.2 |73.6 £ 0.7 (853 &+ 0.4| 41.2
Proposed2 [1000-1100| 87.5 + 1.3 |75.4 & 0.6 |86.3 £+ 0.5| 44.1

TABLE 2: Categorization performance of methods that
use small patches on 4 different datasets. Our method
is able to achieve state-of-the-art performance using a
smaller dictionary than competing methods.

Dataset

Method |# Words |UIUC-Sports|Caltech101| 15 Scenes |MIT67
Baseline | 500-600 | 82.3 £ 1.2 [66.8 £ 0.6(81.2 &+ 0.4| 35.1
[55] 200 p.c. 76.3 - 80.9 37.6
[56] 9p.c - - - 30.4
[56] 9pec - - - 43.1
[12] 210 p.c. - - - 38.1
7] 50 p.c. - - - 46.1
[29] 90 p.c. | 864 £+ 0.9 [78.8 £ 0.5|86.0+ 0.8| 51.4
[30] 200 p.c. - - - 64.0
Proposed | 200-330 | 864 + 1.2 |73.6 & 0.7 |85.3 + 0.4| 41.2
Proposed2 [1000-1100| 87.5 + 1.3 |75.4 + 0.6|86.3 + 0.5| 44.1

TABLE 3: Categorization performance of methods that
use large patches on 4 different datasets (p.c. = per class).
Although performance on indoor scenes is below the
state of the art, our methods remains highly competitive
on the other datasets.

interesting to see that the post-processing step allows for
a measurable and consistent increase in performance in
all datasets, confirming our intuition regarding the use
of the words.

Table 3 shows the results of methods that use large
patches on the same four datasets. On three of the
datasets (UIUC-Sports, Caltech101, 15 scene categories), our
method shows competitive performance, generally us-
ing a smaller dictionary than competing methods. Only
when comparing performance on the MIT67 dataset,
results of methods that use large patches outperforms
our technique by a significant margin. Given the charac-
teristics of our method and the particularities of indoor
scenes [57], this is an expected situation. On these type
of datasets, where intra-class image appearance varies
drastically, categorization is generally improved by us-
ing semantic information, commonly captured by larger
structures, like object parts. Although, in theory, groups
of small patches are able to capture the same information
that larger templates do [58], they need to be associated
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by some type of relation, in order to keep the structure
of a larger visual pattern, an aspect that is not included
in our method. In the case of rigid objects, as the ones
generally found on indoor scenes, large patches are ca-
pable of capturing their discriminative parts or even the
objects themselves. Unless small-patch methods include
a mechanism to model the relations between words, this
puts them in a clear disadvantage for indoor scenes, as
generally they only capture information of small regular
textured patterns. Unfortunately, in our case, increasing
the dimensionality and size of visual words is not an
option, as the dimensionality of the learning problem
grows to a point where our current implementation is
not able solve it in a reasonable time.that is been used
by humans to solve the problem, like...

6 CONCLUSIONS AND FUTURE WORK

We have proposed a new method for visual recogni-
tion based on a group-sparse structured output learning
framework. As a main feature, the proposed method is
able to jointly learn a suitable mid-level dictionary of
visual words along with a set of top-level category-based
classifiers. As a main contribution, our experiments pro-
vide evidence that the proposed method learns shared,
discriminative, and compact representations, three rel-
evant properties for the effectiveness and scalability of
a hierarchical visual system. Among our main findings,
we demonstrate the relevance of a joint training of mid
and top-level layers, as well as, the effectiveness of a
max-margin approach to achieve this goal. In particular,
our results indicate a performance gain between 5%
to 9% by using a joint learning scheme. Furthermore,
this joint learning allows us to introduce group sparsity
constraints that foster the specialization of the visual
patterns captured by the mid-level representations. As
shown by our experiments, this specialization is highly
effective to manage model complexity by adapting visual
words according to the classification complexity of each
target class. This leads to compact representations that
achieve state-of-the-art performance using an order of
magnitude less visual words than previous approaches.
In future work, we plan to investigate the effect of
introducing further intermediate levels to our model in
conjunction with suitable group sparsity constraints to
manage model complexity and spatial relations among
visual words. Furthermore, we plan to implement dis-
tributed version of our optimization scheme to scale the
approach to larger datasets.
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