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Abstract

Computer vision is playing an increasingly important role in automated visual food inspection. However quality control in tortilla
production is still performed by human operators which may lead to misclassification due to their subjectivity and fatigue. In order to
reduce the need for human operators and therefore misclassification, we developed a computer vision framework to automatically
classify the quality of corn tortillas according to five hedonic sub-classes given by a sensorial panel. The proposed framework
analyzed 750 corn tortillas obtained from 15 different Mexican commercial stores which were either small, medium or large in
size. More than 2300 geometric and color features were extracted from 1500 images capturing both sides of the 750 tortillas.
After implementing a feature selection algorithm, in which the most relevant features were selected for the classification of the
five sub-classes, only 64 features were required to design a classifier based on support vector machines. Cross validation yielded a
performance of 95% in the classification of the five hedonic sub-classes. Additionally, using only 10 of the selected features and a
simple statistical classifier, it was possible to determine the origin of the tortillas with a performance of 96%. We believe that the
proposed framework opens up new possibilities in the field of automated visual inspection of tortillas.
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1. Introduction

Corn was the principal source of food for the pre-Columbian
civilizations of the New World and today corn tortillas and s .
derivative products are still the staple food of Mexico and Cen-
tral America. Corn tortillas, corn chips and tortilla chips have
also widely penetrated the Unites States market as well as vari-
ous countries in Asia and Europe (Cortés-Gémez et al., 2005). i
In Mexico, where tortillas are consumed by 94% of the popu-
lation, annual production and consumption is near 12 million

Figure 1: Schematic diagram of corn tortillas engine: a) input nixtal-

tons of corn tortillas. Interestingly, 60% of those tortillas are
processed in small stores called fortillerias) (Ayala-Rodriguez
et al., 2009). The are three main levels of production and
distribution of corn tortillas in Mexico: 1) small commercial
scale (tortillerias), 2) medium commercial scale or supermar-
kets, and 3) large commercial scale or samples packed in plas-
tic bags. Corn tortillas are produced from either traditionally
milled nixtamal, which is a wet masa, or dehydrated masa
flour. Both processes include the following steps: production
of the nixtamal, elaboration of the dough (masa) followed by
the shaping and baking of the tortillas (Ardmbula-Villa et al.,
2007). The use of modern machinery for commercial corn tor-
tilla production has been utilized since the 1960s (Lind and
Barham, 2004). A simplified scheme of typical machinery used
in the small commercial scale tortillerias is shown in Fig. 1.
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malized dough, b) mixing, c) rolling and molding (shaping) , d) cook-
ing, e) cooking chamber, f) output of corn tortillas from cooking cham-
ber, g) cool belt, h) collector basket, i) product Staking, and j) corn
tortilla image captured by computer vision system.

The nixtamalized masa has different thermal and rheological
characteristics which requires a varying amount of heat during
the cooking process. To produce adequately cooked tortillas, it
is common for tortilla producers to manually regulate tempera-
tures (heat flux) of comal or belt cooking to process each batch
(Arambula-Villa et al., 2007). However, this type of traditional
production of corn tortillas has been modified by new process-
ing technologies to make commercial-scale production a possi-
bility. This practice has been successful in producing tortillas
with sensory properties that differ from those produced tradi-
tionally. Despite the fact that corn tortilla production is now
mechanized, tortilla machines are still manually controlled by
human operators. Many aspects of the tortilla production still
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Figure 2: Computer vision schema used to determine tortilla quality.

depend on the operator’s expertise such as well as dough input,
mixing, shaping, baking and others process parameters.

Herrera-Corredor et al. (2007) concluded in a consumer
study that overall acceptance of corn tortillas depended on
chewiness as well as overall liking. Purchase intent was influ-
enced mainly by appearance, plasticity, chewiness, taste, and
overall liking. The study revealed critical sensory attributes
and insight into how Mexican consumers weighted each char-
acteristic when making purchasing decisions about corn tor-
tillas. However, there is very little information available that
defines the quality attributes of corn tortillas produced by me-
chanical machines. Mexican Regulations related to the man-
ufacturing of corn tortillas (Norma-Mexicana, 2002; Norma-
Oficial-Mexicana, 2009, 2002) are focused on aspects such as
the quality of raw material and hygienic conditions during pro-
cessing. These regulations focus on health and safety issues but
do not give quality standard parameters such as: color, circular-
ity, number of baking spots, different observable particles, size
of corn grits, overall size, etc.

Taking the above into account as well as the necessity for
more in-depth information regarding the control process of corn
tortilla production, it became clear that computer vision tech-
niques can be used to evaluate corn tortilla quality by quan-
tifying their visual attributes. Computer vision systems have
proven successful in the online measurement of several food
products with applications ranging from routine inspection to
complex, vision guided, robotic control ((Sun, 2008)).

The objective of this investigation is to utilize a computer vi-
sion framework, as shown in Fig. 2, to automatically determine
the quality of corn tortillas. The steps involved in this frame-
work are (Gonzalez and Woods, 2008):

e Image acquisition: A color digital image of the tortilla be-
ing tested is taken and stored in the computer.

e Pre-processing: The digital image is improved in order to

enhance the details.

e Segmentation: The portion of the image containing the
tortilla is found and isolated from the background of the
scene.

e Feature extraction/selection: Significant features of the
tortilla image are quantified.

e Classification: The extracted features are interpreted us-
ing a priori knowledge of the analyzed tortilla in order to
determine its quality.

We used a supervised learning approach (Duda et al., 2001),
where panelists use their experience to provide, in a training
phase, a category label for each representative tortilla. Thus,
the computer vision system is trained using the selected fea-
tures and the supervised information received from panelists to
classify a tortilla automatically.

2. Materials and methods

2.1. Sample selection of corn tortillas

Fifteen samples of corn tortilla production were selected
from various places in Mexico City. Selection criterion as fol-
lows:
(1) Samples representing three levels of corn tortilla production
available in the local Mexican market:
Small commercial scale (S): The small commercial scale sam-
ples were obtained from five different tortilla stores that used a
partially mechanized process. All five stores produced tortillas
using nixtamalized corn kernels obtained of the same nixtamal
dough producer.
Medium commercial scale (M): The medium commercial scale
samples were obtained from five different supermarkets that
used a partially mechanized process similar to that used in the
small commercial scale. However, the manufacturing process
in the medium commercial scale supermarkets had better san-
itary and production control than the small commercial scale
tortilla stores. These samples were produced using nixtamal-
ized corn flour.
Large commercial scale (L): The large commercial-scale sam-
ples packed in plastic bags were obtained from five different lo-
cal supermarkets or small grocery stores. These samples were
produced by a fully mechanized industrial process, made from
industrially produced nixtamalized corn flour, and contained
food additives used to enhance product texture and shelf life.
Five different brands were used to obtain a wide range of visual
attributes of corn tortillas.
(2) For each level of production, five samples (1,...,5) are se-
lected which represent a wide range of desirable and undesir-
able visual appearance characteristics of corn tortillas. All sam-
ples used in this investigation exhibited complex physical char-
acteristics such as black or burned areas, lack of uniform round-
ness, stripes across the surface caused by processing equipment,
different visual textures, and different observable particle sizes
of corn grits. These characteristics contributed to overall visual
appearance in varying degrees depending on if the origin was
small, medium or large commercial scale production.
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Figure 3: Diagram of human evaluation procedure (visual appearance).

2.2. Questionnaire and Classification testing

Corn tortillas exhibit several complex sensory characteris-
tics. Consumers associate varying degrees of importance to
sensory attributes in order to use sound judgment when pur-
chasing tortillas. According to report a by Herrera-Corredor
et al. (2007) the Mexican market considers the overall visual
appearance of the tortilla as one of the most important sensory
attributes when making purchasing decisions. However, litera-
ture has not yet been able to define the specific characteristics
that qualify a tortilla’s appearance as acceptable.

According to our framework proposed in Fig. 3, in order to
gain an understanding of consumer’s preferences, regarding vi-
sual appearance acceptability and provide criterions of classifi-
cation based in the quality of corn tortillas, a questionnaire was
designed to establish which attributes were relevant to the visual
appearance of the samples (see visual attributes in Fig. 4). The
questions were based on visual attributes mentioned in previous
works (Herrera-Corredor et al., 2007; Bejosano et al., 2005) as
well as relevant characteristics observed in several samples. It
should be noted that Mexican Food Regulation currently has no
visual requisites for corn tortilla production. Untrained Mexi-
can consumers (N = 100), who regularly ate corn tortillas, an-
swered the questionnaire. Most of the participating consumers
reside in Mexico City and the State of Mexico. Each of the
100 participants chose and classified twelve attributes accord-
ing to their visual preference in decreasing order. Color was the
most important attribute for consumers (around of 70%) while
the homogeneity of the borders or contours was the attribute of
least importance to consumers (around 40%). The results are
presented in Fig. 4 as preference percentages for each attribute.

Ten trained panelists participated in the study which is more
than the minimum of seven panelists recommended by Lar-
mond (1977). They were randomly selected men and women
from the Escuela Nacional de Ciencias Bioldgicas in Mexico
City. The visual appearance of corn tortillas used in this study
varied greatly depending on which of the three levels of produc-
tion it came from (Fig. 5). A brief description of these differ-
ences was provided to the ten panelists and they were asked to
classify the corn tortillas into one of three production levels or
classes: small (S), medium (M) and large (L). The samples were

~ x-S QanNn oo
1

=]
]
(=]
£
=]
o
(=]
=]
(=]

Figure 4: Score of the visual attributes: a) color, b) different observable
particle size of corn grits, c) thickness, d) fractures or brakes, e) size, f)
black/burned area due cooking, g) folds, h) circularity, i) masa resid-
ual, j) break in the superior film, k) stripes across the surface caused by
processing equipment, and 1) homogeneity of the borders on contours.
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Figure 5: Gallery of corn tortilla images in their three production level
(classes) and five sub-classes.

shown randomly to panelists and each one evaluated ten sets of
tortillas, fifteen per set, by studying both sides (superior and
inferior). Each set of fifteen corn tortillas shown to panelists
contained samples corresponding to the three production levels
(S,M,L) as well as tortillas from at least five different sample
points. Due to the easy classification of the production levels
(100% of samples were classified correctly by the panelists),
this experiment was carried out to supervise the training of the
computer vision framework (Fig. 3).

Panelists were briefed about the questionnaire, particularly
the visual attributes of corn tortillas and their meanings, and
sample handling during evaluation. For each production level,
the panelists were asked to evaluate acceptability of each one
of the visual attributes selected based on the results obtained in
the questionnaire about corn tortillas which follows the order in



Fig. 4. A set of five corn tortillas was presented randomly
to panelists and they were asked to classify each set. They
determined five sub-classes according to the 5-point hedonic
scale (1:like-extremely, 3:neither dislike nor like, 5:dislike ex-
tremely) proposed by Peryam and Pilgrim (1957), as shown in
Fig. 5. Fresh corn tortillas were used to ensure product fresh-
ness. Fifty sets of corn tortillas were evaluated on both sides
and each panelist tested ten sets from each small, medium and
large production level or class. A total of 750 corn tortillas were
evaluated on both sides. Questionnaire and visual appearance
tests were conducted at the Escuela Nacional de Ciencias Bi-
olgicas (Mexico). They were conducted in individual cabins
illuminated with cool, natural, fluorescent lights. The visual
appearance test was written in Spanish.

2.3. Computer Vision

Two classification problems were distinguished: i) determi-
nation of hedonic scale (sub-class), and ii) determination of pro-
duction level (class). The framework assigned a tortilla image
to one of the five sub-classes (1:like-extremely, 2:like, 3:nei-
ther dislike nor like, 4:dislike or 5:dislike-extremely) and ad-
ditionally, to one of the three classes (S, M or L) as shown
in Fig. 5. In a training process, representative tortilla images
were collected and segmented, features from each image were
extracted and analyzed in order to select only those features
relevant to the classification tasks. In this supervised training
(Duda et al., 2001), the sub-class and class determined by the
classifiers should coincide with the sub-class and class given by
the sensorial panel and the production level respectively. After-
wards in a testing process, only the selected features are ex-
tracted to automatically classify the samples.

The computer vision framework used to automatically clas-
sify corn tortillas consists of five steps (Fig. 2): image acquisi-
tion, pre-processing, segmentation, feature extraction/selection
and classification. Below, each step is explained in detail. Fi-
nally, the validation technique of the framework is explained.

2.3.1. Image Acquisition and Pre-processing

A computer vision system similar to the one described in
(Pedreschi et al., 2004) was employed to capture the tortilla
images (3456 x 2592 pixels in RGB color and JPEG format).
Samples were illuminated using four fluorescent lamps TL-D
deluxe, natural daylight, 18 W/965 (Philips, Mexico) with a
color temperature of 6500 K (D65, standard light source com-
monly used in food research). Lamps (60 cm long) were ar-
ranged in the form of a square, 35 cm above the sample and at a
45 angle in relation to the sample. A total of 1500 images were
obtained, two images (front and back) from each corn tortilla.
Each sample was placed in front of the camera in the same po-
sition and orientation at a distance of 21 cm. To capture the im-
ages, a color Digital Camera (CDC) model Power Shot SX110
IS (Canon, NY, USA) with 9 megapixels was positioned ver-
tically over the sample. Images were taken on a matte gray,
bright background using the following camera settings: manual
mode with lens aperture at f = 2.8 and speed 1/15 s, no zoom
nor flash. The camera was connected to the USB port of a PC

(Dell Precision 380 Pentium 4, Intel R, 3 GHz, 2 GB RAM,
80 GB hard disk) with Remote Capture Software DC installed
(version 35.1, Canon, China). In order to calibrate the digi-
tal color system, a similar framework to the one investigated in
(Leon et al., 2006) was used, the color values of 35 color charts
were measured for each chart, the L*a*b* color values were
measured using a colorimeter. Additionally, a RGB digital im-
age was taken of each chart, and the R, G and B color values
of the corresponding regions were measured using the ImageJ v
1.34s program which computes the mean values for each color
channel. Finally, the images were resized to 0.1 times the size
of the original images using cubic interpolation (Gonzalez and
Woods, 2008).

2.3.2. Segmentation

The tortilla region of each image was segmented using the
algorithm developed for food images proposed in (Mery and
Pedreschi, 2004). The method has three steps:

1. Computation of a high contrast grey value image from an
optimal linear combination of the RGB color components.

2. Estimation of a global threshold using a statistical ap-
proach.

3. Morphological operation in order to fill the possible holes
presented in the segmented binary image.

2.3.3. Feature extraction and selection

Features extracted from each segmented tortilla region were
divided into two families: geometric and color features (see
Table 1).
Geometric features provide information on the size and shape
of the tortilla region. Size features, such as area, perimeter,
height and width, are given in pixels. Shape features are usu-
ally coefficients without units. In our approach, 54 geometric
features of the following four groups were extracted from each
region:

1. Standard: Simple shape and size information like area,
perimeter, orientation, Euler number and solidity among
others (MathWorks, 2003).

2. Elliptical: Shape and size information extracted from a fit-
ted ellipse to the boundary of the region (Fitzgibbon et al.,
1999).

3. Fourier Descriptors: Shape information invariant to scale,
orientation and position based on Fourier descriptors
(Zahn and Roskies, 1971; Chellappa and Bagdazian, 1984;
Persoon and Fu, 1977).

4. Invariant moments: Shape information invariant to scale,
orientation and position based on Hu (1962) moments,
Flusser and Suk (1993) and Gupta and Srinath (1987).

Color features provide information about the color intensity
of a tortilla region. In our approach, 227 features per color
channel were extracted, i.e., 227 x 10 = 2270 features for ten
color channels (as shown in Fig. 2): gray; red, green and blue



Table 1: Extracted Features

Family Group Name and references
Geometric Standard Center of gravity i, Center of gravity j, Height, Width, Area, Perimeter, Euler Number, Equivalent, Diameter,
Major Axis Length, Minor Axis, Length, Orientation, Solidity, Extent, Eccentricity, Convex Area and, Filled
Area (MathWorks, 2003). Danielsson factor (Danielsson, 1978). Roundness (Hartmann, 1996).
Elliptical Major axis, Minor axis, Eccentricity, Orientation, Centre i and Centre j (Fitzgibbon et al., 1999).
Fourier Descriptors Descriptors (0,..., 15) (Zahn and Roskies, 1971).
Invariant Moments Hu (1,...,7) (Hu, 1962). Flusser (1,...,4) (Flusser and Suk, 1993). Gupta (1,...,3) (Gupta and Srinath, 1987).
Color Standard Mean Intensity, Standard deviation Intensity, Standard deviation Intensity with Neighbor, Mean Laplacian
(g=Gray, and Mean Gradient (Nixon and Aguado, 2008)
R.G,B, Statistical textures Tx(k, p) (mean/range) for k=1. Angular Second Moment, 2. Contrast, Correlation, 4. Sum of squares,
HS.V, 5. Inverse Difference Moment, 6. Sum Average, 7. Sum Variance, Entropy, 8. Sum Variance, 9. Entropy,
L* a*b¥) 10. Difference Variance, 11. Difference Entropy, 12., 13. Information Measures of Correlation, and
14. Maximal Correlation Coefficient, and p=1,...5 pixels (Haralick, 1979; Sonka et al., 1998).
Filter Banks DFT (1,2;1,2) and DCT (1,2;1,2) (Gonzalez and Woods, 2008). Gabor (1,...,8;1,...8), max(Gabor), min(Gabor),

Gabor-J (Kumar and Pang, 2002).
Invariant Moments

Int-Hu (1,...,7) Hu moments with intensity information (Hu, 1962).

(from RGB color space); hue, saturation and value (from HSV
color space); L*, a* and b* (from L*a*b* color space). The
following four groups of color features were used.

1. Standard: Simple intensity information related to the
mean, standard deviation of the intensity in the region,
mean first derivative in the boundary, and second deriva-
tive in the region (Nixon and Aguado, 2008).

2. Statistical textures: Texture information extracted from the
distribution of the intensity values based on the approach
proposed by Haralick (1979). They are computed utilizing
co-occurrence matrices that represent second order texture
information (the joint probability distribution of intensity
pairs of neighboring pixels in the image), where mean and
range of the following variables were measured: Angular
Second Moment, Contrast, Correlation, Sum of Squares,
Inverse Difference Moment, Sum Average, Sum Entropy,
Sum Variance, Entropy, Difference Variance, Difference
Entropy, Information Measures of Correlation, and Maxi-
mal Correlation Coefficient.

3. Filter banks: Texture information extracted from image
transformations like Discrete Fourier Transform (DFT),
Discrete Cosine Transform (DCT) (Gonzalez and Woods,
2008), and Gabor features based on 2D Gabor functions,
i.e., Gaussian-shaped bandpass filters, with dyadic treat-
ment of the radial spatial frequency range and multiple
orientations, which represent an appropriate choice for
tasks requiring simultaneous measurement in both space
and frequency domains (usually 8 scale and 8 orientations)
(Kumar and Pang, 2002).

4. Local binary patterns: Texture information extracted from
occurrence histogram of local binary patterns (LBP) com-
puted from the relationship between each pixel intensity
value with its eight neighbors. The features are the fre-
quencies of each one of the histogram’s 59 bins. LBP is
very robust in terms of gray-scale and rotation variations
(Ojala et al., 2002).

In total, 54 geometric and 2270 color features, i.e., n=2324
features, were extracted from each tortilla image. Afterwards,
the features were selected in order to decide on the relevant fea-
tures for the classification tasks, namely, the determination of

the five sub-classes and the three classes. The n extracted fea-
tures were arranged in an n-vector: w = [wy...w,]" that corre-
sponds to a point in a n-dimensional feature space. The features
were normalized as

fij= Wij — Hj 1))
gj

fori =1,..,N and j = 1, ...,n, where w;; denotes the j-th fea-
ture of the i-th feature vector, N is the number of samples, and
u; and o ; are the mean and standard deviation of the j-th fea-
ture. The normalized features have zero mean and a standard
deviation equal to one. Those features that provide information
about the position in the image of the tortilla (e.g. centers of
gravity), constant features (e.g., Euler number because tortillas
have no holes) and high correlated features (e.g., color features
extracted from hue channel and gray value) were eliminated.

In feature selection, a subset of m features (m < n) that leads
to the smallest classification error is selected. The selected m
features were arranged in a new m-vector z = [z; ozl

The features can be selected using several algorithms pre-
viously investigated, such as Sequential Forward Selection
(SFS) (Jain et al., 2000), Forward Orthogonal Search (Wei
and Billings, 2007), Selection through Identification of Criti-
cal Variables of Principal Components (Mao, 2005), Ranking
by Class Separability Criteria (MathWorks, 2007), and Combi-
nation with Principal Components (Duda et al., 2001). In our
experiments the best performance was achieved using the well-
known Sequential Forward Selection (SFS) algorithm. This
method selects the best single feature and then adds one feature
at a time, in combination with the selected features, to maxi-
mize classification performance. The iteration is halted once no
considerable improvement in the performance is achieved by
adding a new feature. By evaluating selection performance we
ensure: i) a small intraclass variation and ii) a large interclass
variation in the space of the selected features. For the first and
second conditions the intraclass-covariance C, and interclass-
covariance C,, of the selected features Z are used respectively.
Selection performance can be evaluated using the spur criterion
for the selected features S:

J(Z) = spur (C;'Cy). )
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Figure 6: Classification strategy for the hedonic scale classification. In
this example, only Classifier-2 has an output ‘1’, i.e., the determined
sub-class is 2’.

The larger the objective function J, the higher the selection per-
formance.

2.3.4. Classification

Two classification problems were distinguished (Fig. 5): i)
determination of hedonic scale (sub-class), and ii) determina-
tion of production level (class). The classifiers assigned a fea-
ture vector z to one of the determined sub-classes and one of
the determined classes. In order to find the best performance for
each classification problem, the framework was tested on a bank
of classifiers, such as support vector machines (SVM) (Shawe-
Taylor and Cristianini, 2004), linear and quadratic discriminant
analysis (Webb, 2005), k-nearest neighbor (Duda et al., 2001),
neural networks (Bishop, 2006), boosting (Viola and Jones,
2004), and minimal and Mahalanobis distance (Duda et al.,
2001).

i) Hedonic scale classification (sub-class): The first classifi-
cation problem was very difficult to solve using a simple clas-
sifier, however, high performance was achieved with SVM im-
plemented in the Bioinformatics Toolbox™ of Matlab (Math-
Works, 2007).

Typically, SVM transforms a two-classes feature space,
where the classes overlap, into a new enlarged feature space
where the classification boundary is linear. Thus, a simple lin-
ear classification can be designed in the transformed feature
space in order to separate both classes (Shawe-Taylor and Cris-
tianini, 2004). The original feature space is transformed using
a function h(z), however, for the classification only, the kernel
function K(z,z") = (h(z), h(z’)) that computes inner products in
the transformed space is required. In this case, the best clas-
sification was obtained using a Gaussian Radial Basis (RBF)
function kernel defined by (Hastie et al., 2003):

K(z,2) = el 3)

where the linear boundary, i.e., the separating hyperplane in the
transformed space, is computed using Least—Squares approach
(MathWorks, 2007).

Since SVM is able to classify only two classes, the five-sub-
classes problem was split into five one-against-all classification

problems. In this case, intermediate “Classifier-i”” was trained
to determine if a tortilla belonged to sub-class i, fori = 1, ..., 5.
Intermediate “Classifier-i” yields x; = 1 if the classifier deter-
mined that the tortilla belongs to sub-class i, and x; = 0 oth-
erwise. Afterwards, the five outputs given by the intermediate
classifiers were analyzed to estimate the final sub-class of the
tortilla, as shown in Fig. 6. The final sub-class y was calculated
as the average of the corresponding outputs of the intermediate
classifiers:

X1 + 2x2 + 3.X3 + 4X4 + 5)(5

y= X1+ X2+ X3+ X4 + X5 “)
For example, if the five intermediate classifiers are x =
(0,0,1,1,1), the final sub-classis = (3+4+5)/3 = 4. If no in-
termediate classifier detects a sub-class, i.e., x = (0,0,0,0,0),
then the final sub-class is § = 3, because sub-class ‘3’ is the
choice where the classification error |[J — y| is expected to be
minimal. In this approach, a final sub-class with decimals, e.g.,
y = 4.5 forx = (0,0,0,1, 1), is allowed, this means that the
final sub-class is between two sub-classes of the hedonic scale.
Ideally, = y, however in this pattern recognition problem, a
small classification error e = [ — y| > 0 was obtained.

Additionally, features that were relevant for one intermedi-

ate classifier were not necessarily relevant for other interme-
diate classifiers. For this reason, ad-hoc features for each in-
termediate classifier were selected. The extraction of the se-
lected features z' for intermediate “Classifier-i’ were extracted
in “Features-i” block (Fig. 6). The selection of the features was
performed using the SFS method explained in Section 2.3.3 for
the five one-against-all classification problems.
ii) Level production classification (class): The second classi-
fication problem was easy to solve, because there was enough
visual information to determine efficiently which of the three
production levels a tortilla belonged to, i.e., classes S, M or
L. Many of the mentioned classifiers achieved a satisfactory
performance using less than ten features selected by the SFS
approach. For example, the Mahalanobis classifier obtained a
performance greater than 96%.

For the Mahalanobis classifier, a mean value Z, of the training
samples was calculated for each class: ¢=S, M, L. A test feature
vector z was assigned to class ‘c’ if the Mahalanobis distance
between z and Z. defined as:

d(z,2.) = (z-1%.) C. (z - 7,) )

is minimal, where C. is the covariance matrix of class ‘c’. The
Mahalanobis classifier takes into account errors associated with
prediction measurements, such as noise, by using the feature
covariance matrix to scale features according to their variances
(Duda et al., 2001).

2.3.5. Validation

The performance of the classifier was defined as the ratio of
the tortillas that were correctly classified to the total number of
tortillas. The performance was validated using cross-validation,
a technique widely implemented in machine learning problems
(Mitchell, 1997). In cross-validation, the samples are divided
into F folds randomly. F — 1 folds are used as training data and



the remaining fold is used as testing data to evaluate the perfor-
mance of the classifiers. We repeated this experiment F times
rotating train and test data. The F individual performances from
the folds are averaged to estimate the final performance of the
classifiers.

3. Experimental Results

As explained in Section 2, 250 corn tortillas were examined
for each production level: small (S), medium (M) and large (L).
A sensorial panel categorized each tortilla in five hedonic sub-
classes (see Fig. 5). Two images for each tortilla, i.e., 250 x 3
x 2 = 1500 images, were captured. Each image was segmented
according to the approach explained in Section 2.3.1, and 2324
(geometric and color) features were extracted as detailed in Ta-
ble 11

After the feature extraction, 75% of the samples of each class

were randomly chosen to perform the feature selection. Results
obtained in the two mentioned classification problems: i) deter-
mination of hedonic scale (sub-class), and ii) determination of
production level (class), are discussed below.
i) Hedonic scale classification (sub-classes): This classifica-
tion problem, with five-sub-classes, was split into five one-
against-all classification problems. Five data sets were built,
one for each class, where the samples were labeled with ‘1’
for the selected class, and ‘0’ for the rest. In the data sets, the
samples labeled with ‘1’ were replicated three times in order
to obtain balanced classes. Forty features for each data set us-
ing the SFS were selected. Five SVM intermediate classifiers
(Fig. 6) were designed for the first m = 5, 10, 15, ..., 40 selected
features. The final sub-class was determined by the computing
equation (4).

The performance was evaluated using cross-validation with
F = 10 folds as explained in Section 2.3.5. The results for
different values of m are shown in Table 2, where the following
statistical variables were computed:

h: coincidence ratio between classifier y and sensorial panel
y (ideally h = 1),

e: the mean of the classification error e = [y — y| (ideally
e=0),

o.: the standard deviation of the classification error (ideally
o, =0),and

n: average performance of the intermediate classifiers (ide-
allyn = 1).

For m = 15 extracted features our classifier had very high
performance (7 = 0.95). In average for this case, the sub-class
given by our classifier y will be the same given by the sensorial
panel y+ 0.28. Table 3 shows the selected 15 features for each

! All image segmentation, feature extraction, feature selection, classification
and validation approaches are implemented in Balu Matlab Toolbox — Group of
Machine Intelligence, Department of Computer Science, Catholic University of
Chile (download in http://dmery.ing.puc.cl).

Table 2: Performance of the classification of hedonic sub-classes using cross-
validation with 10 folds.

m h e o, n

5 0.227 | 1.162 | 1.390 | 0.806
10 | 0.531 | 0.704 | 1,071 | 0.877
15 | 0.825 | 0.284 | 0.672 | 0.950
20 | 0.929 | 0.108 | 0.399 | 0.981
25 | 0.969 | 0.045 | 0.223 | 0.991
30 | 0.985 | 0.021 | 0.147 | 0.996
35 1 0991 | 0.012 | 0.106 | 0.998
40 | 0.995 | 0.006 | 0.052 | 0.999

class, where there are 64 features without repetitions. It is rec-
ommended that the reader refer to Table 1 and Section 2.3.3 to
see a description of the features.

The rest of the classifiers mentioned in Section 2.3.4 were

tested in this experiment, however the obtained performance
was inferior in all cases, e.g., as the value i for m = 15 was
between 0.220 (for linear discriminant analysis) and 0.799 (for
a neural network) in comparison to 0.825 (for SVM) as shown
in Table 2.
ii) Level production classification (classes): For the second
classification, where the production level S, M or L is to be
determined, two sets of features selected using SFS were ana-
lyzed. Set-1 consisted of the best ten features selected from the
2324 extracted features. On the other hand, in order to reduce
the total number of extracted features, Set-2 contained the best
ten features chosen from the 64 features selected for the hedo-
nic scale classification problem, i.e., only features from Table 3
were selected. The performance of the classification using the
Mahalanobis classifier and the selected features for Set-1 and
Set-2 were validated using cross-validation with F = 10 folds
as explained in Section 2.3.5. The results are shown in Table
4. Set-1 considered only nine features because the classifica-
tion performance was not improved by considering the tenth
selected feature. It is evident that Set-1 achieved a higher per-
formance (almost perfect yielding = 0.995), because the fea-
tures were selected from all the extracted features, whereas for
Set-2 only the selected features of the first classification prob-
lem were available. In spite of that, Set-2 achieved a very high
performance (7 = 0.96). As mentioned before, it is recom-
mended that the reader refer to Table 1 and Section 2.3.3 to see
a description of the features.

4. Conclusion

The need for more information about the control process of
making corn tortillas, evaluation of quality and visual appear-
ance by means of quantitative methods can be satisfied using
computer vision. This non-destructive technique objectively
measures color and geometric patterns in non-uniformly col-
ored surfaces, and also determines other physical features such
as image texture, morphological elements, and defects in order
to automatically classify tortilla quality. The promising results



Table 3: Selected features for each hedonic sub-class ([e] means the color channel).

3

4

5

m 1 2

1 Int-Hu(5) [S] Tx(14, 1)(mean) [a*]
2 Int-Hu(6) [S] DFT(1,1) [H]

3 Hu(4) DCT(2,1) [V]

4 Int-Hu(7) [S] DCT(2,2) [a*]

5 Int-Hu(2) [S] T x(14, 1)(mean) [H]
6 Hu(3) DCT(2,2) [S]

7 MajorAxisLength DCT(1,2) [V]

8 Gupta(2) DCT(1,2) [R]

9 | Fourier-descriptor(0) T x(5, 1)(mean) [G]
10 Solidity Gabor(2,3) [g]

11 | Fourier-descriptor(2) | Tx(3,1)(mean) [L*]
12 Int-Hu(3) [S] DCT(1,1) [b*]
13 | Fourier-descriptor(5) DCT(2,2) [V]

14 | Tx(13,1)(mean) [G] DCT(2,2) [H]

15 | Tx(12,2)(mean) [H] DCT(2,2) [g]

Tx(14, 1)(mean) [a*]
Gabor(5,6) [B]
DFT(1,1) [R]
Tx(2,1)(mean) [g]
DCT(2,2) [a*]
DCT(2,1) [V]
DCT(2,2) [R]
DFT(2,2) [R]
DCT(2,1) [a*]
Int-Hu(2) [a*]
Tx(6, 1)(mean) [R]
Std Intensity [R]
Tx(12,4)(range) [S]
Tx(14,5)(range) [B]
Tx(14,4)(range) [B]

T x(14, 1)(mean) [a*]
Tx(14, 3)(range) [B]
Tx(12,3)(mean) [H]
T x(14,2)(mean) [B]
Tx(12, 1)(mean) [S]
MajorAxisLength
Tx(12,4)(range) [a¥]
T x(13,3)(mean) [S]
Tx(14, 3)(range) [S]
T x(13, 1)(mean) [B]
Tx(12,3)(mean) [a*]
Laplacian [a*]
Gabor(8,7) [g]
DFT(2,2) [a*]
DFT(1,2) [a*]

Tx(14, 1)(mean) [a*]
DFT(2,2) [H]
Std Intensity [S]

T x(14,4)(range) [V]
Tx(14,2)(range) [L*]
DFT(2,2) [a*]
Fourier-descriptor(5)
Tx(14,3)(range) [g]
MajorAxisLength
Gabor(1,7) [H]
Fourier-descriptor(14)
DCT(1,1) [b*]
DCT(2,2) [S]
DCT(2,1) [B]
Tx(12,2)(range) [a*]

Table 4: Performance using cross-validation with 10 folds and selected features
of production level classification ([e] means the color channel).

Features Set-1 Set-2
1 Area Int-Hu(1) [S]
2 Mean Intensity [R] Mean Intensity [R]
3 Gabor(2,6) [b*] DFT(1,1) [H]
4 Mean Intensity [g] Tx(12,1) (mean ) [H]
5 Std Intensity [R] Tx(12,2) (mean ) [H]
6 Gabor(1,7) [H] DCT(1,1) [g]
7 Tx(12,1)(mean ) [a*] | Tx(6,1)(mean ) [b*]
8 Gabor(2,7) [H] Gabor(1,6) [H]
9 DFTI [g] Std Intensity [R]
10 - DFT(1,2) [R]
n 0.9947 0.9620

outlined in this work demonstrate that, using a very large num-
ber of features combined with efficient feature selection and
classification approaches, a very high classification rate in tor-
tilla quality control can be achieved. The key idea of the pro-
posed method was to select, from a large universe of features,
only those features that were relevant for the separation of the
classes. The method was tested in three different tortilla pro-
duction levels with tortillas of five different hedonic sub-classes
yielding a performance of 95% in accuracy using 64 features
and support vector machines. Additionally, using only 10 of
the selected features and a simple statistical classifier based on
Mahalanobis distance, it was possible to determine with 96%
accuracy the production level of the tortillas.

Additionally, the contribution to computer vision technology
is the use of the state-of-art algorithms in the automated quality
classification of corn tortillas. In our case, we use a general
framework that extracts more than 2300 features and only 64
of them are selected. We believe that the proposed approach
opens new possibilities not only in the field of automated visual
inspection of tortillas but also in other similar food products

like breads and cookies among others.
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