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Abstract

Clustering is a relevant problem in machine learning where the main goal is

to locate meaningful partitions of unlabeled data. In the case of labeled data, a

related problem is supervised clustering, where the objective is to locate class-

uniform clusters. Most current approaches to supervised clustering optimize a

score related to cluster purity with respect to class labels. In particular, we present

Labeled K-Means (LK-Means), an algorithm for supervised clustering based on a

variant of K-Means that incorporates information about class labels. LK-Means

replaces the classical cost function of K-Means by a convex combination of the

joint cost associated to: (i) A discriminative score based on class labels, and (ii)

A generative score based on a traditional metric for unsupervised clustering. We

test the performance of LK-Means using standard real datasets and an applica-

tion for object recognition. Moreover, we also compare its performance against

classical K-Means and a popular K-Medoids-based supervised clustering method.

Our experiments show that, in most cases, LK-Means outperforms the alternative

techniques by a considerable margin. Furthermore, LK-Means presents execution

times considerably lower than the alternative supervised clustering method under

evaluation.

Keywords: Supervised Clustering, K-Means, K-Medoids.
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1 Introduction

Techniques to divide a set of N data instances into K groups are known as cluster-

ing algorithms. Clustering algorithms are commonly used in an unsupervised learning

framework where the goal is to minimize an error function with respect to a given dis-

tance metric, for example, intra-cluster distance. A robust model for clustering is to use

a mixture of Gaussians [4] that has the ability to capture complex relationships among

the data using a sound statistical approach. Despite its advantages, this technique tends

to be slow, mainly due to the calculation of a covariance matrix. A faster and sim-

pler clustering technique is the K-Means algorithm [21] that uses a hard assignment

of data points to clusters and assumes a spherical covariance. While the simplicity

of the K-Means algorithm is one of the main reasons for its popularity [38], its lower

computational complexity with respect to alternative clustering techniques is also a

desirable feature for intensive clustering tasks, e.g., the acquisition of codewords for

visual recognition [17].

In contrast to traditional clustering, supervised clustering is applied to labeled data.

Here, the goal is to find clusters with a high purity, where the purity of a cluster is

defined as the percentage of data in a cluster that belongs to its most frequent class.

Figure 1 shows an illustrative toy example corresponding to a 2D dataset with three

spatial clusters and two classes. After applying both unsupervised and supervised clus-

tering, it can be observed that unsupervised clustering ignores class labels (Figure 1.a),

while supervised clustering generates clusters that focus on a particular class (Figure

1.b).

Eick et al. [11] enumerate several applications of supervised clustering, such as

dataset compression, distance metric learning, or classification refinement, among oth-

ers. As an example, supervised clustering can be used to identify customers profiles

according to ordinal measures (e.g. age, salary, marital status) by identifying clusters

that are homogeneous with respect to their buying behavior in terms of particular prod-
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uct categories (labels). Further uses of supervised clustering can be found in the areas

of genetics and finance [32].

Current algorithms for supervised clustering usually have the form of a K-Medoids

algorithm. Due to the use of medoids, this type of methods is more resistant to out-

liers than schemes based on a K-Means strategy, however, they have the drawback of

being considerably slower. In particular, assuming a fixed number of iterations, the K-

Medoids algorithm has a quadratic complexity in terms of the number of data instances,

while in the case of K-Means this complexity is only linear [4].

In this work we present a new method for supervised clustering that is based on two

main hypotheses: i) For a wide variety of applications a combination of supervised and

unsupervised information can lead us to more informative clusters, and ii) A supervised

clustering method based on a K-Means type of algorithm can allow us to overcome the

speed limitations of current methods based on a K-Medoids clustering strategy. Follow-

ing these hypotheses, the main contributions of this paper are: i) Presenting LK-Means,

a new supervised clustering algorithm that extends the K-Means algorithm to incorpo-

rate instance labels, ii) Empirical evidence showing that LK-Means outperforms the

K-Means algorithm and a K-Medoid supervised clustering method, as measured by

several popular metrics commonly used to access clustering quality, and iii) Empirical

evidence showing that, in terms of execution time, our method is more efficient than a

supervised clustering technique based on a K-Medoid clustering strategy.

The rest of this paper is organized as follows. Section 2 describes two baseline

methods, K-Means and K-Medoids algorithms, and relevant previous works. Section 3

presents LK-Means, the proposed supervised clustering approach. Section 4 presents

and discusses experimental results using several benchmark datasets and an application

to the case of object recognition. Finally, Section 5 presents our main conclusions and

future avenues of research.
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2 Background

2.1 K-Means and K-Medoids

K-Means algorithm is one of the most popular clustering techniques. This algorithm

partitions N data instances into K clusters, where the number of clusters K has to

be known a priori. Specifically, given a dataset X with N data instances xi ∈ Rd,

i ∈ [1 . . . N ], K-Means algorithm partitionsX into K cluster Ck, k ∈ [1 . . .K], by

minimizing the following cost function:

J =

N∑
n=1

K∑
k=1

δnk ‖xn − uk‖2 , (1)

where the indicator function δnk is given by:

δnk =

 1 xn ∈ Ck

0 otherwise,

‖ · ‖ refers to L2-norm and uk corresponds to the mean of cluster k.

Optimal parameters uk are found by minimizing Equation (1) using a gradient de-

scent approach. This results in an iterative procedure that alternates between assigning

data instances to cluster centers, and re-estimating cluster centers given the new assig-

nations. Convergence to a local minimum of Equation (1) is granted by the gradient

descent type of exploration and the finite set of possible assignations of data instances

to clusters. In particular, assuming a fixed number of iterations and dimensions, the

computational complexity of K-Means is O(NK). Algorithm 1 summarizes the main

steps of the K-Means algorithm.

While K-Means for fixed numbers of iterations and dimensions has a linear com-

putational complexity with respect to the number of data instances, the computation

of the centroids is sensitive to outliers [4]. To alleviate this problem, the K-Medoids
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Algorithm 1 : K-Means algorithm.
1. Randomly select K data instances as initial means.
2. Associate each data instance with the cluster of its nearest mean and calculate the

cost function using Equation (1).
3. Calculate the new means as the centroids of the K new partitions.
4. Repeat steps 2 and 3 until there is no change in the cost evaluation (or the cost

change is below a suitable threshold).

algorithm uses a more robust procedure to find the cluster centers, but this procedure

has a quadratic complexity with respect to the number of data instances. In particular,

K-Medoids minimizes a score that is similar to the one used by K-means, but it consid-

ers a more general distance metric ν(x, x′) between data instances x and x′, as shown

in Equation (2). An example of metric ν(x, x′) is the Euclidean distance, used in K-

Means, or the Jaccard distance, commonly used in applications related to transactional

databases [23].

J =

N∑
n=1

K∑
k=1

δnkν(xn, uk) (2)

In contrast to K-means, K-Medoids minimizes Equation (2) with respect to pa-

rameters uk by calculating a matrix that stores the distances between all pairs of data

instances. Specifically, initially K-Medoids randomly chooses a set ofK data instances

as the initial set of K medoids and calculates the distance matrix between all the data

instances. It then replaces each medoid with all non-medoid points and calculates all

possible configurations costs according to Equation (2). Next, it chooses as the new

medoids the ones corresponding to the configuration with the lowest cost. Finally, the

method repeats the search over the non-medoids elements until the medoids do not

change. The procedure is summarized in Algorithm 2.

Assuming a fixed number of iterations and dimensions, the computational com-

plexity of K-Medoids is O(K(N −K)2). This implies that in general the K-Medoids

algorithm is slower than K-Means.
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Algorithm 2 : K-Medoid algorithm.
1. Randomly select k data instances as initial medoids.
2. Associate each data instance to its most similar medoid and calculate the cost using

Equation (2).
3. for each medoid m do
4. for each non-medoid o do
5. Swap m and o and compute the cost of the configuration.
6. end for
7. end for
8. Select the set of elements corresponding to the configuration with the lowest cost.
9. Repeat 3 through 8 until there is no change in the set of medoids.

2.2 Related work

Semi-supervised clustering uses labeled and unlabeled data to find clusters that maxi-

mize a score related to cluster purity with respect to known class labels. Semi-supervised

clustering methods can be divided into two groups: Similarity based methods and

search-based methods [3]. Similarity-based methods use a modified distance function

that considers the labels of classified examples and then uses a traditional clustering al-

gorithm. On the other hand, search-based methods modify clustering algorithms them-

selves to accommodate for labeled instances, but do not change the distance function

[5].

In terms of supervised clustering, all available records have labels. Tishby et al.

propose an agglomerative clustering algorithm [35] using the notion of “information

bottleneck” [34]. This technique minimizes the information loss of the clustering re-

lated to a class conditional distribution. Embrechts et al. [10] propose a genetic al-

gorithm for a version of K-Means where the goal of the search process is to obtain

clusters that minimize cluster dispersion and cluster impurity. Cohn et al. [7] mod-

ify the popular EM algorithm for incorporating similarity and dissimilarity constraints.

They assume the presence of a human oracle that guides the clustering process. Basu

et. al. [3] modify the K-means algorithm to cope with class knowledge. They use a

careful initialization based on the neighborhood of the data instances.
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Sinkkonen et al. [32] propose a method called discriminative clustering that mini-

mizes distortion within clusters. In their work, distortion is related to the loss of mutual

information among classes and clusters, which is caused by representing each cluster

by a prototype. This technique seeks to produce clusters that are internally as homoge-

neous as possible with respect to a class conditional distribution. The resulting mini-

mization is complex and they have to resort to approximations or simulated annealing

methods to find suitable solutions.

Jordan et al. [39] (and similarly Shental et al. [2]) transform training examples

into constraints based on the observation that instances of different classes should have

a distance larger than a given threshold. Then, they derive a modified distance metric

that minimizes the distance between data instances considering the constraints. Finally,

they use a K-Means algorithm in conjunction with the modified distance metric to

compute clusters.

Eick et. al. [11] formally introduce the term supervised clustering. Their work

proposes supervised versions of some clustering algorithms, such as K-Medoids and

divisive clustering. In particular, the SRIDHCR algorithm (Single Representative In-

sertion/Deletion Steepest Decent Hill Climbing with Randomized Restart) shows good

performance in their experiments when compared to alternative techniques, thus, we

choose this method as the baseline for comparison in our work.

Ye et. al. [40] present a discriminative version of K-Means. They simultaneously

solve linear discriminant analysis (LDA) and K-Means optimization using matrix alge-

bra. An advantage of this method is that it makes a feature transformation using LDA

properties. For each iteration, their method needs to solve an optimization problem

using linear search. Unfortunately, they do not show any measure of the speed of their

method.

In relation to extensions of K-Means, Deelers and Auwatanamongkol [9] propose

a scheme to initialize the K-Means algorithm using a recursive strategy that, consider-
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ing the data axis with highest variance, progressively divides the data until they obtain

a suitable number of clusters. Shanmugasundaram and Sukumaran [31] introduce a

related scheme to initialize the K-Means algorithm, where they divide the data into

two smaller cells considering the data axis with highest variance and keeping the two

cells as far apart as possible. This procedure is repeated until one can obtain a prefixed

number of clusters. Kumar et al. [18] enhance the K-Means algorithm by consider-

ing particular data structures (red-black tree and min-heap) that allow them to reduce

computational time. These previous works are valuable in terms of improving the ini-

tialization and time processing capabilities of the traditional k-means algorithm, how-

ever, these works do not consider labeled data as in our technique. In this sense, these

techniques can be considered as complementary to our work.

In a related research task, Lasserre et al. [19] propose the idea of a convex combina-

tion of unsupervised and supervised information in machine learning. They introduce

a Bayesian framework to combine unlabeled and labeled data, where they find that un-

der limited training data, the best performance is given by a combination of both views.

Here, we also follow a similar idea but in the context of a supervised version of the K-

Means algorithm leading to a different optimization problem and solution. As shown

by our experiments, our proposed strategy provides several advantages with respect to

alternative techniques for supervised clustering.

3 Labeled K-Means

Following Eick et. al. [11], several supervised clustering methods follow a K-Medoids

approach that is very time consuming. Inspired by [19], we propose LK-Means, a

K-Means like algorithm with a modified cost function that considers a convex combi-

nation of both, a class-dependent and non-class-dependent cost functions.

We assume a labeled dataset X with N training instances (xi, yi), where xi ∈ Rd,

yi ∈ [1, . . . , L], and i ∈ [1 . . . N ]. We assume that the clustering problem requires
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K clusters. LK-Means replaces the tradicional K-Means cost function in Equation (1)

with the following function:

J(ulk, δ
l
nk) =

N∑
n=1

[
α

K∑
k=1

L∑
l=1

δlnk
∥∥xn − ulk∥∥2 ρlk + (1− α)

K∑
k=1

δnk ‖xn − uk‖2
]

(3)

where δlnk refers to the supervised indicator function that assigns instance xn to

mean ulk, which in turn corresponds to the mean of data instances in cluster k with label

l. ρlk represents a prior factor for data instances with label l inside cluster k, δnk refers

to the unsupervised indicator functions, and uk corresponds to the mean of all data

instances in cluster k. Equation (3) represents a convex combination, where parameter

α in the range [0, 1] manages the balance between the supervised and unsupervised

clustering scores.

In particular, prior factor ρlk for data instances with label l inside cluster k is defined

as:

ρlk =

∑N
n=1 δ

l
nk∑N

n=1 δnk
(4)

ρlk represents the confidence of label l in cluster k, with values in the range [0, 1].

When this weight is near one, cluster k tends to contain only elements with label l. In

the opposite case, when this weight is near zero, cluster k tends to contain no elements

with label l.

The unsupervised indicator function δnk for data instance xn and cluster CK is

defined as:

δnk =

 1 if xn ∈ Ck

0 otherwise

In terms of each unsupervised mean uk, it is defined as the weighted mean over all
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supervised means ulk for the corresponding cluster k:

uk =

L∑
l=1

ρlku
l
k (5)

To find the optimal parameters: δlnk and ulk, we minimize Equation (3) using a

block coordinate descent approach that resembles the operation of the K-Means algo-

rithm. Specifically, we alternate optimizations of Equation (3), first with respect to δlnk

and then with respect to ulk. Following the K-Means terminology, we call these steps

assignment and update-steps, respectively. We refer now to each of these steps.

In terms of the assignment-step, cost function J in Equation (3) considers each

data instance n in separate terms of the main sum, therefore, we can independently

optimize J with respect to each indicator δlnk. Furthermore, in the assignment-step

we fix the value of the supervised means ulk and, as a consequence, we also fix the

values of the unsupervised means uk. As a result, the assignment that minimizes the

cost function J is given by:

δlnk =

 1 if k = argminj

[
αδlnj

∥∥xn − ulj∥∥2 ρlj + (1− α)δnj ‖xn − uj‖2
]

0 otherwise.
(6)

In terms of initialization, initial values for the supervised indicator functions δlnk are

calculated using a Laplace smoothing. We use this procedure to avoid empty values for

the supervised means vectors which can appear in the case of clusters without elements

of the corresponding class. In this case, the supervised mean of a missing class is given

by the unsupervised cluster because all elements have a value near to zero.

Specifically, we apply a Laplace smoothing according to:

δlnk =
λlnk + γ

1 + LKγ
, (7)
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where λlnk is defined as:

λlnk =

 1 if xn ∈ Ck ∧ yn = l

0 otherwise.

We apply a Laplace smoothing [26] with a constant γ = 0.001. This small constant

can be interpreted as the global uncertainty about the label of an element.

In terms of the update-step, we only need to find the optimal supervised means

since each unsupervised mean uk is a function of the corresponding supervised means

ulk. Applying the corresponding partial derivatives to Equation (3), we have:

∂

∂ulk
J =

N∑
n=1

−2αδlnk
(
xn − ulk

)
ρlk +

N∑
n=1

−2(1− α)δnk (xn − uk) ρlk (8)

By rearranging components in Equation (8) and setting the derivative to zero, we

obtain:

N∑
n=1

αδlnkxn −
N∑

n=1

αδlnku
l
k +

N∑
n=1

(1− α)δnkxn −
N∑

n=1

(1− α)δnkuk = 0 (9)

Assuming iteration t and that we are computing the optimization for the super-

vised mean of a given class label l′, we use the previous supervised means ul(t−1)k to

approximate u(t)k by updating only the maximized component ul
′

k and fixing the rest.

Then, u(t)k =
∑L

l=1,l 6=l′ ρ
l(t−1)
k u

l(t−1)
k + ρ

l′(t−1)
k u

l′(t)
k = u

(t−1)
k − ρl

′(t−1)
k u

l′(t−1)
k +

ρ
l′(t−1)
k u

l′(t)
k . Renaming the variables associated to previous iterations u(t−1)k , ul(t−1)k

and ρl(t−1)k as ũk, ũlk and ρ̃lk, respectively, and considering that the optimization is

computed for l=l′, we have:

N∑
n=1

αδlnkxn −
N∑

n=1

αδlnku
l
k +

N∑
n=1

(1− α)δnkxn −
N∑

n=1

(1− α)δnk(ũk − ρ̃lkũlk + ρ̃lku
l
k) = 0 (10)
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Then, by rearranging the components, we have:

ulkα

N∑
n=1

δlnk + ulkρ̃
l
k(1− α)

N∑
n=1

δnk = α

N∑
n=1

δlnkxn + (1− α)
N∑

n=1

δnk
(
xn − ũk + ρ̃lkũ

l
k

)
(11)

Finally we obtain:

ulk =
α
∑N

n=1 δ
l
nkxn + (1− α)

∑N
n=1 δnk

(
xn − ũk + ρ̃lkũ

l
k

)
α
∑N

n=1 δ
l
nk + (1− α)ρ̃lk

∑N
n=1 δnk

(12)

Equation (12) has a straightforward interpretation. If we have α = 1, then only

supervised information is considered. On the other hand, if α = 0 then the resulting

clusters correspond to the unsupervised solution provided by the traditional K-Means

algorithm. We summarize our procedure in Algorithm 3.

Algorithm 3 Labeled K-Means Algorithm
1. Initialize K initial means randomly.
2. Associate each data instance with its nearest mean and consider its class.
3. Compute supervised means ulk using Equation (12).
4. Compute unsupervised means uk using Equation (5).
5. Compute indicatrices δlnk considering Equation (6).
6. Compute the cost J using Equation (3).
7. Repeat 3 to 6 until there is no change in the cost evaluation (or cost change is below

a threshold).

In terms of convergence, the assignment-step given by Equation (6) can only de-

crease the value of the relevant cost function in Equation (3). Similarly, the update

step provides new parameter values that also decrease this cost function. Furthermore,

given that set of possible assignments of training instances to clusters is finite, the pro-

cedure in Algorithm 3 can not decrease forever. As a consequence, it is possible to

guarantee that the proposed algorithm will converge to a local or global optimum of

the relevant cost function.

In our model, we do not consider specific strategies to deal with noisy or missing

data. However, standard preprocessing strategies do exist to deal with these problems,
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and they can be used to complement our technique [16].

4 Experiments and Results

4.1 Experiments in general datasets

In this Section, we test the performance of LK-Means using diverse datasets. In par-

ticular, we use 8 real data sets from the UCI Machine Learning Repository [1]: Iris,

Heart, Glass, Diabetes, Silhouttes, Segment, Ionosphere, and Sonar. Table 1 shows

the main details for these datasets. We normalize all these datasets to the range [0, 1].

Following the regular implementation of K-means, we use Euclidean distance as the

similarity metric. All experiments are performed on a PC with 2.0 Ghz Pentium IV

processor with 2GB of RAM memory.

We compare our algorithm against classical K-Means and SRIDHCR. SRIDHCR is

a K-Medoids algorithm based on a discriminative metric with random re-initialization

if it detects a local minimum. We choose SRIDHCR because it shows good perfor-

mance in relation to other supervised clustering methods [11]. We compare these al-

gorithms in terms of clustering quality and computational time. In particular, Meilǎ

[24] shows that there is not a single best metric to compare the outputs of cluster-

ing algorithms. There are alternative metrics for evaluating clustering quality, such as

F-measure [6], Jaccard index [28], or Fowlkes Mallows index [14], however, we fol-

low the metrics suggested in [24]. Consequently, we assess clustering quality using 4

different metrics commonly used to validate clustering results [24]: Adjusted Mutual

Information (AMI) [36], Adjusted Variation of Information (AVI) [36], Mirkin distance

(MD) [25], and Adjusted Rand Index (ARI) [15]. AMI and AVI are variations of mu-

tual information (MI), while MD and ARI are variations of Rand Index (RI). All these

metrics do not make any assumption about the form of the clusters. Also, they are in

the range [0, 1], where higher values indicate a better clustering, except in the case of
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MD where small values indicate better results.

In our experiments, we use cross-validation with ten folds (10-CV) to validate the

results of each algorithm. In terms of selecting a suitable number of clusters K, it is

possible to use previous strategies proposed in the context of the K-Means algorithm

[22]. Also, it is possible to relate the selection of K to the number of known classes.

Here, we do not focus in proposing new strategies to choose this value, and we run our

experiments testing different numbers of clusters. For each dataset, we select values

for K equally spaced according to 4 intervals beginning from the number of classes

L to the upper bound
⌈√

number of records/2
⌉

. This upper bound is obtained from

the rule of thumb” of clustering [22]. For example, in the case of Heart dataset, as it

has 2 classes and 270 instances, we test K ∈ {2, 5, 8, 11, 14}.

For each of the 4 clustering metrics considered here, we test the performance of

LK-Means using parameter α with values {0.8, 0.9, 1.0}, and for each of the tests

considered here, we report the average performance for these 3 values. In the case

of SRIDHCR, we choose the best parameter β (see [11] for details) according to 3-

CV in a grid with 11 values: 0 to 2.0 with a step of 0.2. K-Means does not require

more parameters than the number of clusters. It is important to note that to be fair

with K-Means, we do not optimize the value of parameter α in LK-Means. This is

because when α approaches zero LK-Means behaves exactly like K-Means, therefore,

by optimizing α, LK-Means can always at least match the performance of K-Means.

Consequently, in all tests, we just consider high values of α to stress the relevance of

the supervised information. To check if our results are statistically significant, in each

case we use a paired Student’s t-test (Behrens-Fisher problem [29]) to compare the

results of LK-Means against the performance of each of the alternative techniques.

Table 2 shows our results using AMI metric. Considering the average AMI results

for all values of K under test, our method outperforms K-Means and SRIDHCR in

most of the cases, with the exceptions of the Silhouttes and Ionosphere datasets where
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K-Means shows better performance. Considering only cases with confidence ≥ 75%,

a paired t-Student test shows that for Iris, Heart, Glass, Segment, and Sonar datasets,

LK-Means has better AMI than the nearest competitor with 84%, 100%, 88%, 91%,

and 75% of confidence, respectively. On the other hand, K-Means shows the best

performance in Ionosphere and Silhouttes datasets with 95% and 84% confidence, re-

spectively.

Table 3 shows our results using AVI metric. By considering all datasets, we can

observe that, on average, again LK-Means outperforms the other algorithms in most

of the cases. Similarly to the results with AMI metric, the worst relative results for

LK-Means is given for the case of the Ionosphere dataset. Considering only cases with

confidence ≥ 75%, a paired t-Student test finds that LK-Means in Iris, Heat, Glass,

Segment, and Sonar datasets has greater AVI than the nearest competitor with 87%,

100%, 94%, 75% and 80% of confidence, respectively. On the other hand, K-Means

shows the best performance in Ionosphere and Silhouttes datasets with 96% and 95%

confidence, respectively.

Table 4 shows results using MD metric. In terms of average results, in half of the

8 datasets LK-Means is the winner, while K-Means shows best performance in the

rest of the datasets. In general, we notice that under MD metric there is not a clear

winner between LK-Means and K-Means, and results depend on the type of dataset.

Considering only cases with confidence ≥ 75%, a paired t-Student test shows that LK-

Means in Heart, Diabetes, and Sonar datasets has lower MD than the nearest competitor

with 100%, 92% and 87% of confidence, respectively. On the other hand, K-Means

shows the best performance in Glass, Silhouttes, and Ionosphere datasets with 97%,

98%, and 95% of confidence, respectively.

Table 5 summarizes results using ARI metric. In average LK-Means is the win-

ner in 5 of the 8 datasets. while K-Means shows best performance in 2 datasets, and

SRIDCHR in one. Considering only cases with confidence ≥ 75%, a paired t-Student
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test finds that LK-Means in Iris, Heart, Glass, Segment, and Sonar datasets has better

ARI than the nearest competitor with 75%, 100%, 95%, 98% and 93% of confidence,

respectively. On the other hand, K-Means shows the best performance in Ionosphere

dataset with 99% confidence.

Considering the different metrics and datasets used to evaluate clustering quality,

the previous results indicate that in general LK-Means outperforms the alternative tech-

niques under consideration. However, the superior performance of LK-Means depends

on the type of dataset and the validation metric under consideration. In terms of the dif-

ferent datasets, in general LK-Means shows superior performance in most of them with

the exception of Silhouttes and Ionosphere, where the unsupervised clustering strategy

of K-Means leads to better clusters. We believe that, in general, the performance of

LK-Means is closely related to the pertinence of our hypothesis that homogeneity in

class information leads to more informative clusters. Clearly, the validity of this hy-

pothesis depends of the application under consideration, particularly, the semantic of

the data labels under consideration. In terms of the 4 metrics used to evaluate clustering

quality, LK-Means outperforms clearly the alternative algorithms in the case of AMI

and AVI metrics, and to a lesser degree in the case of ARI metric. In the case of MD

metric, for the values of α under consideration, LK-Means is unable to improve the

results of K-Means. Following the observations in [37], MD metric and, to a lesser ex-

tend, ARI metric are affected by cluster size, therefore, they have a bias that affect their

performance. As recommended in [37], AMI and AVI produce more stable and suit-

able results. Coincidentally, in our case AMI and AVI produce similar results and they

provide stronger support to the superiority of LK-Means with respect to the alternative

techniques.

Additionally, we test the sensibility of performance respect to α by measuring ad-

justed mutual information (AMI). We consider values of α in the interval: 0.1 to 1.0

with a step of 0.1. In order to facilitate the analysis of results, we consider two rep-
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resentative datasets. Specifically, we choose Diabetes and Glass datasets because in

our experiments they represent cases where, under the AMI metric, LK-Means and K-

Means alternate the best performance for different values of K. In both cases, we use a

fixed number of clusters. We choose the number of clusters using the classical silhou-

ette method [30], where the cardinality of the set of clusters is selected to maximize

the average silhouette of the clusters.

Figure 3(a) shows the relationship between α and AMI for Diabetes dataset. The

best result for LK-Means is obtained whenα=0.9 with a corresponding value ofAMI =

0.092. The worst result is for alpha= 0.1 with a corresponding value ofAMI = 0.051.

For this dataset, K-Means obtains a value of AMI = 0.050, therefore, there is a big

advantage in favor of LK-Means. On the other hand, Figure 3(b) shows the relationship

between α and AMI for dataset Glass. In this case, the best results are obtained with

low values of α (0.1 and 0.2). In particular, the best result for LK-Means is obtained

when α=0.1 with a corresponding values of AMI = 0.171. For this dataset, K-Means

obtains a value of AMI = 0.168. Consequently, both algorithms show a similar be-

havior. This is expected because, according to Equation (3), for values of α near zero

LK-Means behaves like K-Means.

The processing time for the different algorithms is summarized in Table 6. As ex-

pected, K-Means is faster than the other methods, however, it is relevant to see that

LK-Means is visibly faster than SRIDHCR. For example, for 12 clusters in the Sil-

houttes dataset, K-Means, LK-Means and SRIDHCR use approximately 0.1, 5, and

715 seconds, respectively. The reason for the slowness of SRIDHCR is that K-Medoids

requires a distance matrix to be calculated between all the records, while K-Means and

LK-Means only require the distance measures from the means to all records. Con-

sidering the good results of the AMI score, we can see that LK-Means is capable of

combining the speed of K-Means and the semantic gain to incorporate data labels dur-

ing the clustering process.
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4.2 Experiments in object recognition

In this Section we apply LK-Means to the task of codebook generation for a visual

recognition task. Currently, the Bag-of-Visual-Words (BoVW) scheme is one of the

most popular approaches for visual object recognition [33]. Under this approach, the

generation of a suitable codebook plays a key role. In general, most BoVW approaches

build the codebook using a clustering algorithm, mainly K-Means. Interestingly, al-

though class labels are usually available, these are not considered during the code-

book generation. This suggests a suitable scenario to test the advantages that a super-

vised clustering technique, such as LK-Means, can offer to provide more discriminative

codebooks.

Following the previous intuition, we compare the performance of LK-Means against

K-Means for the task of codebook generation in object recognition applications. As a

testbed, we select 4 object recognition datasets that are commonly used to benchmark

object recognition techniques. These datasets are: UIUC, DARMSTADT, VEH-CALT,

and OUTDOOR. UIUC contains 2 object classes: cars and backgorund. DARM-

STADT contains 3 object classes: motorbike, cow, and cars [20]. VEH-CALTECH

is a subset of CALTECH-101 (VEH-CALT) dataset [12], including 4 object classes:

airplane, car, helicopter, and motorbike. Finally, OUTDOOR contains images of 8

types of outdoor scenes [27]. Table 7 shows relevant details for all these datasets. Fol-

lowing a standard implementation of K-means, we use Euclidean distance as the main

similarity metric for all our test.

Following standard procedures for BoVW schemes [33], we use Histogram of Gra-

dients (HoG) as a basic visual feature [8]. In particular, we obtain the HoG descriptors

using patches of 32x32 pixels. These patches are selected using a sliding window pro-

cess over a fix grid on each input image. In particular, we use the variant UOCTTI of

HoG proposed by Felzenswalb et al. [13]. UOCTTI considers a compressed represen-

tation of HoG given by 31 dimensions. For each dataset, we use the HoG descriptors of
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a set of training patches to build codebooks using K-Means and LK-Means. In the case

of LK-Means, we assign to each patch the label of the object class that generates the

patch. We evaluate the discriminative properties of the resulting codebooks using them

to train a category-object classifier. As a classifier, we use the popular linear Support

Vector Machine (SVM), as in [8]. In relation to the training process, we use 15 random

images for training and 15 images for testing. In order to evaluate the sensibility of

our results in terms of the number of clusters, we consider the following number of

codewords: K = {50, 100, 150, 200, 250}.

Table 8 shows the average accuracy achieved by the resulting classifier. These

results are obtained using a 20-hold-out scheme and a fixed value of α = 0.8. We

select this value of α extrapolating the results of the previous Section, and as a good

compromise between the supervised and unsupervised terms in Equation (3). In Table

8, we can observe that LK-Means outperforms K-Means in almost all cases; and in the

few cases where K-Means shows superior performance the difference in accuracies is

less than 1.0%. Furthermore, we observe that the positive difference in favor of LK-

Means increases with the number of clusters, indicating that LK-Means benefits more

that K-Means from a greater flexibility in the search for relevant patterns.

Finally, Figure 2 shows some visual codewords resulting from the VEH-CALT

dataset. We present the top-six most discriminative words according to the Fisher dis-

criminant score [4]; and considering K = 200 for both algorithm. In Figure 2, each

visual codeword is represented by its four nearest patches. In Figure 2, it is possi-

ble to observe in each row that, in general, LK-Means provides more discriminative

codewords than K-Means.

5 Conclusions

In this paper we introduce LK-Means, an extension of the classical K-Means algorithm

to the case of supervised clustering. As a main search strategy, LK-Means optimizes
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a convex combination of class dependent and non-class dependent cost functions. Ex-

periments using a set of standard benchmark datasets and 4 different metrics to assess

clustering quality, show that, on average, LK-Means outperforms classical K-Means

and SRIDCHR algorithms. In the cases of AMI and AVI metrics, in most of our tests

LK-Means outperforms the alternative algorithms by a large margin. In the case of

ARI metric, on average, LK-Means also outperforms K-Means and SRIDCHR but

by a narrower margin. In the case of MD metric, LK-Means and K-Means present

mixed results. As it has been noticed in previous works, MD is negatively affected

by clustering size, and it is in general less robust than metrics such as AMI and AVI.

Additionally, we show an application of LK-Means as a codebook generator for object

recognition applications. We consider several common benchmark datasets, and in all

cases LK-Means outperforms K-Means, demonstrating the relevance of considering

class information to find meaningful clusters.

Interestingly, our results indicate that the advantages of LK-Means over K-Means

depends on the type of dataset. This is closely related to our hypothesis that homo-

geneity in class information leads to more informative clusters, which depend on the

semantic of the data labels. For example, in the case of the object recognition appli-

cation, where one expects a high correlation between clusters of visual features and

object categories, the advantages of using LK-Means instead of regular K-Means are

more clear. This observation offers a “rule of thumb” to set the value of the parameter

α. For a dataset where it is expected a high correlation between class information and

cluster composition α should be close to 1, increasing the relevance of class informa-

tion.

In relation to time, our experiments show that LK-Means presents an attractive

computational performance, being considerably faster than the alternative supervised

clustering method considered in this work. In relation to future work, we plan to in-

crease the reliability of the model by modifying the cost function of LK-Means to
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accommodate cluster shape. We also plan to extend this work to manage fuzzy labels

inside of our model. Finally, we also plan to extend the idea behind LK-Means to the

case of subspace clustering, which can provide a suitable extended search space to find

relevant class-dependent clusters.
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(b) Supervised clustering

Figure 1: Toy example comparing traditional and supervised clustering. There are two
class labels denoted by clear and dark circles. We see that while classical clustering
finds spatial clusters, supervised clustering finds clusters that are uniform with respect
to class labels.
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 (a) Top-six codebooks obtained with K-Means.

 

(b) Top-six codebooks obtained with LK-Means.

Figure 2: Top-six most discriminative codewords according to Fisher score for code-
books obtained with K-Means and LK-Means, respectively. Each row shows the 4
nearest pathces to each codeword. It is possible to observe that, in general, LK-Means
provides more discriminative codewords than K-Means.

Table 1: Datasets details.
Dataset name # objects # dimensions # classes
Iris 150 4 3
Heart 270 13 2
Glass 214 9 6
Diabetes 768 8 2
Silhouttes 846 18 4
Segment 2310 19 7
Ionosphere 351 33 2
Sonar 208 60 2
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(a) Diabetes dataset(with 2 clusters)
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(b) Glass dataset (with 11 clusters)

Figure 3: Comparison of sensibility of adjusted mutual information (AMI) respect to
parameter α. Figure 3(a) shows that the best result for Diabetes dataset is obtained
with α equal to 0.9, AMI=0.092, which is almost the double than the result with K-
Means, AMI=0.050. On contrast, Figure 3(b) shows that in case of Glass dataset, the
best result is obtained with α equal to 0.1, AMI=0.171, which is slightly greater than
performance with K-Means, AMI=0.168. These results show that the discriminativity
of clustering is dependant of data and parameter α.
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Table 2: Adjusted Mutual Information results for real datasets using 10-CV. In average,
LK-Means usually outperforms K-Means and SRIDHCR with variable confidence.

Method Number of clusters
Iris k=3 k=5 k=7 k=9 k=11 Mean
K-Means 0.765 0.515 0.359 0.385 0.242 0.453
SRIDHCR 0.196 0.260 0.204 0.236 0.241 0.227
LK-Means 0.655 0.538 0.497 0.451 0.387 0.505
Heart k=2 k=5 k=8 k=11 k=14 Mean
K-Means 0.273 0.145 0.087 0.079 0.045 0.126
SRIDHCR 0.011 0.082 0.078 0.104 0.097 0.074
LK-Means 0.293 0.212 0.137 0.134 0.104 0.176
Glass k=6 k=7 k=8 k=9 k=10 Mean
K-Means 0.168 0.166 0.145 0.136 0.126 0.148
SRIDHCR 0.093 0.132 0.138 0.092 0.106 0.112
LK-Means 0.148 0.159 0.156 0.132 0.149 0.156
Diabetes k=2 k=7 k=12 k=17 k=22 Mean
K-Means 0.050 0.059 0.050 0.046 0.045 0.049
SRIDHCR 0.113 0.049 0.044 0.043 0.041 0.058
LK-Means 0.086 0.068 0.047 0.040 0.043 0.060
Silhouttes k=4 k=8 k=12 k=16 k=20 Mean
K-Means 0.120 0.125 0.137 0.124 0.114 0.124
SRIDHCR 0.076 0.107 0.132 0.141 0.116 0.114
LK-Means 0.112 0.129 0.128 0.118 0.117 0.120
Segment k=7 k=14 k=21 k=28 k=35 Mean
K-Means 0.578 0.505 0.465 0.411 0.374 0.467
SRIDHCR 0.446 0.522 0.469 0.428 0.392 0.451
LK-Means 0.548 0.551 0.492 0.439 0.411 0.488
Ionosphere k=2 k=5 k=8 k=11 k=14 Mean
K-Means 0.169 0.181 0.140 0.179 0.124 0.159
SRIDHCR 0.053 0.112 0.069 0.082 0.075 0.078
LK-Means 0.174 0.177 0.125 0.156 0.108 0.148
Sonar k=2 k=4 k=6 k=8 k=10 Mean
K-Means 0.001 0.022 0.051 0.032 0.019 0.025
SRIDHCR 0.012 0.001 0.050 0.019 0.020 0.020
LK-Means 0.094 0.036 0.017 0.039 0.058 0.049
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Table 3: Adjusted Variation of Information results for real datasets using 10-CV. In
average, LK-Means usually outperforms competitors with variable confidence.

Method Number of clusters
Iris k=3 k=5 k=7 k=9 k=11 Mean
K-Means 0.781 0.612 0.454 0.511 0.352 0.542
SRIDHCR 0.224 0.286 0.221 0.261 0.280 0.254
LK-Means 0.715 0.613 0.591 0.560 0.485 0.592
Heart k=2 k=5 k=8 k=11 k=14 Mean
K-Means 0.275 0.207 0.131 0.126 0.075 0.163
SRIDHCR 0.011 0.112 0.115 0.163 0.159 0.112
LK-Means 0.300 0.271 0.188 0.201 0.164 0.225
Glass k=6 k=7 k=8 k=9 k=10 Mean
K-Means 0.193 0.188 0.168 0.155 0.150 0.170
SRIDHCR 0.100 0.149 0.150 0.109 0.128 0.127
LK-Means 0.216 0.183 0.187 0.154 0.179 0.184
Diabetes k=2 k=7 k=12 k=17 k=22 Mean
K-Means 0.045 0.087 0.080 0.077 0.078 0.073
SRIDHCR 0.117 0.071 0.068 0.068 0.068 0.078
LK-Means 0.105 0.092 0.069 0.065 0.069 0.080
Silhouttes k=4 k=8 k=12 k=16 k=20 Mean
K-Means 0.122 0.151 0.182 0.174 0.166 0.159
SRIDHCR 0.076 0.107 0.132 0.141 0.116 0.114
LK-Means 0.121 0.149 0.164 0.157 0.163 0.151
Segment k=7 k=14 k=21 k=28 k=35 Mean
K-Means 0.601 0.575 0.578 0.538 0.511 0.561
SRIDHCR 0.561 0.583 0.568 0.544 0.513 0.554
LK-Means 0.570 0.615 0.580 0.549 0.531 0.569
Ionosphere k=2 k=5 k=8 k=11 k=14 Mean
K-Means 0.173 0.238 0.201 0.258 0.195 0.213
SRIDHCR 0.059 0.132 0.084 0.106 0.106 0.097
LK-Means 0.182 0.225 0.173 0.212 0.160 0.190
Sonar k=2 k=4 k=6 k=8 k=10 Mean
K-Means 0.001 0.029 0.076 0.050 0.031 0.037
SRIDHCR 0.012 0.001 0.065 0.028 0.033 0.028
LK-Means 0.099 0.048 0.026 0.056 0.075 0.061
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Table 4: Mirkin distance (MD) results for real datasets using 10-CV. In half of cases,
LK-Means usually outperforms K-Means and SRIDHCR with variable confidence.

Method Number of clusters
Iris k=3 k=5 k=7 k=9 k=11 Mean
K-Means 0.098 0.126 0.171 0.148 0.179 0.144
SRIDHCR 0.393 0.349 0.352 0.333 0.328 0.351
LK-Means 0.158 0.158 0.148 0.147 0.158 0.154
Heart k=2 k=5 k=8 k=11 k=14 Mean
K-Means 0.354 0.406 0.433 0.428 0.455 0.415
SRIDHCR 0.491 0.450 0.451 0.445 0.450 0.457
LK-Means 0.347 0.361 0.402 0.403 0.419 0.386
Glass k=6 k=7 k=8 k=9 k=10 Mean
K-Means 0.287 0.303 0.266 0.269 0.268 0.279
SRIDHCR 0.325 0.302 0.309 0.298 0.286 0.304
LK-Means 0.324 0.314 0.317 0.291 0.267 0.302
Diabetes k=2 k=7 k=12 k=17 k=22 Mean
K-Means 0.448 0.473 0.494 0.505 0.513 0.487
SRIDHCR 0.406 0.493 0.493 0.506 0.512 0.482
LK-Means 0.419 0.471 0.492 0.504 0.503 0.478
Silhouttes k=4 k=8 k=12 k=16 k=20 Mean
K-Means 0.341 0.274 0.250 0.242 0.237 0.269
SRIDHCR 0.391 0.319 0.281 0.264 0.262 0.303
LK-Means 0.381 0.287 0.261 0.258 0.246 0.287
Segment k=7 k=14 k=21 k=28 k=35 Mean
K-Means 0.142 0.115 0.107 0.110 0.114 0.118
SRIDHCR 0.149 0.111 0.112 0.120 0.124 0.123
LK-Means 0.154 0.104 0.107 0.109 0.111 0.117
Ionosphere k=2 k=5 k=8 k=11 k=14 Mean
K-Means 0.401 0.393 0.432 0.408 0.438 0.414
SRIDHCR 0.429 0.420 0.450 0.445 0.474 0.444
LK-Means 0.398 0.403 0.440 0.411 0.444 0.419
Sonar k=2 k=4 k=6 k=8 k=10 Mean
K-Means 0.523 0.469 0.447 0.449 0.457 0.469
SRIDHCR 0.479 0.506 0.474 0.503 0.480 0.488
LK-Means 0.455 0.460 0.458 0.444 0.440 0.451
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Table 5: Adjusted Rand Index (ARI) results for real datasets using 10-CV. In average,
LK-Means usually outperforms K-Means and SRIDHCR with variable confidence.

Method Number of clusters
Iris k=3 k=5 k=7 k=9 k=11 Mean
K-Means 0.754 0.592 0.424 0.477 0.322 0.513
SRIDHCR 0.190 0.259 0.196 0.221 0.233 0.220
LK-Means 0.644 0.568 0.552 0.527 0.457 0.550
Heart k=2 k=5 k=8 k=11 k=14 Mean
K-Means 0.293 0.155 0.093 0.097 0.038 0.135
SRIDHCR 0.019 0.110 0.099 0.111 0.099 0.088
LK-Means 0.315 0.257 0.164 0.155 0.119 0.202
Glass k=6 k=7 k=8 k=9 k=10 Mean
K-Means 0.151 0.124 0.131 0.124 0.106 0.127
SRIDHCR 0.074 0.092 0.104 0.079 0.091 0.088
LK-Means 0.168 0.134 0.143 0.119 0.137 0.140
Diabetes k=2 k=7 k=12 k=17 k=22 Mean
K-Means 0.094 0.093 0.062 0.045 0.033 0.654
SRIDHCR 0.182 0.059 0.068 0.048 0.041 0.796
LK-Means 0.150 0.089 0.060 0.043 0.045 0.774
Silhouttes k=4 k=8 k=12 k=16 k=20 Mean
K-Means 0.084 0.098 0.109 0.103 0.101 0.099
SRIDHCR 0.051 0.082 0.109 0.110 0.088 0.088
LK-Means 0.082 0.103 0.108 0.098 0.100 0.098
Segment k=7 k=14 k=21 k=28 k=35 Mean
K-Means 0.460 0.426 0.396 0.346 0.294 0.384
SRIDHCR 0.446 0.483 0.410 0.326 0.278 0.389
LK-Means 0.447 0.502 0.444 0.388 0.357 0.428
Ionosphere k=2 k=5 k=8 k=11 k=14 Mean
K-Means 0.198 0.219 0.147 0.197 0.139 0.180
SRIDHCR 0.115 0.163 0.112 0.120 0.080 0.118
LK-Means 0.196 0.199 0.130 0.189 0.124 0.168
Sonar k=2 k=4 k=6 k=8 k=10 Mean
K-Means 0.001 0.016 0.050 0.032 0.016 0.023
SRIDHCR 0.042 0.001 0.048 0.018 0.025 0.027
LK-Means 0.103 0.044 0.034 0.052 0.059 0.058
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Table 6: Speed in seconds for real datasets using 10-CV. LK-Means is considerably
faster than SRIDHCR. Even though K-Means is faster than LK-Means, the difference
is not very high and is compensated by an increase in clusters quality.

Method Number of clusters
Iris k=3 k=5 k=7 k=9 k=11
K-Means 0.004 0.009 0.009 0.010 0.011
SRIDHCR 35.502 54.315 72.967 90.713 108.689
LK-Means 0.047 0.095 0.074 0.068 0.087
Heart k=2 k=5 k=8 k=11 k=14
K-Means 0.008 0.012 0.016 0.017 0.020
SRIDHCR 45.232 95.696 146.066 195.522 247.243
LK-Means 0.044 0.096 0.141 0.190 0.169
Glass k=6 k=7 k=8 k=9 k=10
K-Means 0.010 0.018 0.014 0.015 0.030
SRIDHCR 88.823 102.429 115.432 128.478 154.635
LK-Means 0.400 0.356 0.516 0.565 0.548
Diabetes k=2 k=7 k=12 k=17 k=22
K-Means 0.023 0.101 0.125 0.110 0.113
SRIDHCR 124.984 356.097 585.961 815.086 1063.223
LK-Means 0.230 1.556 2.686 3.997 4.339
Silhouttes k=4 k=8 k=12 k=16 k=20
K-Means 0.123 0.098 0.093 0.106 0.137
SRIDHCR 251.755 464.094 715.121 887.593 1311.306
LK-Means 1.492 3.398 4.775 5.937 9.384
Segment k=7 k=14 k=21 k=28 k=35
K-Means 0.245 0.307 0.394 0.494 0.622
SRIDHCR 1105.172 2108.405 3173.733 4086.154 4972.139
LK-Means 13.272 11.170 37.325 40.543 7.154
Ionosphere k=2 k=5 k=8 k=11 k=14
K-Means 0.009 0.030 0.027 0.029 0.031
SRIDHCR 61.963 139.254 212.244 263.724 329.487
LK-Means 0.118 0.337 0.441 0.605 0.923
Sonar k=2 k=4 k=6 k=8 k=10
K-Means 0.008 0.013 0.014 0.016 0.017
SRIDHCR 39.390 68.486 97.831 127.679 165.534
LK-Means 0.058 0.106 0.118 0.279 0.332

Table 7: Details of real object datasets.
Dataset name # objects # classes
UIUC 1050 2
DARMSTADT 327 3
VEH-CALT 1801 4
OUTDOOR 2600 8
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Table 8: Recognition accuracy using a 20-hold-out evaluation scheme. In average, LK-
Means overcomes K-Means in almost all datasets and all configurations. The advantage
of LK-Means is more evident for cases with a large number of codewords (K >150).

Dataset Method Number of clusters
50 100 150 200 250

UIUC K-Means 79.33 78.17 81.17 77.33 77.50
LK-Means 78.50 80.83 82.17 81.33 83.00

DARMSTADT K-Means 86.33 86.78 86.44 86.89 89.33
LK-Means 86.33 89.00 87.89 87.67 91.67

VEH-CALT K-Means 71.83 79.08 78.16 79.33 81.03
LK-Means 74.75 80.83 79.75 81.00 82.75

OUTDOOR K-Means 50.79 57.00 55.50 57.88 57.46
LK-Means 52.13 55.71 57.58 58.50 60.38
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